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Abstract. In recent years, a number of recommendation algorithms
have been proposed to help learners find suitable learning resources on-
line. Next to user-centered evaluations, offline-datasets have been used
to investigate new recommendation algorithms or variations of collab-
orative filtering approaches. However, a more extensive study compar-
ing a variety of recommendation strategies on multiple TEL datasets is
missing. In this work, we contribute with a data-driven study of rec-
ommendation strategies in TEL to shed light on their suitability for
TEL datasets. To that end, we evaluate six state-of-the-art recommen-
dation algorithms for tag and resource recommendations on six empirical
datasets: a dataset from European Schoolnets TravelWell, a dataset from
the MACE portal, which features access to meta-data-enriched learn-
ing resources from the field of architecture, two datasets from the social
bookmarking systems BibSonomy and CiteULike, a MOOC dataset from
the KDD challenge 2015, and Aposdle, a small-scale workplace learning
dataset. We highlight strengths and shortcomings of the discussed rec-
ommendation algorithms and their applicability to the TEL datasets.
Our results demonstrate that the performance of the algorithms strongly
depends on the properties and characteristics of the particular dataset.
However, we also find a strong correlation between the average number
of users per resource and the algorithm performance. A tag recommender
evaluation experiment reveals that a hybrid combination of a cognitive-
inspired and a popularity-based approach consistently performs best on
all TEL datasets we utilized in our study.

Keywords: Offline study · Tag recommendation · Resource recom-
mendation · Recommender systems · ACT-R · SUSTAIN · Technology
enhanced learning · TEL

1 Introduction

Recommender systems have grown to become one of the most popular research
fields in personalized e-learning. A tremendous amount of contributions has been
presented and investigated over its last fifteen years of existence [1]. However,
up to now there are no generally suggested or commonly applied recommender
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system implementations for TEL environments. In fact, the majority of holistic
educational recommender systems remain within research labs [2]. This may be
partly attributed to the fact that proposed recommendation approaches often
require either runtime-intensive computations or unavailable, expensive informa-
tion about learning domains, resources and learner preferences. Furthermore, in
informal learning settings, information like ontologies, learning object meta-data
and even user ratings are very limited [3]. The spectrum of commonly available
tracked learner activities varies greatly, but typically includes implicit usage data
like learner-ids, some general information on learning resources, timestamps and
indications of a user’s interest in learning resources (e.g. opening, downloading or
bookmarking) [4]. While existing research investigates the application of implicit
usage data-based algorithms (e.g., [5–7]) on selected datasets, a more extensive
comparative study directly opposing state-of-the-art recommendation algorithms
is still missing. We believe such a study would benefit the community since we
hypothesize that recommendation algorithms show different performance results
depending on learning context and dataset properties as also suggested in [5,8].
This motivates our main research question: RQ1: How accurate do state-of-the-
art resource recommendation algorithms, using only implicit usage data, perform
on different TEL datasets?

To this end, we collected six datasets from different TEL domains such as
social bookmarking, social learning environments, Massive Open Online Courses
(MOOCs) and workplace learning to evaluate accuracy and ranking of six
state-of-the-art recommendation algorithms. Results show a strong correlation
between the average number of users per resource and the performance of most
investigated algorithms. Further, we believe that content-based algorithms that
match user characteristics with resource properties, could present an alternative
for informal environments with sparse user-resource matrices. However, a promi-
nent factor that hampers the finding and recommending of learning resources
is the lack of learning object meta-data, which is resource-intensive to generate.
Bateman et al. [9] proposed the application of tagging mechanisms to shift this
task to the crowd. Furthermore, tag recommendations can assist and motivate
the user in providing such semantic meta-data. Also, tagging supports the learn-
ing process, as it is known to foster reflection and deep learning [10]. Yet, so
far, tag recommender investigations have been widely unattended in the TEL
research community [11]. To this strand, we want to contribute with our second
research question: RQ2: Which computationally inexpensive state-of-the-art tag
recommendation algorithm performs best on TEL datasets?

The evaluation of three recommendation algorithms, implemented as six
variations based on usage data and hybrid combinations, identifies a cognitive-
inspired recommendation algorithm combined with a popularity-based approach
as most successful.

2 Related Work

In general, there already exists a large body of research on recommender systems
in the context of TEL, see e.g., [1,3,12]. Surveys like for example [11] additionally
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discuss the potential of collaborative tagging environments and tag recommender
systems for TEL. From the wide range of existing contributions, we identify two
lines of research that are most related to our work, (i) data driven studies of tag
recommendations and (ii) learning resource recommendations in the field of TEL.

2.1 Learning Resource Recommendations

Verbert et al. [5] studied the influence of different similarity measures on user-
and item-based collaborative filtering for the prediction of user ratings. Addition-
ally, they compared user-based collaborative filtering on implicit learner data,
among four different datasets and first used and analyzed the prominent TEL
datasets, TravelWell and MACE. Fazeli et al. [6] showed that the integration of
social interaction can improve collaborative filtering approaches in TEL envi-
ronments. Niemann and Wolpers [7] investigated the usage context of learning
objects as a similarity measure to predict and fill in missing user ratings and
subsequently improve the database for other recommendation algorithms such as
collaborative filtering. The approach is evaluated in a rating prediction setting.
The suggested approach does not require any content information of learning
objects and thus could also be applied to cold start users, but not cold start
items. For further research examples, a broad overview on data-driven learning
recommender studies is given in [13]. In contrast to previous work, we do not
focus on a specific algorithm or dataset but we study the performance of a range
of recommendation algorithms on various TEL datasets.

2.2 Tag Recommendations

Considerable experiments exploring learning resource annotation through tags
are presented in [14], in which generally the suitability of tagging within the
learning context was investigated. Results claim guidance to be an important
factor for the success of tagging. Diaz et al. [15] investigated automated tag-
ging of learning objects utilizing a computationally expensive variant of Latent
Dirichlet Allocation [16] and evaluated the tagging predictions in a user study.
In [17], an approach to automatically tag learning objects based on their usage
context was introduced, which builds on [7]. It shows promising results towards
the retrospective enhancement of learning object meta-data. However, their app-
roach cannot be used in online settings as it is based on context information of
resources that is extracted from user sessions. In this work, we concentrate on
tag recommendation algorithms that are applicable also in online settings.

3 Evaluation

In this work, we evaluate six recommendation algorithms in terms of performance
on six TEL datasets from different application areas such as social bookmark-
ing systems (BibSonomy, CiteULike), MOOCs (KDD15), open social learning
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(MACE, TravelWell) and workplace learning (Aposdle). We evaluate two rec-
ommender application cases, (i) the recommendation of learning resources to
support finding relevant information and (ii) the recommendation of tags to
support the annotation of learning resources.

3.1 Methodology

For evaluation, we split each dataset into a training and a test set, following
a common evaluation protocol used in recommender systems research [18,19].
To predict the future based on the past, each user’s activities are sorted in
chronological order by the timestamp the activities were traced in the systems.
For the tag recommender evaluation, we put the latest post of a user (i.e. all tags
assigned by a user to a resource) into the test set and the remaining posts of this
user into the training set (see [18]). When evaluating resource recommendations,
this process slightly differs. We select 20 % of most recent activities of a user for
testing and the remains for training (see [19]). Also, to ensure that there is
enough training data available per user, we only consider users with at least five
available activities. For the tag recommender test sets, we only consider users
with at least two available posts. This procedure avoids a biased evaluation as
no data is deleted from the original datasets.

3.2 Algorithms

For the purpose of this study, we selected well-established, computationally inex-
pensive tag and resource recommendation strategies (for a more substantial
review on complexity please see [20]) as well as approaches that have been pro-
posed and discussed in the context of TEL. All algorithms of this study as well
as the evaluation methods are implemented in Java as part of our TagRec rec-
ommender benchmarking framework [21], which is freely available via GitHub1.

Most Popular (MP). MP is a simple approach to rank items according to
their frequency of occurrence [22]. The algorithm can be implemented on user-
based, resource-based or group-based occurrences and is labeled respectively, as
MPU , MPR and MP. MPU,R describes a linear combination of MPU and MPR.

Collaborative Filtering (CF). This approach calculates the neighborhood
of users (CFU ) or resources (CFR) to find items that are new to a user by
either considering items that similar users engaged with or items that are similar
to resources the target user engaged with in the past [23]. The neighborhood
is defined by the k most similar users or resources, calculated by the cosine-
similarity measure on the binary user-resource matrix. Tag recommendations
require the triple: (user, resource, tag). Therefore, we implemented an adaptation
of CFU for tag recommendations [24]. Accordingly, the neighborhood of a user
is determined through a user’s tag assignments instead of resource engagements.
As suggested by literature [25], we set k to 20 for all CF implementations.
1 https://github.com/learning-layers/TagRec/.

https://github.com/learning-layers/TagRec/
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Content-Based Filtering (CB). CB recommendation algorithms rate the
usefulness of items by determining the similarity between an item’s content with
the target user profile [26]. In this study, we either use topics (if available) or
otherwise tags to describe the item content. The similarity between the item
vector and the user vector is calculated by the cosine-similarity measure.

Usage Context-Based Similarity (UCbSim). This algorithm was intro-
duced by [27] and further discussed in the TEL context by [7,28]. The approach
is inspired by paradigmatic relations known in lexicology, where the usage con-
text of a word is defined by the sequence of words occurring before or after it
in the context of a sentence. The equivalent to a sentence in online activities is
defined as a user session, which describes the usage context. In line with litera-
ture [7], we calculate the significant co-occurrence of two items i and j by the
mutual information (MI):

MIi,j = log2
O

E
(1)

where O is the number of observed co-occurrences and E the number of expected
co-occurrences. The similarity (simi,j) between two objects is given by their
cosine-similarity, where each object is described as a vector of its 25 highest
ranked co-occurrences. For this study, we recommend resources that are most
similar to the resources a user engaged with in her last session. Further, we
conclude a session if no user interaction is observed for 180 min.

Base Level Learning Equation with Associative Component (BLLAC).
This cognitive-inspired tag recommendation algorithm, mimics retrieval from
human semantic memory. A detailed description and evaluation can be found in
[29]. It is based on equations from the ACT-R architecture [30] that model the
availability of elements in a person’s declarative memory as activation levels Ai.
Equation 2 comprises the base-level activation Bi and an associative component
that represents semantic context. To model the semantic context we look at
the tags other users have assigned to a given resource, with Wj representing
the frequency of appearance of a tagj and with Sji representing the normalized
co-occurrence of tagi and tagj , as an estimate of the tags’ strength of association.

Ai = Bi +
∑

j

WjSji (2)

With Bi = ln(
∑n

j=1 t−d
j ), we estimate how useful an item (tag) has been in an

individual person’s past, with n determining the frequency of tag use in the past,
and tj representing recency, i.e., the time since a tag has been used for the jth time.
The parameter d models the power law of forgetting and is in line with [30] set
to .5. We select the most relevant tags according to the highest activation values.
As BLLAC+MPR, we denote a linear combination of this approach with MPR.

SUSTAIN. SUSTAIN [31] is a cognitive model aiming to mimic humans’ cate-
gory learning behavior. In line with [19], which suggested and analyzed the model
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to boost collaborative filtering, we implemented the first two layers, which depict
an unsupervised clustering mechanism that maps inputs (e.g., resource features)
to outputs (e.g., activation values that decide to select or leave a resource).

In the initial training phase, each user’s personal attentional tunings and
cluster representations are created. The number of clusters per user evolves incre-
mentally through the training process (i.e., a new cluster is only recruited if a
new resource cannot be assimilated with the already existing clusters). As input
features describing a resource, we select either topics (if available) or tags. The
total number of possible input features determines the clusters’ dimension. Fur-
ther, the clustering algorithm has three tunable parameters, which we set in line
with [31] as follows: attentional focus r = 9.998, learning rate η = .096 and
threshold τ = .5, where the threshold specifies the sensitivity to new cluster cre-
ation. The resulting user model is then applied to predict new resources from a
candidate set that is given by the 100 highest ranked resources according to CFU .
For the prediction, we calculate and rank an activation value for each resource
given by the highest activated cluster in the user model and select the most
relevant items accordingly. As SUSTAIN+CFU , we denote a linear normalized
combination of SUSTAIN and CFU .

3.3 Datasets

Table 1 summarizes the dataset properties such as posts, users, resources, tags,
topics and their relations, as descriptive statistics. For the purpose of this study,
we use sparsity to designate the percentage of resources that are not described
by topics or tags. A more elaborate presentation of the datasets follows.

BibSonomy. The university of Kassel provides SQL dumps2 of the open social
bookmarking and resource sharing system BibSonomy, in which users can share
and tag bookmarks and bibliographic references. Available are four log data files
that report users’ tag assignments, bookmark data, bibliographic entries and tag
to tag relations. Since topics are not allocated [32], we used the tag assignment
data, which was retrieved in 2015.

CiteULike. CiteULike is a social bookmarking system for managing and dis-
covering scholarly articles. Since 2007, CiteULike datasets3 are published on a
regular basis. The dataset for this study was retrieved in 2013 (resource recom-
mendation dataset) and 2015 (tag recommendation dataset). Three log data files
report on users’ posting of articles, bibliographic references, and group member-
ship of users. Activation data of user posts, including tags, have been used for
this study. Topics are not available.

2 http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/.
3 http://www.citeulike.org/faq/data.adp.

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
http://www.citeulike.org/faq/data.adp
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KDD15. This dataset origins from the KDD Cup 20154, where the challenge
was to predict dropouts in Massive Open Online Courses (MOOCs). The MOOC
learning platform was founded in 2013 by Tsinghua University and hosts more
than 360 Chinese and international courses. Data encompasses course dates and
structures (courses are segmented into modules and categories), student enroll-
ments and dropouts and student events. For the purpose of this study, we fil-
tered the event types problem, video and access that indicate a student’s learning
resource engagement. There are no tags in this dataset but we classify categories
as topics.

Table 1. Properties of the six datasets that were used in our study. |P |
depicts the number of posts, |U | the number of users, |R| the number of resources, |T |
the number of tags, |Tp| the number of topics, |ATr| the average number of tags a user
assigned to one resource, |ATpr| the average number of topics describing one resource,
|ARu| the average number of resources a user interacted with, |AUr| the average number
of users that interacted with a specific resource. The last two parameters SPt and SPtp

describe the sparsity of tags and topics, respectively.

|P | |U | |R| |T | |Tp| |ATr| |ATpr| |ARu| |AUr| SPt SPtp

BibSonomy 82539 2437 28000 30889 0 4.1 0 33.8 3 0 100

CiteULike 105333 7182 42320 46060 0 3.5 0 14.7 2.5 0 100

KDD15 262330 15236 5315 0 3160 0 1.8 17.2 49.4 100 1.1

TravelWell 2572 97 1890 4156 153 3.5 1.7 26.5 1.4 3.2 28.7

MACE 23017 627 12360 15249 0a 2.4 0 36.7 1.9 31.2 100

Aposdle 449 6 430 0 98 0 1.1 74.8 1 100 0
aGenerally the dataset contains topics but unfortunately, at this point, we do not

have them available.

MACE. In the MACE project an informal learning platform was created that
links different repositories from all over Europe to provide access to meta-data-
enriched learning resources from the architecture domain. The dataset encom-
passes user activities like the accessing and tagging of learning resources and
additional learning resource descriptions such as topics and competences [33].
At this point, unfortunately, we do not posses access to competence and topic
data. However, user’s accessing of learning resources and tagging behavior were
used in our study.

TravelWell. Originating from the Learning Resource Exchange platform5, the
dataset captures teachers search for and access of open educational resources
from a variety of providers all over Europe. Thus, it covers multiple languages
and subject domains. Activities in the dataset are supplied in two files with

4 http://kddcup2015.com/information.html.
5 http://lreforschools.eun.org.

http://kddcup2015.com/information.html
http://lreforschools.eun.org
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either bookmarks or ratings which both include additional information about
the learning resource [34]. Relevant information to our study encompasses user
names, resource names, timestamps, tags and categories.

Aposdle. An adaptive work integrated learning system that origins from the
Aposdle EU project. The target user group are workers from the innovation
and knowledge management domain. The dataset origins from a workplace
evaluation that also included a context-aware resource recommender. Three
files with user activities, learning resource descriptions with topics but no tags
and a domain ontology were published [35]. The very small dataset has only
six users. For the purpose of our evaluation study, we considered the user
actions VIEW RESOURCE and EDIT ANNOTATION as indications for learn-
ing resource engagements.

3.4 Metrics

For the performance evaluation of the selected recommendation algorithms
(MP, CF, CB, UCbSim, BLL, Sustain) we use the further described metrics
recall, precision and f-measure, which are commonly used in recommender system
research [5,36]. Additionally, we look at nDCG, which was reported to be the most
suitable metric for evaluations of item ranking [37].

When calculating recall and precision, we determine the relation of recom-
mended items Îu for a user u, to items that are of a user’s interest Iu. Items
relevant to a user are determined by the test set. All metrics are averaged over
the number of considered users in the test set.

Recall. Recall (R) indicates the proportion of the k recommended items that
are relevant to a user (i.e., correctly recommended items), to all items relevant
to a user.

R@k =
|Iu ∩ Îu|

|Iu| (3)

Precision. The precision (P) metric indicates the proportion of the k recom-
mended items that are relevant to a user.

P@k =
|Iu ∩ Îu|

|Îu| (4)

F-measure. The F-measure (F) calculates the harmonic mean of recall and
precision. This is relevant as recall and precision normally do not develop sym-
metrically.

F@k = 2 · (P@k · R@k)
(P@k + R@k)

(5)
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nDCG. Discounted Cumulative Gain (DCG) is a ranking quality metric that
calculates usefulness scores (gains) of items based on their relevance and position
in a list of k recommended items and is calculated by

DCG@k =
k∑

i=1

(
2B(i) − 1

log2(1 + i)
) (6)

where B(i) is 1 if the ith recommended item is relevant and 0 if not. To allow
comparability of recommended lists with different item counts, the metric is
normalized. nDCG is calculated as DCG divided by the ideal DCG value iDCG,
which is the highest possible DCG value that can be achieved if all relevant items
are recommended in the correct order, formulated as nDCG@k = DCG@k

iDCG@k .

4 Results and Discussion

This section presents our results in terms of prediction accuracy (R, P, F) and
ranking (nDCG). Six algorithms with a total of thirteen variations were applied
on six TEL datasets from different learning settings. We consider metrics @5
as most relevant, as this seems to be a reasonable number of items to confront
a learner with. Additionally, we report F@10 and nDCG@10. To best simulate
real-life settings, we conducted the study on the unfiltered datasets.

4.1 Learning Resource Recommendations (RQ1)

In line with [5] who compared the performance of CF on different TEL datasets,
we observe that the algorithms’ performance values strongly depend on the
dataset and its characteristics. Solely CFU shows a stable behavior over all
datasets. As expected, the performance of CFU is related to the average number
of resources a user interacted with. The SUSTAIN algorithm, which re-ranks
the 100 best rated CFU values, uses categories of a user’s resources to construct
learning clusters. Hence, the extent of the resource’s descriptive features (we
either use topics or tags, if topics are not available) is crucial to the success
of the algorithm. Comparing our results of Table 2 with the dataset statistics
of Table 1, we find that an average of at least three features per resource is
needed to improve the performance of CFU . Similarly, a poor performance of
CFR is reported for MACE, TravelWell and Aposdle, where the average number
of users per resource is lower than two. MP as the simplest approach performs
widely poor, except for MACE, where it almost competes with the more complex
CFU . This may relate to the number of learning domains covered by a learning
environment. MACE is the only learning environment that is restricted to one
subject, namely architecture.

The importance of a dense user resource matrix is underlined by our results.
In fact, we find a strong correlation of .958 (t = 19.5502, df = 34, p-value <
2.2e−16) between the average number of users per resource (|AUr|) (see Table 1)
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Table 2. Results of our resource recommender evaluation. The accuracy esti-
mates are organized per dataset and algorithm (RQ1 ). The datasets BibSonomy, CiteU-
Like and MACE did not include topic information, thus for those three, we calculated
CBT and SUSTAIN on tags instead of topics. Note: the highest accuracy values per
dataset are highlighted in bold.

Dataset Metric MP CFR CBT CFU UCbSim SUSTAIN SUSTAIN+CFU

BibSonomy R@5 .0073 .0447 .0300 .0444 .0404 .0396 .0530

P@5 .0154 .0336 .0197 .0410 .0336 .0336 .0467

F@5 .0099 .0383 .0238 .0426 .0367 .0363 .0496

F@10 .0102 .0380 .0226 .0420 .0351 .0374 .0497

nDCG@5 .0088 .0416 .0270 .0440 .0371 .0392 .0541

nDCG@10 .0103 .0490 .0313 .0509 .0440 .0469 .0629

CiteULike R@5 .0051 .0839 .0472 .0567 .0716 .0734 .0786

P@5 .0048 .0592 .0353 .0412 .0558 .0503 .0553

F@5 .0050 .0694 .0404 .0477 .0627 .0597 .0650

F@10 .0042 .0601 .0362 .0488 .0573 .0530 .0618

nDCG@5 .0048 .0792 .0427 .0511 .0686 .0704 .0717

nDCG@10 .0054 .0901 .0504 .0635 .0802 .0815 .0863

KDD15 R@5 .0067 .4774 .1885 .4325 .4663 .3992 .4289

P@5 .0018 .2488 .1409 .2355 .2570 .2436 .2377

F@5 .0029 .3074 .1612 .3050 .3314 .3025 .3059

F@10 .0034 .2581 .1244 .2773 .3195 .2756 .2769

nDCG@5 .0053 .3897 .1927 .3618 .3529 .3227 .3608

nDCG@10 .0081 .4740 .2090 .4281 .4465 .3939 .4284

TravelWell R@5 .0035 .0257 .0174 .0404 .0471 .0483 .0139

P@5 .0127 .0212 .0382 .0425 .0297 .0382 .0382

F@5 .0056 .0232 .0240 .0414 .0365 .0427 .0204

F@10 .0078 .0194 .0304 .0456 .0459 .0481 .0429

nDCG@5 .0072 .0220 .0275 .0305 .0491 .0446 .0220

nDCG@10 .0092 .0239 .0353 .0461 .0631 .0544 .0405

MACE R@5 .0253 .0080 .0016 .0283 .0151 .0093 .0222

P@5 .0167 .0079 .0023 .0251 .0213 .0065 .0190

F@5 .0201 .0079 .0019 .0266 .0177 .0076 .0205

F@10 .0169 .0116 .0031 .0286 .0189 .0155 .0241

nDCG@5 .0248 .0082 .0014 .0264 .0165 .0079 .0215

nDCG@10 .0281 .0136 .0026 .0357 .0282 .0157 .0302

Aposdle R@5 .0 .0 .0 .0026 .0 .0 .0

P@5 .0 .0 .0 .0333 .0 .0 .0

F@5 .0 .0 .0 .0049 .0 .0 .0

F@10 .0196 .0 .0151 .0045 .0 .0045 .0045

nDCG@5 .0 .0 .0 .0042 .0 .0 .0

nDCG@10 .0152 .0 .0103 .0042 .0 .0036 .0033

and the performance (F@5) of all considered algorithms but MP. This is espe-
cially visible when comparing KDD15 (|AUr| = 49.4) and Aposdle (|AUr| = 1).
KDD15 is our only MOOC dataset. It differs predominantly through its density
but also through the structural nature of the learning environment, where each
course is hierarchically organized in modules, categories and learning resources.
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Table 3. Results of our tag recommender evaluation. We see that the cognitive-
inspired BLLAC + MPR clearly outperforms its competitors (RQ2 ). Note: the highest
accuracy values per dataset are highlighted in bold.

Dataset Metric MPU MPR MPU,R CFU BLLAC BLLAC + MPR

BibSonomy R@5 .3486 .0862 .3839 .3530 .3809 .4071

P@5 .1991 .0572 .2221 .2066 .2207 .2359

F@5 .2535 .0688 .2814 .2606 .2795 .2987

F@10 .1879 .0523 .2131 .1875 .2028 .2237

nDCG@5 .3449 .0841 .3741 .3492 .3851 .4022

nDCG@10 .3712 .0918 .4070 .3693 .4095 .4343

CiteULike R@5 .3665 .0631 .3933 .3639 .4114 .4325

P@5 .1687 .0323 .1829 .1698 .1897 .2003

F@5 .2310 .0427 .2497 .2315 .2597 .2738

F@10 .1672 .0294 .1825 .1560 .1797 .1928

nDCG@5 .3414 .0600 .3632 .3457 .4016 .4140

nDCG@10 .3674 .0631 .3926 .3596 .4221 .4385

TravelWell R@5 .2207 .0714 .2442 .1740 .2491 .2828

P@5 .1000 .0366 .1333 .0800 .1300 .1400

F@5 .1376 .0484 .1724 .1096 .1708 .1872

F@10 .1125 .0388 .1356 .0744 .1287 .1426

nDCG@5 .2110 .0717 .2253 .1622 .2525 .2615

nDCG@10 .2411 .0800 .2686 .1730 .2783 .2900

MACE R@5 .1306 .0510 .1463 .1522 .1775 .1901

P@5 .0576 .0173 .0618 .0631 .0812 .0812

F@5 .0799 .0259 .0869 .0893 .1114 .1138

F@10 .0662 .0170 .0692 .0615 .0829 .0848

nDCG@5 .1146 .0463 .1296 .1502 .1670 .1734

nDCG@10 .1333 .0483 .1477 .1568 .1835 .1902

Contradicting [13], which suggested to use MOOCs datasets to evaluate TEL
recommendations, our findings indicate that recommender performance results
calculated on MOOCs are not representative for other, typically sparse, TEL
environments. This is especially true for small-scale environments such as Apos-
dle, where the evaluation positively shows that algorithms based on implicit
usage data do not satisfy the use case. For Aposdle, which has only six users,
none of the considered algorithms showed acceptable results. While approaches
based on individual user data (CBT , SUSTAIN) may work in similar settings,
we suppose this is hindered by the unfortunate association of topics, which do
not describe the content of a resource but rather the application type (e.g., tem-
plate) and the poor allocation of topics to resources which is on average 1.16.
We believe that learning environments that serve only a very small number of
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users, such as often the case in work place or formal learning settings, should
draw on recommendation approaches that build upon a thorough description of
learner and learning resources as incorporated in ontology-based recommender
systems.

4.2 Tag Recommendations (RQ2)

The tag recommender evaluation was limited to the four datasets of our study
that feature tags. Contrary to the results of the resource recommender study, we
can observe a clear winner, which performs best on all datasets and metrics as
depicted in Table 3. BLLAC + MPR combines frequency and recency of a user’s
tagging history, which is enhanced by context information and therewith also
recommends tags that are new to a user. Because runtime and complexity are
considered very important factors in most TEL environments [8], we also empha-
size the results of MPU,R that outperforms the comparably cost-intensive CFU

in three of four settings, and hence forms a good alternative for runtime-sensitive
settings. An extensive evaluation of runtime and memory for tag recommenda-
tion algorithms can be found in [18].

5 Conclusion

This paper presents a data-driven study that measures the performance of
six known recommendation algorithms and variations thereof on altogether six
TEL datasets from different application domains. Learning settings cover social
bookmarking, open social learning, MOOCs and workplace learning. First, we
investigate the suitability of three state-of-the-art recommendation algorithms
(MP, CF, CB) and two approaches suggested for the educational context
(UCbSim, SUSTAIN). The algorithms are implemented on implicit usage data.
Our results show that satisfactory performance values can only be reached for
KDD15, the MOOCs dataset. This suggests that standard resource recommenda-
tion algorithms, originating from the data-rich commercial domain are not well
suited to the needs of sparse-data learning environments (RQ1 ). In a second
study, we evaluate computationally inexpensive tag recommendation algorithms
that may be applied to support learners’ tagging behavior. To this end, we com-
puted the performance of MP, CF and a cognitive-inspired algorithm, BLLAC , on
four datasets. Results show that a hybrid recommendation approach combining
BLLAC and MPR clearly outperforms the remaining methods (RQ2 ).

Limitations and Future Work. This evaluation only covers performance
measurements of resource and tag recommendation algorithms. Other relevant
indicators, as described in [13], such as user satisfaction, task support, learning
performance and learning motivation are not addressed in this research. Also,
we would like to mention the restriction of data-driven studies to items that are
part of a user’s history (i.e., if a user did not engage with a specific learning
resource in the usage data, the evaluation considers this resource as wrongly
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recommended). However, this might not be the case. Thus, for future work, we
plan to validate our results in an online recommender study. We believe that this
would allow us to measure the real user acceptance of the recommendations.
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