Smart Booking Without Looking:
Providing Hotel Recommendations in the TripRebel Portal

Matthias Traub
Know-Center
Graz, Austria

mtraub@know-center.at

Pepijn Schoen
TripRebel GmbH
Hamburg, Germany
pepijn.schoen@triprebel.com

ABSTRACT

In this paper, we present a scalable hotel recommender system for
TripRebel, a new online booking portal. On the basis of the open-
source enterprise search platform Apache Solr, we developed a sys-
tem architecture with Web-based services to interact with indexed
data at large scale as well as to provide hotel recommendations us-
ing various state-of-the-art recommender algorithms. We demon-
strate the efficiency of our system directly using the live TripRebel
portal where, in its current state, hotel alternatives for a given hotel
are calculated based on data gathered from the Expedia Affiliate
Network (EAN).

CCS Concepts

eInformation systems — Recommender systems;

Keywords

hotel recommendations; TripRebel; Apache Solr; Expedia; scal-
able recommender framework; collaborative filtering

1. INTRODUCTION

The new hotel booking site TripRebel (seen in Figure 1) aims
to make hotel booking easier and fairer. A common problem when
searching for hotels is that too many alternatives are available, caus-
ing a choice overload. To reduce the burden of finding the right lo-
cation to spend the business trip or holidays, different methods are
employed, with personalized hotel recommendations as one cru-
cial part of this. However, in order to accurately model the trav-
eler’s profile, enough knowledge about the different hotel attributes
need to be provided, so that the best hotel for that specific person
can be recommended. Besides focusing on the standard problem of
modeling the user profile and finding the best suited hotels, another
important task to consider is the current context of the user, e.g.,
the location of the hotel that is currently viewed. By considering

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).

ACM 978-1-4503-3721-2/15/10.
http://dx.doi.org/10.1145/2809563.2809616

Dominik Kowald
Know-Center
Graz, Austria
dkowald@know-center.at

Gernot Supp
TripRebel GmbH
Hamburg, Germany
gernot.supp@triprebel.com

Emanuel Lacic
Graz University of Technology
Graz, Austria
elacic@know-center.at

Elisabeth Lex
Graz University of Technology
Graz, Austria
elisabeth.lex@tugraz.at

the user’s current context, the performance of personalized recom-
mendations can be highly improved. For example, Cremonesi et al.
did an extensive evaluation of different recommender approaches in
the domain of hotel recommendation [4]. Their evaluation shows
that personalized recommender approaches have a higher and more
consistent user satisfaction compared to simple most popular rec-
ommendations. Personalized recommender approaches also sup-
port users by finding cheaper hotel alternatives, which is also an
objective of the TripRebel portal.

Thus, in cooperation with TripRebel, we defined use cases and
several requirements for such a personalized hotel recommender
system. On the basis of Apache Solr, we then developed a system
architecture with Web-based services to interact with incoming user
interactions at large scale as well as to provide hotel recommenda-
tions using various state-of-the-art recommender approaches. In
the following sections, we show the use cases and requirements a
hotel recommender system needs to handle. We also describe the
recommender system we implemented and show how the different
hotel recommender scenarios are supported by it. Lastly, we show
the full functionality of TripRebel’s recommender system through
an interactive REST API.

2. USE CASES AND REQUIREMENTS

To build a hotel recommender system, specific use cases and re-
quirements need to be considered. First of all, our system should
be able to recommend similar hotel alternatives based on the avail-
able content attributes and location information, and further pro-
vide personalized hotel recommendations through exploiting im-
plicit user-hotel interaction data. Considering these two use cases,
we extracted four key requirements that must be supported by a
hotel recommender system:

Reql. It should be possible to filter the recommended hotels
(e.g., by hotel attributes, like city or hotel location).

Req2. It should be possible for the user to combine and weight
the various recommendation approaches (e.g., Collaborative Filter-
ing and Content-Based Filtering) in form of hybrid approaches.

Req3. Hotel data updates and new user-hotel interactions (i.e.,
implicit data) should immediately be taken into account for the cal-
culation of recommendations.

Req4. Recommendations should be provided at large scale and
in (near) real-time.

Based on these use cases and requirements, we analyzed var-
ious recommender frameworks such as MyMediaLite' or Apache

"http://mymedialite.net

TRIPREBEL

210c2015 v 230a2015 ~ | aduns

Weeee0 Woeee0 Weeeeo

Graz

Figure 1: The TripRebel portal showing the top search results for hotels in Graz.

Mahout?. These frameworks are well suited when working with ex-
plicit and implicit user-item interaction data but they lack function-
ality to process content- and location-based data which is crucial
for the domain of hotel recommendations, especially when the rec-
ommendations have to be provided in (near) real-time. For exam-
ple, a content-based hotel recommender system by Levi et.al. [8]
is obtaining a 10% increase of recommender accuracy compared to
TripAdvisor’s and Venere’s top suggestions. However, a drawback
of their approach is that the preprocessing of user reviews and hotel
attributes clustering is not done in real-time.

Thus, we designed and developed a large scale recommender
system on the basis of the open-source enterprise search platform
Apache Solr which we present in detail in the next section.

3. SYSTEM OVERVIEW

In this section, we give an overview of our developed recom-
mender system including its architecture and deployed services.
The system architecture of our hotel recommender system is vi-
sualized in Figure 2. It is fully developed in Java and consists of
five main components which are described in the following subsec-
tions.

3.1 Apache Solr

The data backend for our recommender system is built on Apache
Solr *. Solr is an open-source, high-performance search engine
platform providing a powerful Java-based API and a convenient
user interface for easy interactions with the data (also depicted
in Figure 3). We chose Apache Solr over other database solu-
tions such as MySQL or PostgreSQL because of its intuitive query
functionality, its capability of various data types (e.g., geospatial
data) and its already built-in MoreLikeThis* function. With this
MoreLikeThis functionality it is easy to process a large amount of
data and still provide (near) real-time performance. Furthermore,
Apache Solr provides the capability for horizontal scaling, allowing
to create either shards (i.e., splitting the data into smaller indices to
increase the performance of search queries for huge data sets) or
replicas (i.e., cloning the existing shards to another machine to in-
crease the fault tolerance of the whole system). Furthermore, it has
already proved its usefulness for recommender systems in terms of
scalability in some of our previous work (see e.g., [6, 7]).

Since the TripRebel portal currently uses the API of the Expedia
Affiliate Network (EAN) and in order to get initial hotel data for
our recommender system, we analyzed the freely available EAN
database® and loaded the necessary data into our Solr index. Based

Zhttps://mahout.apache.org/users/recommender
3http://lucene.apache.org/solr/
*https://cwiki.apache.org/confluence/display/solr/MoreLikeThis
Shttp://developer.ean.com/database/

on the conducted analysis and the requirements listed in Section 2,
we defined four Solr cores (i.e., a running instance of an index) to
be used by the recommender approaches:

Hotels. All hotel data (139, 213 hotels initially) with up to 26
different metadata attributes (e.g., name, address, description, lati-
tude/longitude location, list of amenities, etc.).

Rooms. All room data (970, 584 rooms initially) with related in-
formation (e.g., room id, name, description and the corresponding
hotel id).

UserInteractions. All interaction data between users and hotels
(i.e., hotel views, likes and bookings) that happen in the TripRebel
portal.

Recommendations. This core logs the metadata of each recom-
mendation request (i.e., the input parameters, timestamp and list of
recommended hotels) and is used for future evaluations, as well as
tunings of the system (see Section 5).

3.2 Data Modification Layer

The Data Modification Layer (DML) component’s main role is
to communicate with Apache Solr (i.e., store and query data). An-
other responsibility of the DML component is to map the Solr
specific data types to the internal ones used by the recommender
approaches. We decided on a separate component to communi-
cate with the data storage backend in order to be more flexible in
switching to another technology, if we find one that would be more
suitable for handling geolocation data and support real-time recom-
mendations.

3.3 Recommender Engine

The Recommender Engine (RE) component consists of four dif-
ferent algorithms for generating hotel recommendations: (1) User-
Based Collaborative Filtering (CF), (2) Content-Based Filtering
(CBF), (4) Most Popular (MP), and (4) a Hybrid approach.

Most Popular (MP). The MP approach is not personalized and
recommends the same set of hotels to every user. The resulting
hotels are weighted and ranked by the frequency of bookings, likes
and views.

User-Based Collaborative Filtering (CF). The basic idea of CF
is that users with a similar taste (e.g., users who liked the same
hotels in the past), will likely agree also on other hotels in the future
[11]. Our implementation of CF is a user-based nearest neighbor
algorithm which basically consists of two steps. First, the k£ most
similar users for the target user u are found and second, each hotel
h of these users is ranked using the following formula (adapted
from [11]):

pred(u, h) = Z

vEneighborsy (u,h)

sim(u, v) (€8}

where pred(u, h) is the probability that u will like h, sim(u,v) is

. -
o N =
I—)t Data ModificationJ t Eﬁ J

Layer Apache Solr

° TRIPREBEL

REST API

Recommender
Engine

Figure 2: The software architecture of our hotel recommender
system for the TripRebel portal.

the similarity between v and neighbor v and neighborsi(u, h) is
the set of the k most similar users for u that have interacted with
h. We define this similarity as the number of common hotel inter-
actions which can be efficiently determined using Apache Solr.

Moreover, we distinguish between two different use cases when
calling our CF approach. In the first case, a CF approach (C'F,)
would be called for the current user to calculate similar users using
the hotel interaction data gathered up till the point of requesting
the recommendation. In the second case, we consider the current
context of the user, i.e., the current hotel being viewed on the portal
(C'Fy,p). In this situation, we only consider similar users that have
either viewed, liked or booked that exact hotel.

Content-Based Filtering (CBF). CBF approaches [1, 10] usu-
ally find similar items based on various types of metadata tied to
items or users. Our approach analyzes hotel metadata to identify
hotels that could be of interest to a specific user or hotel alterna-
tives for a specific hotel. As Apache Solr stores the hotel data in a
Vector Space Model (VSM), our internal API queries the data using
the built-in TF-IDF ranking equation ° to find similar hotels.

Hybrid. All of the mentioned recommender approaches have
unique strengths and weaknesses (e.g., CF suffers from sparse data
and cold start problems while content-based approaches suffer from
item metadata to be utilized [2]). To tackle this issue and to produce
more relevant recommendations, the different approaches can be
combined into a hybrid recommender [3, 5, 9]. In order to realize
this in an easy way, we chose to implement and modify the Mixed
Hybrid approach defined in related work [2].

In the basic Mixed Hybrid approach, recommendations of each
algorithm are ranked and then the top-N are picked from each
source, one recommendation at a time by alternating the used algo-
rithms. Thus, relative positions in a ranked list are considered but
the importance of each individual recommendation approach is not
considered. To cope with the former issue, we modified the Mixed
Hybrid to let the TripRebel portal first define the importance of
every approach, i.e., assign the number of recommendations each
approach should return. The default Mixed Hybrid is then applied
on each recommendation set. If the number of requested recom-
mendations was higher than the resulting recommendations, the re-
maining spots are filled with the results of the MP approach.

3.4 REST API and TripRebel Portal

The direct access to the internal components is restricted to ad-
min users for security and data integrity reasons. Hence, the com-
munication between the TripRebel portal and the Recommender
System goes through a separate REST API which acts as a proxy
for the client’s incoming HTTP requests. An example of our in-
teractive REST API based on Swagger’ is given in Figure 5. The

®https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/
search/similarities/TFIDFSimilarity.html
"http://swagger.io/

A
Apache % | Request-Handler (qt)

SOI r ¥ |iselect

cemmon

{
"responseHeader” :
"status™: 0,

& Dashboard City.Graz
Loggin

(53 Logging q

F core Admin e 8

7| Java Properties sert

£ Thread Dump

start, rows)

hotels > "response”: |

f "numFound”: 18,
@ "start”: 0,
id.Name '
- "docs™s [
! of (
Raw Query Parameters ,
! (
L] wt
json
& [y
Fl
Dauery indent {
[T debugquery idm:

Figure 3: Graphical user interface to Apache Solr showing the
query to get hotels (by id and name parameters) in Graz.

REST API consists of basic data managing functionalities used to
maintain hotel related information. Besides that, all previously
described recommender approaches are represented with specific
calls with certain sets of parameters that can be modified for differ-
ent use cases. Furthermore, all user interactions gathered from the
TripRebel portal are forwarded to Apache Solr via the REST API.

4. DEMONSTRATION SCENARIO

The demonstration at the conference will be split in two parts:
(1) we will show the TripRebel portal and how hotel recommenda-
tions are currently used there and (ii) we will demonstrate the full
functionality of our recommender system via its interactive REST
APL

4.1 Live Recommendations in TripRebel

This part of our demonstration can be tested by each participant
of the conference on his/her own device. Imagine you want to go
to the i-KNOW conference in Graz, Austria from the 21st until the
23rd of October 2015 and you are looking for a nice but also af-
fordable hotel in the city. By entering your parameters into the
TripRebel portal search results similar to Figure 1 will be received.
Then you click on the first search result® which in our case is the
Austria Trend Hotel Europa Graz®. Since this hotel seems not to
be the cheapest option in Graz, TripRebel offers a “Similar Hotels”
recommendation area at the end of the hotel page with some al-
ternatives as shown in Figure 4. These suggestions are similar to
the source hotel in terms of the location, description text and list of
amenities but provide a better price or have been booked by similar
session users.

4.2 Interactive REST API Calls

In addition to the live recommender demonstration described in
the last section, we will also provide a full overview of the func-
tionality of our recommender system via its interactive REST APL.
This part of the demonstration will be shown on our laptop since
the full API is not publicly available.

8Please note: TripRebel is a live system in which search and rec-
ommendation results might differ if underlying data changes.
*http://www.triprebel.com/hotels/Graz/Austria/10-21-2015/
10-23-2015/1/143524

Number of User Interactions related . Conversion Duration (min)
Approach Recommendations to Recommendations Liked | Booked Rate <l |12]23]|>3
CFu.n 582 130 57 25 4.29% 17 | 31 13 | 69
CFy 401 39 15 10 2.49% 5 16 8 10
| Both | 983 | 169 | 72 | 35 | 3.56% | 22 | 47 | 21 | 79 |

Table 1: Preliminary evaluation results for the two CF approaches, C'F, ;, (context-aware) and C'F,.

Similar Hotels

ibis Graz Hotel Mariahilf Hotel Mercure Graz City

Beeeer T®Eee00 EBeeee0

Figure 4: Current implementation of the recommender ser-
vices in the TripRebel portals showing similar hotel alternatives
for the Austria Trend Hotel Europa Graz.

Figure 5 shows an example of an API call visualized via Swag-
ger. Swagger allows to enter all parameters in a convenient way via
well-known web-form fields and triggering the REST call using
these parameters via the “Try it out” button. In the visualized ex-
ample, the service provides similar hotels for a target hotel-id and
the JSON response of this call is shown in the “Response Body”
box. Moreover, Swagger also provides the URL of the full REST
path with all parameters in the “Request URL” field which helps
the developer to integrate the service into a client application. In
addition to this testing functionality, Swagger also acts as a full
documentation of the API calls.

During the conference demo session, we will not only show this
example but also other calls mentioned in Section 3.4. This would
allow us for example, to demonstrate a scenario where we first add
some user interaction into the system and then show how this new
data changes the behavior of the recommender algorithm.

4.3 Preliminary Evaluation Results

In the current state of the TripRebel portal, we are comparing the
two Collaborative Filtering approaches with respect to user accep-
tance. Thus, we present some preliminary results of this anlysis in
Table 3.4. These premature results show that the C'Fy, ;, approach
(that takes the currently viewed hotel into account) leads to more
user interactions compared to C'F,, (that only takes the target user
into account). The 4.29% conversion rate of C'F, j, based on the
number of recommendations exceeds and almost doubles the rate of
CF, with 2.49%. These results are interesting but also expected,
as they suggest that considering the current context of the user re-
sults in more accurate recommendations.

S. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel recommender system used
by the hotel booking portal TripRebel. By using Apache Solr, the
system can immediately process and incorporate hotel and user in-
teraction data in real-time. Additionally, we defined and showed
how to apply specific use cases and requirements for a hotel rec-
ommender system. For future work, we plan to incorporate the
remaining MP, CBF and Hybrid approaches in the TripRebel por-
tal and evaluate them there. Furthermore, we will also focus on
improving the hybrid approach by trying out different strategies on
letting the user dynamically provide weights and set search param-
eters for the recommended hotels.

Parameters

Parameter

Parameter Value Description Data Type

hotelrd 4110 1d of the hotel to get similar
hotels for (a list of hatels can

be separated by simicolon (:)

query string

Maximum number of results to
return (default are 20)

maxResults 10 query integer

Radius in kilometres (km) where
the similar hotels have to lie in
(default are 5 km). Set to <=0 if
no location-based filtering
should be taken into account

radius query number

hotel city

Request URL

Hotel filter criteria: city query string

http://localhost:8416/recommender /gets inilarRe conmendations *hotelId=41108naxResul ts=1edaddRooms =false
Response Body

{
“"hotels™: [
{
"id": "128628",
"name”: “Howard Johnson Inn - Atlantic City",
“rooms”: null

I

Figure 5: Swagger documentation and testing interface for one
of our recommender services.

Acknowledgements. This work is supported by the Know-Center
and the EU-funded project Learning Layers (Grant Agreement :
318209). The Know-Center is funded within the Austrian COMET
Program - Competence Centers for Excellent Technologies - under
the auspices of the Austrian Ministry of Transport, Innovation and
Technology, the Austrian Ministry of Economics and Labor and by
the State of Styria. COMET is managed by the Austrian Research
Promotion Agency (FFG). TripRebel is supported by funds of In-
noRampUp, IFB Innovationsstarter, City of Hamburg, Germany.

61 REFERENCES

[1] M. Balabanovi¢ and Y. Shoham. Fab: content-based, collaborative
recommendation. Communication of ACM, 40(3):66-72, Mar. 1997.
S. Bostandjiev, J. O’Donovan, and T. Hollerer. Tasteweights: A visual
interactive hybrid recommender system. In Proc. of RecSys ’12.

[3] R. Burke. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4):331-370, 2002.

[4] P. Cremonesi, F. Garzotto, and M. Quadrana. Evaluating top-n
recommendations "when the best are gone". In Proc. of RecSys '13.

[5] M. Jamali and M. Ester. A matrix factorization technique with trust
propagation for recommendation in social networks. In Proc. of
RecSys ’10.

[6] E. Lacic, D. Kowald, D. Parra, M. Kahr, and C. Trattner. Towards a
scalable social recommender engine for online marketplaces: The
case of apache solr. In Proc. of WWW ’14, pages 817-822, 2014.

[7]1 E. Lacic, D. Kowald, and C. Trattner. Socrecm: A scalable social
recommender engine for online marketplaces. In Proc. of HT ’14.

[8] A.Levi, O. Mokryn, C. Diot, and N. Taft. Finding a needle in a
haystack of reviews: Cold start context-based hotel recommender
system. In Proc. of RecSys '12.

[9] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender

systems with social regularization. In Proc. of WSDM ’11.

M. J. Pazzani and D. Billsus. Content-based recommendation

systems. In The adaptive web, pages 325-341. Springer, 2007.

J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. The adaptive

web. chapter Collaborative Filtering Recommender Systems. 2007.

[2

—

[10]

[11]

