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ABSTRACT
In this paper, we present our approach towards an effective scalable
recommender framework termed ScaR. Our framework is based on
the microservices architecture and exploits search technology to
provide real-time recommendations. Since it is our aim to create a
system that can be used in a broad range of scenarios, we designed
it to be capable of handling various data streams and sources. We
show its efficacy and scalability with an initial experiment on how
the framework can be used in a large-scale setting.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering
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1. INTRODUCTION
Today’s recommender systems need to satisfy multiple require-

ments such as high scalability and runtime performance in com-
bination with state-of-the-art algorithms to produce accurate real-
time recommendations. Additionally, recommender systems need
to analyse huge amounts of data, process a high number of requests
and handle dynamic streams of incoming data.

Up to now, already a number of open-source recommender li-
braries are available such as MyMediaLite1, LensKit2 or LibRec3.
Although these libraries help developers and data scientists to im-
plement, evaluate and adapt recommender approaches, it is mainly
the industry giants such as Amazon and Netflix which apply rec-
ommender systems at scale.

1http://www.mymedialite.net/
2http://lenskit.org/
3http://www.librec.net/
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Objective. Thus, the goal of our work is to provide real-time
recommendations by immediately exploiting data streams within
the requested recommendation approaches. To this end, we propose
a flexible recommender framework termed ScaR4, which adopts the
microservices architecture5 and which leverages the Apache Solr
search engine. This framework enables us to:

(1) Generate real-time recommendations.
(3) Provide a scalable architecture to combine different recom-

mender algorithms.
(4) Support large-scale offline and online evaluations.
(2) Support data streams and frequent updates without the ne-

cessity of time-expensive recalculations.
ScaR is freely available for the research community. At the same

time it has already been used in a number of commercial projects,
such as the TripRebel6 hotel booking platform or the shopping por-
tal ManouLenz7.

The remainder of this paper is organized as follows: in Section 2,
we discuss related work. In Section 3, we illustrate how our frame-
work adopts the microservices architecture and outline the system
with its core services and we show how the framework can be con-
figured and deployed in a distributed manner. In Section 4, we de-
scribe how incoming data streams are handled. Finally, Section 5
shows the scaling capabilities of the framework with an experiment
that incrementally increases the load of recommendation requests.

2. RELATED WORK
Most of the existing large-scale recommender systems, which fo-

cus on real-time recommendation (e.g., Netflix [2], Microsoft [12]
and others [3, 17, 4]), use offline batch processing frameworks like
Apache Hadoop, Apache Mahout, Spark [18] or GraphLab [10].
Other systems use relational database systems to provide real-time
recommendations by querying recommendations from the gener-
ated data models [15]. However, in the literature, there is still a
lack of work where data streams are handled and used immediately
in the recommendation process. Moreover, query throughput and
load balancing features are not clearly described or even ignored
also in some framework documentations. For example, Apache
Hadoop has only recently started to focus on interactive data pro-
cessing via Apache Tez [13] which is an extensible framework to
build high performance batch processing applications.

4http://scar.know-center.tugraz.at/scar/
5http://microservices.io/patterns/microservices.html
6http://www.triprebel.com
7http://www.manoulenz.tv/



Apart from that, most of the existing recommender systems fo-
cus on exploiting user behaviour, in form of user-item ratings, as
their main information source for prediction. In respect to the pre-
diction task, personalised recommendations using Matrix Factori-
sation approaches [7, 11] dominate the literature. However, all
these model-based approaches need to be retrained whenever the
data changes. Retraining tends to be very time-consuming when
handling frequent and large-scale data updates. Empirical stud-
ies showed that especially for sparse data, a large number of fac-
tors is needed [14]. For instance, Diaz-Aviles et al. [5] proposed
a method that improves Matrix Factorisation for real-time topic
recommendation via a selective sampling strategy to update the
model based on personalised small buffers. Compared to our work,
they isolated the recommendation task for a specific data source,
rather than including various contextual information, which has
been shown to be very helpful when searching for relevant con-
tent [6]. Furthermore, in our work, we focus on integrating data
updates in a large-scale scenario immediately as recommendations
are requested, without the need to retrain the data model.

3. PROPOSED FRAMEWORK
We propose ScaR, an open-source, Java-based framework for

generating real-time recommendation. The framework is also avail-
able via our Git repository8. The core concept of ScaR is its de-
composition into several collaborating services, since it adopts the
microservices architecture (recently also being adopted by Netflix).
The architecture suggests to develop a single application as a suite
of small services, each running in its own process and communi-
cating with lightweight mechanisms. For this, at start-up, each
service in ScaR spins up an embedded Jetty HTTP server, elimi-
nating a number of unpleasant aspects of the deployment process
(e.g., PermGen issues, application server configuration and main-
tenance, etc.9). The communication between the services is estab-
lished through a standardised HTTP/REST interface, making each
service easily exchangeable. The general architecture of ScaR is
given in Figure 1, which shows the communication dependencies in
a distributed environment between the five core services described
below:

Data-Modification-Layer (DML) Service. The DML service
handles all the communication (i.e., storing and querying data) with
Apache Solr10, the underlying data backend of the current version
of the framework. Solr provides the capability of horizontal scaling
by creating either shards (i.e., splitting the data into smaller indices
to increase the performance of search queries for huge data sets) or
replicas (i.e., cloning the existing shards to another machine to in-
crease the fault-tolerance of the whole system). A beneficial feature
of Apache Solr is its so called Near-Real-Time (NRT) mechanism.
When activated, data will be processed and cached in memory and
stored to the disk only after a certain period of time. For data that is
rapidly changing or recently being added (e.g., user interactions),
this feature dramatically increases the performance of the whole
system. New data becomes available to the system the moment it
gets uploaded, while the number of expensive disk write operations
decreases.

Compared to many other recommender systems that only con-
sider user-item information, Adomavicius et al. [1] introduced
guidelines, which extend the traditional user-item paradigm with
capturing of the context of recommendations by obtaining explicit,
implicit or inferred information about the user. To support the

8https://git.know-center.tugraz.at/docs/?r=scar-framework.git
9http://www.dropwizard.io/getting-started.html

10http://lucene.apache.org/solr/

Figure 1: The system architecture of ScaR for a distributed en-
vironment. Each service is a standalone HTTP server which
knows the locations of its communicating partners with the
help of ZooKeeper.

proposed guidelines, ScaR is designed to be easily modified and
adapted to handle various types of cpntexts, including item (e.g.,
ratings, description content, etc.), social (e.g., likes) and location
data (e.g., geo-locations by means of latitude/longitude values).
Moreover, having Solr as the data backend technology, ScaR can
not only be used as a flexible recommender engine but also as a
powerful search engine.

Recommender-Engine (RE) Service. It is essential to provide
fast recommendation to users, since most users are not willing to
wait for a recommendation that was not explicitly requested in
the first place. Since we use Apache Solr, we benefit from its
internal data structure (i.e., inverted index) but also from its vec-
tor space representation for calculating similarities and to process
large amounts of data in real-time. Besides, we utilize Solr’s built-
in MoreLikeThis11 search functionality to retrieve similar items for
our recommendations. Due to the direct communication between
Apache Solr and the DML service, we can efficiently generate up-
to-date recommendations that don’t require computationally expen-
sive pre-calculations (e.g., via batch jobs). ScaR is not only able to
provide personalised recommendations, but also content-based and
various hybrid combinations. The currently implemented RE ser-
vice supports four types of algorithms: (1) user-based Collaborative
Filtering (CF), (2) Content-Based Filtering (CBF), (3) Most Popu-
lar (MP), and (4) hybrid approaches that combine the former three
(see also [9, 8] for more detailed implementation descriptions).

Recommender-Customizer (RC) Service. The RC service acts
as a configuration and customisation repository for deployed rec-
ommender engines. Through so-called recommender profiles, we
can parameterise our algorithms. For example, in case of CF, we
could define in a profile the similarity measure (e.g., Jaccard or
Cosine) or in case of hybrid approaches, the weightings of the al-
gorithmic components. One can also go one step further and de-
fine the current context via post-filtering [1] of the recommended
items (e.g., items from a specific location, time validity, etc.). This
way, the same recommender algorithm can be customised for and
be reused in different use cases. A key feature when updating the
recommender profiles is the runtime synchronisation, meaning that
all deployed RE services will be immediately notified by the RC
service.

Recommender-Evaluator (REV) Service. The REV service
provides the possibility to conduct large-scale offline and online
evaluations of the implemented recommender algorithms. Offline
evaluations (see also [9]) measure the algorithmic performance by

11https://cwiki.apache.org/confluence/display/solr/
MoreLikeThis



a rich set of evaluation metrics (e.g., nDCG, Coverage, Diversity,
Serendipity, Runtime etc.). To determine the real impact of the used
recommender approaches under real-life conditions, online evalu-
ations need to be conducted. Such evaluations have become in-
creasingly popular in the industry, but are often not possible for
researchers. To cope with that problem, especially in a large-scale
setting, ScaR can be dynamically configured to perform a A/B or
multivariate test during a predefined time interval. Besides man-
ually starting any type of evaluation, just by deploying and using
ScaR, the generated recommendations can be referenced when stor-
ing new user interactions, thus being able to analyse user feedback
at any time.

Service-Provider (SP) Service. Although each service has its
own REST API, direct access to these APIs should be restricted to
admin users for security reasons. Hence, to ensure easy access to
the framework, the SP service acts as a proxy for incoming, client-
side HTTP requests. Furthermore, in a distributed environment, the
SP also works as load balancer and re-routes incoming requests to
the currently underused services. In case an A/B or multivariate test
is initiated for the current time slot a recommendation is requested,
the requested recommendation profile that parametrizes the recom-
mender will be replaced by the profile assigned in the test set the
requesting user was randomly assigned to.

Service Orchestration. To track and coordinate the deployed
services, ScaR uses the Apache ZooKeeper Ensemble. By know-
ing the ZooKeeper locations, each service can scale horizontally,
i.e., be deployed and started multiple times either on the same ma-
chine or on different ones. ZooKeeper coordinates the registered
services by exposing a hierarchical namespace to deploy several
different recommender domains on one system. Using the names-
paces, services can be configured and deployed in the same server
environment but still be isolated for different use cases (e.g., ser-
vices dedicated for providing users with recommendations vs. ser-
vices being used for evaluation).

4. DATA STREAM HANDLING
To handle data streams and frequent updates in real-time, ScaR

makes use of Apache Solr’s features, described below. We optimize
the configuration of Apache Solr in respect to two key points:(i)
frequency of incoming data (e.g., user interactions), and (ii) rec-
ommendation request rate. First, as new data arrives, the most ex-
pensive operation is writing the data into a stable storage, i.e., to
the disk. Using Solr’s hard commit functionality, these operations
can be postponed to be automatically executed either after a de-
fined time period or a maximal number of incoming data entries.
Secondly, to be able to search the incoming data when generat-
ing recommendations in real-time, Solr’s soft commit functionality
needs to be configured to make the incoming data visible. As soft
commits do not store the data to the stable storage, but rather make
it visible, they are less-expensive. By adopting these commit func-
tionalities it is possible for ScaR to support both, data intensive and
recommendation intensive requests.

Still, commit intervals for soft and hard commit should be rea-
sonable long to achieve the best performance. It usually takes some
experimentation to find the right intervals, but from our previous
experience, we set the soft commit interval between 1 to 5 seconds
(i.e., data is visible to the recommender approach somewhere be-
tween 1 and 5 seconds after it arrived) and the hard commit inter-
val on 1 to 2 minutes. If needed (i.e., the recommender system is
experiencing more frequent and longer lasting data spikes), these
intervals can be set to last even longer. To cope with the visibil-
ity problem of the incoming data when the soft commit interval is
rather long, Apache Solr also provides a real-time get functionality.
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Figure 2: Request processing rate of all 325,005 recommenda-
tion requests based on different request loads. Dist-2 denotes a
distributed setup with 2 RE and 2 DML services, as well as Dist-
4 a with 4 RE and 4 DML services. Note: each recommendation
request calls all five implemented recommender algorithms.

Using the real-time get, the latest version of any data entry can be
immediately retrieved without the associated cost of the commit.

5. SCALABILITY EXPERIMENT
Traditionally, recommender systems deal with two types of enti-

ties, users and items. In respect to the scalability of ScaR, we used
the Foursquare dataset provided by the authors of [16]. The dataset
consists of 2, 153, 471 users, 1, 143, 092 venues, 1, 021, 970 check-
ins and 2, 809, 581 ratings. We mainly focused on different Col-
laborative Filtering (CF) approaches, hybrid CF combinations and
a Most Popular baseline. We have chosen user-based CF since it
is not only a well-established recommender algorithm suitable for
real-time recommendations, but also allows to incorporate various
data features from different data sources, which has been shown to
play an important role in making more accurate predictions [11].

To evaluate the performance of our framework, we performed
three different deployment-based experiments under an exponen-
tially growing workload. In each experiment, batch jobs were initi-
ated to simulate a higher request rate (load) to the system, whereas
the threadpool size was exponentially increased, having 16, 32, 64
and 128 threads simultaneously requesting recommendations. We
focused on recommending items (i.e., venues in case of Foursquare),
the most common type of recommendations. The initiated evalu-
ation starts a continuous batch job, which fires recommendation
requests for each user who rated at least 10 items (= 65, 001 users
in total). For each user, five different recommendation approaches
were requested: (1) a rating based Most Popular baseline; (2) a
rating based CF; (3) a common check-in based CF; (4) a location
network based CF (i.e., an artificially constructed network where
ties between two users are existent if they visited the same location
within the same day and hour); (5) a hybrid approach with arbitrary
weights running and combining all four approaches in parallel. As
a result, a total of 325, 005 independent recommendation requests
were fired by the batch jobs.

The experiment was repeated three times, depending on the de-
ployment method. First, a local deployment (Local) was made,
i.e. every service was deployed once as a separate process on a
server. In the second experiment (Dist-2), we scaled the framework
horizontally by deploying an additional DML and RE service on
another physical server. Last, to show that scaling the framework
on the same machine (i.e., sharing the same resource) can also con-
tribute to an increased performance, we deployed two more RE and
two more DML services in addition to the previously deployed ones
on the second server (Dist-4). To maintain the location information
of each deployed service, we used two ZooKeeper instances.



5.1 Results
The mean processing runtime for each approach does not exceed

100 ms. Even the slowest processing time of the hybrid approach
takes 199.8 ms, which is still feasible for recommendations re-
quired to be served in real-time. In respect to the processing power
of the three deployment scenarios, Figure 2 shows the recommen-
dation request processing rate in relation to the increasing request
loads. The local deployment hits its limit at 161 recommendation
requests per second for the last two heavy load simulations. This
appears to be the upper bound and is due to the fact that the inter-
nal Jetty server needs some time to clean up already closed sessions
and make them available to be reused again. Scaling the framework
with another RE and a DML service on the second server increases
the request processing rate by 49%. Adding two more services of
the same kind results in processing 295 recommendation requests
per second under a heavy load, being a 83% increase compared to
the local deployment, showing that the framework’s performance
can be increased by horizontal scaling.

6. CONCLUSION
In this paper, we presented our approach and first experimental

results towards a real-time recommender framework that adopts the
microservices architecture. We showed how ScaR, in combination
with the Apache Solr search engine, is suitable for a large-scale
application setting where a high recommendation request load, to-
gether with frequent data updates needs to be supported without
time-expensive recalculations. In order to evaluate the available
recommendation approaches at large-scale, the ScaR framework
also provides an evaluation service with offline as well as online
evaluation methods.

In respect to future work, we plan to extend the framework with
other backend solutions (e.g., a graph database) and provide sepa-
rate services to be used by the recommendation approaches. This
would allow us to conduct a comparative study between differ-
ent backend technologies and their impact on recommender ap-
proaches. The result could be an increased runtime performance or
even novel hybrid recommender approaches, since each approach
would use the most suitable data backend. Moreover, we want to
extend the framework and experiment on how to automatically tune
the weights for the hybrid approaches using either different metrics
(e.g., runtime, accuracy, diversity, novelty, etc.) or dynamically in-
corporating positive and negative recommendation feedback (e.g.,
recommendation click rate). Recently, Software-as-a-Service vir-
tualization technologies (i.e., containers) have gained popularity as
an alternative to using virtualization. Such lightweight resource
containers provide several promising features, e.g. portability, more
efficient scheduling and resource management, or less virtualiza-
tion overhead. We plan a direct integration with one such technol-
ogy, namely Docker, in our deployment scenario in order to investi-
gate how it affects the frameworks’ performance. Furthermore, we
plan to conduct a large-scale user study to evaluate our approaches
in respect to the cold-start problem during the next i-KNOW con-
ference in October 2015.
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