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Abstract

Social tagging systems enable users to collaboratively assign freely chosen keywords

(i.e., tags) to resources (e.g., Web links). In order to support users in finding descrip-

tive tags, tag recommendation algorithms have been proposed. One issue of current

state-of-the-art tag recommendation algorithms is that they are often designed in

a purely data-driven way and thus, lack a thorough understanding of the cognitive

processes that play a role when people assign tags to resources. A prominent exam-

ple is the activation equation of the cognitive architecture ACT-R, which formalizes

activation processes in human memory to determine if a specific memory unit (e.g.,

a word or tag) will be needed in a specific context. It is the aim of this thesis to

investigate if a cognitive-inspired approach, which models activation processes in

human memory, can improve tag recommendations.

For this, the relation between activation processes in human memory and usage

practices of tags is studied, which reveals that (i) past usage frequency, (ii) recency,

and (iii) semantic context cues are important factors when people reuse tags. Based

on this, a cognitive-inspired tag recommendation approach termed BLLAC+MPr is

developed based on the activation equation of ACT-R. An extensive evaluation using

six real-world folksonomy datasets shows that BLLAC+MPr outperforms current

state-of-the-art tag recommendation algorithms with respect to various evaluation

metrics. Finally, BLLAC+MPr is utilized for hashtag recommendations in Twitter to

demonstrate its generalizability in related areas of tag-based recommender systems.

The findings of this thesis demonstrate that activation processes in human memory

can be utilized to improve not only social tag recommendations but also hashtag

recommendations. This opens up a number of possible research strands for future

work, such as the design of cognitive-inspired resource recommender systems.
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Zusammenfassung

Soziale Tagging Systeme ermöglichen das kollaborative Annotieren von Ressourcen

(z.B. Web Links) mit Hilfe von frei wählbaren Schlagwörtern (d.h. Tags). Dabei wer-

den die Benutzer dieser Tagging Systeme bei der Findung von passenden Tags von

Empfehlungssystemen unterstützt. Eine Schwachstelle gängiger Algorithmen von

Tag-Empfehlungssystemen ist es, dass diese oft rein Daten-getrieben arbeiten und

somit kognitive Prozesse vernachlässigen, die wichtig für den Auswahlprozess von

Tags sind. Ein bekanntes Beispiel stellt die Aktivierungsgleichung der kognitiven Ar-

chitektur ACT-R dar, welche Aktivierungsprozesse des menschlichen Gedächtnisses

formalisiert um den Nutzen einer bestimmten Gedächtniseinheit (z.B. ein Wort

oder Tag) in einem bestimmten Kontext zu berechnen. Es ist das Ziel dieser Dis-

sertation festzustellen, ob ein kognitiv-inspirierter Algorithmus, welcher diese Ak-

tivierungsprozesse modelliert, Tag-Empfehlungssysteme verbessern kann.

Dazu wurde die Beziehung zwischen Aktivierungsprozessen und der Verwendung

von Tags analysiert, welches zeigte, dass (i) Verwendungshäufigkeit, (ii) Verwen-

dungszeitpunkt, und (iii) der semantische Kontext wichtige Faktoren für die Wahl

von Tags darstellen. Darauf aufbauend wurde ein kognitiv-inspirierter Algorith-

mus, namens BLLAC+MPr, mit Hilfe der Aktivierungsgleichung von ACT-R en-

twickelt. Eine umfassende Evaluierung von BLLAC+MPr zeigte, dass dieser den

Stand der Technik von Tag-Empfehlungssystemen gemessen anhand von gängigen

Metriken übertrifft. Abschließend wurde BLLAC+MPr für die Empfehlung von

Hashtags in Twitter adaptiert um zu demonstrieren, dass dieser Algorithmus auch

für verwandte Arten von Tag-basierenden Empfehlungssystemen generalisiert wer-

den kann. Die Forschungsergebnisse dieser Dissertation demonstrieren, dass Ak-

tivierungsprozesse des menschlichen Gedächtnisses sowohl Tag- als auch Hashtag-

Empfehlungen verbessern können. Dies eröffnet zukünftige Forschungsmöglichkeiten,

wie z.B. die Entwicklung von weiteren kognitiv-inspirierten Empfehlungssystemen.
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Chapter 1

Introduction

“Social tagging systems are excellent examples of distributed cognitive

systems” [Fu, 2008]

Social tagging systems enable users to collaboratively assign freely chosen key-

words (i.e., tags) to resources (e.g., Web links, scientific publications, music, im-

ages, movies, etc.). These tags can then be used for not only searching, navigat-

ing, organizing and finding content but also serendipitous browsing [Körner et al.,

2010a, Rader and Wash, 2008, Chi and Mytkowicz, 2008]. Therefore, social tags

have become an essential instrument of Web 2.0 (i.e., the social Web) to assist users

during these activities. Another advantage of social tags is that users can freely

choose them for annotating their bookmarked resources. However, this also means

that these users have to create a set of descriptive tags on their own, which can be

a very demanding task [Gemmell et al., 2009, Lipczak, 2012].

As a solution, tag recommendation algorithms have been proposed, which suggest

a set of tags for a given user and a given resource. These tag suggestions are

typically calculated based on previously used tags and/or the content of resources

[Kowald, 2015]. Thus, tag recommendation algorithms aim to help not only the

individual to find appropriate tags [Jäschke et al., 2008] but also the collective to

consolidate the shared tag vocabulary with the aim to reach semantic stability and

implicit consensus [Wagner et al., 2014, Kopeinik et al., 2017]. Furthermore, it was

shown that personalized tag recommendations can increase the indexing quality of

resources, which makes it easier for users to understand the information content of

an indexed resource solely based on its assigned tags [Dellschaft and Staab, 2012].
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Another strand of research on the underlying cognitive mechanisms of social

tagging has shown that the way users choose tags for annotating resources corre-

sponds to processes and structures in human memory [Cress et al., 2013, Held et al.,

2012, Ley and Seitlinger, 2010, Fu, 2008]. In this respect, a prominent example is

the activation equation of the cognitive architecture ACT-R, which formalizes acti-

vation processes in human memory. Specifically, the activation equation determines

the activation level (i.e., probability) that a specific memory unit (e.g., a word or

tag) will be needed (i.e., activated) in a specific context [Anderson et al., 2004].

However, while current state-of-the-art tag recommendation approaches perform

reasonably well in terms of recommendation accuracy, most of them are designed in

a purely data-driven way. Consequently, they are based on either simply counting

tag frequencies [Jäschke et al., 2007] or computationally expensive calculation steps

(e.g., calculating user similarities [Marinho and Schmidt-Thieme, 2008], modeling

topics [Krestel et al., 2009] or factorizing the features of resources [Rendle, 2010]).

Hence, these approaches typically ignore the above mentioned insights originating

from cognitive research on how humans access information, such as words or tags,

in their memory. This is contrary to the assumption that tag recommendation

algorithms should attempt to mimic the user’s tagging behavior [Kowald, 2015].

Thus, it is the aim of this thesis to show that a cognitive-inspired approach,

which is build upon activation processes in human memory, can improve the state-

of-the-art of tag recommendations. Furthermore, such an approach should help

to better understand the underlying cognitive processes of social tagging and tag

recommendations. Taken together, the problem this thesis aims to tackle is the

following:

“There is a lack of knowledge about (i) how activation processes in human memory

can be modeled for the task of predicting and recommending tags, and (ii) if this

could lead to improvements in real-world tag recommendation settings.”

1.1 Research Questions

Based on the aforementioned problem statement, four research questions guide this

thesis, which are visualized in Figure 1.1.
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RQ1: How are activation processes in human memory influencing the tag reuse 
 behavior of users in social tagging systems?

RQ2: Can the activation equation of the cognitive architecture ACT-R, which 
 accounts for activation processes in human memory, be exploited to develop 
 a model for predicting the reuse of tags?

RQ3: Can a tag prediction model based on the activation equation be expanded 
 with tag imitation processes in order to improve tag recommendations in 
 real-world folksonomies?

RQ4: Given that activation processes in human memory can be modeled to 
 improve tag recommendations, can they also be utilized for hashtag 
 recommendations in Twitter?

Future Work:  Cognitive-inspired recommender systems
       (e.g., resource recommendations)

Factors: past usage frequency,
recency & semantic context

Activation equation of ACT-R:
BLL

AC

Tag imitation processes:
BLL

AC
+MP

r

Temporal effects on hashtag reuse: 
BLL

I,S
 & BLL

I,S,C

Figure 1.1: The four research questions of this thesis. While Research Question 1
deals with the identification of the relevant activation processes in human memory
that influence the reuse of tags in social tagging systems (i.e, past usage frequency,
recency and the current semantic context), Research Questions 2, 3 and 4 utilize
the activation equation of the cognitive architecture ACT-R to design, implement
and evaluate the tag recommendation algorithms BLLAC and BLLAC+MPr as well
as the hashtag recommendation algorithms BLLI,S and BLLI,S,C . The findings of
this thesis open up a possible strand for future research, which is the design of
cognitive-inspired recommender systems (e.g., for resource recommendations).
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1.1.1 Research Question 1: The Influence of Activation Pro-

cesses in Human Memory on Tag Reuse

“How are activation processes in human memory influencing the tag reuse behavior

of users in social tagging systems?”

The first research question of this thesis deals with the relation of activation

processes in human memory and the tag reuse behavior of users in social tagging

systems. According to [Anderson et al., 2004], the activation of a memory unit

(e.g., a tag) should depend on at least two variables: (i) the general usefulness of

this memory unit given by past usage frequency and recency, and (ii) its usefulness

in the current semantic context. Therefore, it is the aim of Research Question 1 to

test if this is also applicable for social tagging settings.

This research question is addressed in Chapter 4, in which a study is presented

that sheds light on the influence of frequency, recency and semantic context on the

reuse of tags. The results of this study show that there is a strong relation between

activation processes in human memory and the use of tags in social tagging systems.

Additionally, these findings act as a prerequisite for designing a cognitive-inspired

approach for tag reuse prediction, which is investigated by Research Question 2.

1.1.2 Research Question 2: Designing a Cognitive-Inspired

Algorithm for Tag Reuse Prediction

“Can the activation equation of the cognitive architecture ACT-R, which accounts for

activation processes in human memory, be exploited to develop a model for predicting

the reuse of tags?”

The aim of Research Question 2 is to identify the usefulness of the activation

equation of the cognitive architecture ACT-R [Anderson et al., 2004] for the design of

a tag reuse prediction algorithm termed BLLAC . The activation equation quantifies

the activation level of a piece of information in human memory by integrating three

factors: (i) past usage frequency, (ii) past usage recency, and (iii) similarity with

the current semantic context. Since Research Question 1 showed that these three

factors influence the reuse of tags, Research Question 2 validates if this finding can

be utilized for the prediction of tags.

To do so, in Chapter 5, the cognitive-inspired tag reuse prediction approach
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BLLAC , which is based on the activation equation of ACT-R, is presented and evalu-

ated. The evaluation results show that BLLAC provides higher accuracy and ranking

estimates than algorithms reflecting its individual components and combinations of

its components. Furthermore, these results show that social influences, by means of

recommending popular tags of other users, have an impact on a user’s choice of tags

as well. This finding suggests that combining tag imitation processes with BLLAC

should lead to further improvements, which is addressed by Research Question 3.

1.1.3 Research Question 3: Implementing a Hybrid Ap-

proach for Tag Recommendations in Real-World Folk-

sonomies

“Can a tag prediction model based on the activation equation be expanded with tag

imitation processes in order to improve tag recommendations in real-world folk-

sonomies?”

Research Question 3 deals with the extension of BLLAC by tag imitation pro-

cesses to realize a hybrid tag recommendation approach for real-world folksonomies

called BLLAC+MPr. This question is addressed in Chapter 6. Specifically, it is

shown that popular tags used by other users to annotate the current resource can

be used to enhance the recommendation accuracy of BLLAC . Another focus of this

research question lies on the evaluation of BLLAC+MPr in a real-world folksonomy

setting.

Therefore, unfiltered datasets from six social tagging environments (i.e, Flickr,

CiteULike, BibSonomy, Delicious, MovieLens and LastFM, see Section 3.2) are used

to compare BLLAC+MPr to a rich set of state-of-the-art tag recommendation al-

gorithms. This is done using various evaluation metrics that validate not only the

accuracy and ranking quality of the recommendations but also the diversity, nov-

elty and computational costs. The results of this study show that BLLAC+MPr

provides the most robust results over all datasets with respect to various evaluation

metrics and folksonomy settings. These strong results raise the question if activation

processes in human memory can also be utilized for related recommendation tasks,

which is the aim of Research Question 4.
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1.1.4 Research Question 4: Utilizing the Approach for Hash-

tag Recommendations in Twitter

“Given that activation processes in human memory can be modeled to improve tag

recommendations, can they also be utilized for hashtag recommendations in Twit-

ter?”

The fourth and last research question of this thesis addresses the generalizability

of BLLAC+MPr by utilizing it for related use cases in the area of recommender

systems, such as hashtag recommendations in Twitter. Therefore, in Chapter 7, two

data collections are crawled from Twitter and temporal dynamics are studied in these

data collections in order to propose two cognitive-inspired hashtag recommendation

approaches called BLLI,S and BLLI,S,C .

The evaluation of BLLI,S and BLLI,S,C shows that both approaches outperform

related algorithms in the field of hashtag recommendations. These findings demon-

strate that activation processes in human memory cannot only be utilized for social

tag recommendations but also for hashtag recommendations. Furthermore, these

findings open up a number of possible research strands for future work, such as the

design of cognitive-inspired recommender systems (e.g., for resource recommenda-

tions, see Section 8.3).

1.2 Scientific Contributions

With relation to the research questions and methodology of this thesis, the five main

contributions are as follows:

1. It is shown that activation processes in human memory impact tag reuse prac-

tices in social tagging systems. Specifically, the factors of (i) past usage fre-

quency, (ii) recency, and (iii) semantic context highly correlate with the reuse

probability of social tags (Research Question 1).

2. A cognitive-inspired algorithm for tag reuse predictions termed BLLAC is pre-

sented, which utilizes the activation equation of the cognitive architecture

ACT-R. This algorithm provides higher accuracy and ranking estimates than

related tag prediction approaches (Research Question 2).

20



3. BLLAC is combined with tag imitation processes by means of popular tags used

by other users to realize a hybrid algorithm for tag recommendations in real-

world folksonomies termed BLLAC+MPr. BLLAC+MPr outperforms state-

of-the-art tag recommendation algorithms with respect to various evaluation

metrics (Research Question 3).

4. It is demonstrated that activation processes in human memory can also be

utilized for related use cases in the research area of tag-based recommender

systems, such as hashtag recommendations in Twitter. This is done by analyz-

ing temporal effects on hashtag reuse and by proposing two cognitive-inspired

hashtag recommendation approaches called BLLI,S and BLLI,S,C (Research

Question 4).

5. Finally, the TagRec framework is presented as an open-source tag recommen-

dation benchmarking toolkit. TagRec is used to address all four research

questions of this thesis and thus, fosters the reproducibility of the presented

results and findings.

These contributions have been published in 13 scientific publications:

(P1 ) Kowald, D. (2015). Modeling cognitive processes in social tagging to improve

tag recommendations. In Proceedings of the 24th International Conference on World

Wide Web, WWW ’15 Companion, pages 505-509, Republic and Canton of Geneva,

Switzerland. International World Wide Web Conferences Steering Committee.

This work presents a general idea of how cognitive processes can be utilized to

improve tag recommendations in social tagging systems. Therefore, three types of

cognitive processes are studied, which are (i) categorization processes, (ii) temporal

dynamics, and (iii) tag imitation processes, to derive a tag recommendation algo-

rithm termed 3LT+MPr [Kowald, 2015]. One weakness of this approach is that it

depends on sparsely available category information of resources, which is the reason

why the algorithm described in this thesis (i.e., BLLAC+MPr) neglects categoriza-

tion processes. Instead, BLLAC+MPr takes the semantic context of social tagging

into account via implementing the full activation equation of the cognitive architec-

ture ACT-R.

However, the presentation of this work in the Doctoral Symposium track of

the 24th International Conference on World Wide Web in Florence, Italy was an
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important step for the realization of this thesis and for improving the concept of a

tag recommendation algorithm based on cognitive processes.

(P2 ) Kowald, D. and Lex, E. (2016). The influence of frequency, recency and

semantic context on the reuse of tags in social tagging systems. In Proceedings of

the 27th ACM Conference on Hypertext and Social Media, HT ’16, pages 237-242,

New York, NY, USA. ACM.

This paper analyzes the influence of frequency, recency and semantic context on

the reuse of tags in social tagging systems [Kowald and Lex, 2016]. It is shown that

all three factors play a role when people reuse tags and that the intensity of this

influence greatly depends on the given social tagging system (i.e., narrow versus

broad folksonomies). This analysis contributes to Research Question 1 and is used

as a prerequisite for designing BLLAC using the activation equation of ACT-R.

Furthermore, this paper contains a prediction study, which validates the tag

prediction quality of BLLAC and its components, which contributes to Research

Question 2. The author of this thesis has received a student travel grant in order to

be able to present this paper at the 27th ACM Conference on Hypertext and Social

Media in Halifax, Canada.

(P3 ) Kowald, D., Seitlinger, P., Trattner, C., and Ley, T. (2014). Long time

no see: The probability of reusing tags as a function of frequency and recency. In

Proceedings of the 23rd International Conference on World Wide Web, WWW ’14

Companion, pages 463-468, Republic and Canton of Geneva, Switzerland. Interna-

tional World Wide Web Conferences Steering Committee.

In this work, the first version of the cognitive-inspired tag recommendation al-

gorithm BLLAC is proposed, which contributes to Research Question 2. This first

version of the algorithm solely utilizes the Base-Level Learning (BLL) equation of

ACT-R and thus, neglects the semantic context of tag assignments [Kowald et al.,

2014b].

However, by combining this approach with a frequency-based analysis of the

most popular tags assigned to the bookmarked resource, this paper already shows

that the approach is able to outperform related tag recommendation methods.

(P4 ) Kowald, D., Kopeinik, S., Seitlinger, P., Ley, T., Albert, D., and Trattner,

C. (2015). Refining frequency-based tag reuse predictions by means of time and se-
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mantic context. In Mining, Modeling, and Recommending ’Things’ in Social Media,

pages 55-74. Springer.

The complete version of BLLAC+MPr is presented in this book chapter. Hence,

the full activation equation of ACT-R is implemented via combining the base-level

activation by means of the BLL equation with an associative activation by means

of normalized tag co-occurrences [Kowald et al., 2015a].

Furthermore, BLLAC+MPr is evaluated against state-of-the-art tag recommen-

dation methods (e.g., Collaborative Filtering, FolkRank and Tensor Factorization,

see Section 2.2) and it is shown that BLLAC+MPr outperforms these methods in

terms of recommendation accuracy and ranking (Research Question 3).

(P5 ) Trattner, C., Kowald, D., Seitlinger, P., Ley, T., and Kopeinik, S. (2016).

Modeling activation processes in human memory to predict the use of tags in social

bookmarking systems. The Journal of Web Science, 2(1), pages 1-18.

This journal article gives a detailed description of the development process of

BLLAC+MPr and thus, contributes to Research Questions 1, 2 and 3. With respect

to Research Question 1, the time-dependent decay of tag reuse is investigated and it

is shown that a power function is better suited to model these temporal effects. With

respect to Research Questions 2 and 3, a detailed evaluation is presented, which also

discusses the computational complexity of the algorithms [Trattner et al., 2016].

Apart from that, the evaluation results are validated using the ECML PKDD

Discovery Challenge 2009 dataset in order to increase the reproducibility of the

evaluation results.

(P6 ) Kowald, D., Lacic, E., and Trattner, C. (2014). TagRec: Towards a stan-

dardized tag recommender benchmarking framework. In Proceedings of the 25th

ACM Conference on Hypertext and Social Media, HT ’14, pages 305-307, New York,

NY, USA. ACM.

This work describes the initial version of the TagRec framework, which is devel-

oped as part of this thesis in order to conduct the tag recommendation evaluation

procedures addressing Research Questions 1, 2 and 3. Apart from that, this work

won the best poster award at the 25th ACM Conference on Hypertext and Social

Media in Santiago, Chile.

TagRec is an open-source tag recommender benchmarking framework with the
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aim to support developers and researchers of tag-based recommender systems in all

steps of the development and evaluation process of novel algorithms [Kowald et al.,

2014a].

(P7 ) Kowald, D., Kopeinik, S., and Lex, E. (2017). The TagRec framework as

a toolkit for the development of tag-based recommender systems. In Adjunct Pub-

lication of the 25th Conference on User Modeling Adaptation and Personalization,

UMAP ’17, pages 23-28, New York, NY, USA. ACM.

This paper describes the final version of TagRec, which extends the framework

with algorithms and evaluation methods for other types of recommender systems,

such as resource and hashtag recommendations [Kowald et al., 2017a].

Specifically, this final version of the framework enables to address the hashtag

recommendation evaluation procedure with respect to Research Question 4.

(P8 ) Kowald, D. and Lex, E. (2015). Evaluating tag recommender algorithms

in real-world folksonomies: A comparative study. In Proceedings of the 9th ACM

Conference on Recommender Systems, RecSys ’15, pages 265-268, New York, NY,

USA. ACM.

The evaluation of tag recommendation algorithms in real-world folksonomy set-

tings is not a trivial task and greatly depends on the given user needs. Therefore,

this paper compares a rich set of state-of-the-art tag recommendation algorithms

in six unfiltered social tagging datasets via various evaluation metrics, measuring

prediction accuracy, diversity, novelty and computational costs of the algorithms

[Kowald and Lex, 2015].

This contributes not only to Research Question 3 but also to the general method-

ology used in this thesis (see Chapter 3).

(P9 ) Kopeinik, S., Kowald, D., and Lex, E. (2016). Which algorithms suit which

learning environments? A comparative study of recommender systems in TEL. In

Proceedings of the 11th European Conference on Technology Enhanced Learning,

ECTEL’16, pages 124-138. Springer.

This work presents an extensive study comparing a variety of recommendation

algorithms in Technology Enhanced Learning (TEL) settings. These TEL datasets

are typically small and sparse and thus, are not suitable for classic tag recommen-

dation approaches such as MostPopular, Latent Dirichlet Allocation, FolkRank or

24



Collaborative Filtering [Kopeinik et al., 2016b].

The evaluation results described in this paper show that BLLAC+MPr outper-

forms these classic approaches not only in social bookmarking environments but also

in TEL settings (Research Question 3).

(P10 ) Kowald, D., Pujari, S., and Lex, E. (2017). Temporal effects on hash-

tag reuse in Twitter: A cognitive-inspired hashtag recommendation approach. In

Proceedings of the 26th International Conference on World Wide Web, WWW’17,

pages 1401-1410, Republic and Canton of Geneva, Switzerland. International World

Wide Web Conferences Steering Committee.

This paper describes how activation processes in human memory can be used

for designing a hashtag recommendation algorithm [Kowald et al., 2017b]. To that

end, the effect of time on individual and social hashtag reuse is studied to derive

a predictive model using the BLL equation of ACT-R. Furthermore, this model

is combined with a content-based tweet analysis in order to further increase the

recommendation quality.

Specifically, it is the aim of this work to show that BLLAC+MPr can be gener-

alized for related use cases in the research area of recommender systems, such as

hashtag recommendations in Twitter (Research Question 4).

(P11 ) Lacic, E., Kowald, D., Seitlinger, P., Trattner, C., and Parra, D. (2014).

Recommending items in social tagging systems using tag and time information. In

Proceedings of the 1st International Workshop on Social Personalization co-located

with the 25th ACM Conference on Hypertext and Social Media, HT ’14. CEUR-WS.

In this work, tag and time information is used to improve resource recommenda-

tions based on Collaborative Filtering. Therefore, the BLL equation of the cognitive

architecture ACT-R is used to identify the importance of a resource for a user based

on temporal tag usage patterns [Lacic et al., 2014b].

This demonstrates that activation processes in human memory are also useful

for resource recommendations and thus, opens up this research strand as potential

future work (see Section 8.3).

(P12 ) Seitlinger, P., Kowald, D., Trattner, C., and Ley, T. (2013). Recommend-

ing tags with a model of human categorization. In Proceedings of the 22nd ACM

international conference on Conference on information and knowledge management,
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CIKM ’13, pages 2381-2386, New York, NY, USA. ACM.

This paper describes the 3Layers tag recommendation approach, which is based

on a model of human categorization. This approach uses categories assigned to

resources in order to simulate a categorization process, which matches the currently

bookmarked resource against already bookmarked resources. Then, the tags of the

most semantically similar resources are suggested to the user [Seitlinger et al., 2013].

While categorization processes are not directly reflected in BLLAC+MPr, this

paper provides important insights for the integration of cognitive processes into the

tag recommendation process (see also 2.1.2).

(P13 ) Kowald, D., Seitlinger, P., Kopeinik, S., Ley, T., and Trattner, C. (2015).

Forgetting the words but remembering the meaning: Modeling forgetting in a verbal

and semantic tag recommender. In Mining, Modeling, and Recommending ’Things’

in Social Media, pages 75-95. Springer.

In this paper, the 3Layers tag recommendation algorithm is extended by incor-

porating the time-dependent decay of tag reuse. This is realized by integrating the

BLL equation of the cognitive architecture ACT-R [Kowald et al., 2015b].

Thus, this work shows that the BLL equation cannot only be used to design a

novel tag recommendation approach but also to improve existing algorithms (see

also Section 8.3).

1.3 Structure of this Thesis

The remainder of this thesis is structured as follows: In Chapter 2, related work is

presented, which includes the motivation and cognitive processes behind social tag-

ging as well as the most important approaches in the area of tag-based recommender

systems. This is followed by Chapter 3, in which a description of the methodology

used in this thesis is given. This includes the conducted experiments, the collected

data, the implemented baseline algorithms, the evaluation method and the TagRec

framework.

In Chapter 4, the influence of activation processes in human memory on tag reuse

is studied, which contributes to Research Question 1. Next, Research Question 2 is

investigated in Chapter 5 by presenting the design of a cognitive-inspired algorithm

for tag reuse prediction using the activation equation of the cognitive architecture
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ACT-R. This algorithm is extended in Chapter 6 with tag imitation processes to

implement a hybrid approach for tag recommendations in real-world folksonomies

in order to contribute to Research Question 3.

Chapter 7 utilizes this approach for hashtag recommendations in Twitter, which

shows that activation processes in human memory can be generalized for related

use cases in the area of recommender systems (Research Question 4). Finally, a

summary of the contributions of this thesis along with possibilities for future work

are given in Chapter 8.

1.4 Terms and Definitions

This section lists and describes the most important terms and definitions used in

this thesis in alphabetical order.

Activation processes. Activation processes describe how human memory tunes

the activation of its memory units to statistical regularities of the environment

[Anderson and Schooler, 1991]. The activation equation of the cognitive architecture

ACT-R formalizes these activation processes.

ACT-R. ACT-R, which is short for “Adaptive Control of Thought – Rational”,

is a cognitive architecture developed by John Robert Anderson [Anderson, 1996,

Anderson et al., 2004, Anderson et al., 1997]. ACT-R deals with defining and

formalizing the basic cognitive operations of the human mind (e.g., the access on

information in human memory).

Bookmark. With respect to social tagging, a bookmark (or sometimes also called

“post”) is a set of tags used by a given user to annotate a given resource (e.g., a Web

link) [Chi and Mytkowicz, 2008]. Bookmarks are used to store favorite resources for

later retrieval.

Data sparsity. Data sparsity describes to which extent a specific measure contains

empty values. In social tagging systems, this refers to the degree of narrowness

of a folksonomy and thus, indicates how often a resource was bookmarked [Helic

et al., 2012]. p-core pruning is one way to unnaturally create denser (or broader)

folksonomies [Doerfel et al., 2016].

Evaluation metric. An evaluation metric measures the performance of an algo-
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rithm with respect to a certain dimension and is typically used to compare algorithms

with each other. In the area of recommender systems, mainly metrics for measuring

the accuracy, ranking quality, diversity, novelty and computational costs of recom-

mendations are used [Gunawardana and Shani, 2009, Konstan, 2004, Baeza-Yates

et al., 1999].

Folksonomy. Folksonomies are hierarchical structures obtained from social tagging

data. Thus, a folksonomy is the set of all bookmarks in a social tagging system.

The literature distinguishes between “narrow” (i.e., only one user tags a resource)

and “broad” (i.e., multiple users tag a resource) folksonomies [Helic et al., 2012].

Folksonomies that cannot explicitly be categorized into these two types are referred

as “mixed” folksonomies (i.e., only a few users tag the same resource) [Kowald and

Lex, 2016].

Need probability. The need probability of a memory unit (e.g., a word or tag)

is the probability (or activation level) that this unit will be needed in a specific

situation. It depends on at least two variables: (i) the general usefulness of this

memory unit, and (ii) its associations to the current semantic context [Anderson

and Schooler, 1991].

Recommendation accuracy. The recommendation accuracy of an algorithm is

given by the number of correctly predicted recommendations. Thus, it is given by the

intersection of the set of recommended tags with the set of relevant tags. Precision

and Recall are two of the most popular metrics for measuring recommendation

accuracy [Van Rijsbergen, 1974].

Semantic context. When a user tags a resource on the Web, the tag choices

of this user are influenced by the semantic context of the currently bookmarked

resource. This current semantic context typically consists of information related

to the resource such as the title, description text and tags. Because of the lack of

content data in publicly available social tagging datasets, this thesis focuses on the

resource’s tags to model the semantic context [Kowald and Lex, 2016].

Social tagging system. Social tagging systems are important instruments, which

enable their users to collaboratively bookmark and annotate resources with freely-

chosen keywords (i.e., tags) [Körner et al., 2010a]. In this thesis, six social tagging

systems are investigated: Flickr (images), CiteULike (scientific references), Bib-
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Sonomy (Web bookmarks and scientific references), Delicious (Web bookmarks),

LastFM (music) and MovieLens (movies).

Tag assignment. A tag assignment is a triple consisting of a user, a resource and

a tag [Jäschke et al., 2008]. Thus, the set of tag assignments of a given user and a

given resource is denoted as a bookmark.

Tag cloud. A tag cloud visualizes the most popular tags in a social tagging system

by using the font size of the tags as a proxy for their popularity [Helic et al., 2011,

Sinclair and Cardew-Hall, 2008]. Such a visualization can be generated based on

the tags of a user, the tags of a resource or all tags in a folksonomy.

Tag recommendations. Tag recommendations support users in finding descriptive

tags for bookmarking resources. Thus, a tag recommendation system is a type of

recommender system, which suggests a set of tag for a given user and a given resource

[Jäschke et al., 2008].

Time-dependent decay. The time-dependent decay of memory access describes

the effect of recency on the reuse probability of a memory unit (e.g., a word or tag).

Thus, the more recent a memory unit was used, the higher the probability that it

will be reused. It was shown that this time-dependent decay can be modeled using

a power-law distribution [Anderson and Schooler, 1991].

Web 2.0. The Web 2.0 (also referred to as the social Web or the participatory Web)

describes the part of the Web that focuses on user-generated content. Important

examples of Web 2.0 systems are wikis (e.g., Wikipedia), social networking sites

(e.g., Facebook) and social tagging systems (e.g., BibSonomy) [O’reilly, 2005].
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Chapter 2

Related Work

“Tag recommendation reduces the cognitive effort from generation to

recognition.” [Gemmell et al., 2009]

In this chapter, the state-of-the-art research related to this thesis is presented

in order to describe the preliminaries for Research Questions 1 to 4 outlined in

Chapter 1. Thus, this chapter covers the motivation and cognitive processes behind

social tagging (Section 2.1) as well as the most important approaches in the area

of tag-based recommender systems (Section 2.2). This includes not only tag recom-

mendation methods but also algorithms for recommending hashtags. This chapter

is based on P1 [Kowald, 2015], P5 [Trattner et al., 2016], P12 [Seitlinger et al., 2013]

(Sections 2.1 and 2.2.1) and P10 [Kowald et al., 2017b] (Section 2.2.2).

2.1 Social Tagging

Social tagging is the process of collaboratively assigning freely-chosen keywords (i.e.,

tags) to resources such as Web bookmarks, academic references, images, music or

videos [Zubiaga, 2009] (see Figure 2.1). Recent years have shown that social tagging

is an important feature of the social Web, supporting users with a simple mecha-

nism to collaboratively organize and find content [Körner et al., 2010a]. Thus, in

this section, the motivation behind the use of social tagging systems is discussed.

Furthermore, a literature overview describing the underlying cognitive processes of

social tagging is given. This section is based on P1 [Kowald, 2015] and P12 [Seitlinger

et al., 2013].
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(a) Narrow folksonomy (b) Broad folksonomy

Figure 2.1: Illustration of the social tagging process, where users assign freely chosen
keywords (i.e., tags) to resources. These tripartite structures are also referred as
“folksonomies”. In narrow folksonomies (a), only the user who uploads the resource
is allowed to tag it, whereas in broad folksonomies (b), all users are allowed to
tag the resources. These figures were used with permission from Arkaitz Zubiaga
[Zubiaga, 2009].

2.1.1 Motivation of Social Tagging

In order to understand the requirements for a successful tag recommendation algo-

rithm, a general understanding of the motivation behind the use of social tagging

systems is needed [Kowald, 2015]. To that end, two main types of tagging models

have been defined in the literature: (i) the personal tagging model, and (ii) the

collaborative tagging model [Lipczak, 2012, Lipczak et al., 2009].

Personal Tagging Model

The personal tagging model focuses on the individual user and assumes that she

mainly uses the social tagging system as an own repository for storing and organizing

bookmarks. For this reason, the user mainly draws on her own tag vocabulary, thus

reuses tags she has used before [Rader and Wash, 2008, Sen et al., 2006]. It has

been shown that these individual tags significantly improve the search process for

bookmarked resources [Dellschaft and Staab, 2012, Trattner et al., 2012].
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Figure 2.2: Example of a tag cloud in BibSonomy (retrieved 07-July-2017). The
font size reflects the popularity of the tags.

According to [Körner et al., 2010b], two types of users can be defined based

on the personal tagging motivation: (i) categorizers, and (ii) describers. While

categorizers use tags for categorizing resources, describers use tags for describing

resources. Simplified, this can be defined via the tag/resource ratio (trr) metric

of the user. The trr is given by the vocabulary size of the user (i.e., the number

of used tags) divided by the number of resources bookmarked by this user. Since

categorizers use a limited vocabulary for tagging resources, they should achieve a

lower trr score than describers, who use a variety of tags for this purpose.
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Collaborative Tagging Model

The collaborative tagging model assumes that a user does not only reuses her own

tags but also that a user is influenced by tags used by other users [Golder and Hu-

berman, 2006, Dellschaft and Staab, 2008]. This in turn leads to a shared knowledge

base / vocabulary of the community [Robu et al., 2009], which is often visualized as

a tag cloud in the social tagging system [Helic et al., 2011, Sinclair and Cardew-Hall,

2008]. In Figure 2.2, an example of a tag cloud in the social bookmarking system

BibSonomy (see Section 3.2.1) is illustrated. In this respect, [Ley and Seitlinger,

2015] showed that shared tag collections have an impact on learning with respect to

collaborative knowledge building.

This is in line with the work of [Wagner et al., 2014], in which the semantic

stability of social tagging systems is explored. Here, semantic stability is defined

as the consensus reached on the tags used for the annotation of a resource among

various users. The authors found that a combination of tag imitation processes

and shared background knowledge of the bookmarked resource’s topics leads to the

fastest and highest semantic stability. Apart from that, related research showed that

tags can be used to collaboratively classify Web content [Zubiaga et al., 2013] and

to enhance the navigation in large knowledge repositories [Helic et al., 2012, Helic

et al., 2010].

The tag recommendation algorithm BLLAC+MPr developed in course of this

thesis builds on a combination of the personal and the collaborative tagging model.

While the BLLAC component reflects the personal tagging motivation, the MPr

component reflects the collaborative one.

2.1.2 Cognitive Processes in Social Tagging

Related literature has shown that an understanding of the cognitive processes in-

volved in social tagging can help not only predicting the individual tagging behavior

of users [Seitlinger et al., 2015b] but also modeling phenomena on the collective

level, such as the emergence of stable tag distributions [Fu, 2008]. Specifically, when

users categorize and tag resources on the Web (e.g., images), they draw on their

semantic-lexical memory to retrieve corresponding memory units [Kowald, 2015].

For instance, a user might add the tag “banana” as the image shows a fruit she has

recently eaten [Lindstaedt et al., 2009].
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When looking closer at the underlying processes of social tagging, the way users

choose tags for annotating resources strongly corresponds to processes in human

memory and its cognitive structures [Cress et al., 2013, Held et al., 2012, Ley and

Seitlinger, 2010]. As a prominent example in this respect, the work of [Fu, 2008]

discusses an interplay between individual micro-level processes (e.g., associating the

currently bookmarked resource with tags stored in memory) and collective macro-

level processes (e.g., imitating other users’ tags) in social tagging systems.

To that end, generative models of social tagging have been developed based on

models of information theory [Halpin et al., 2007] and human memory theory [Fu

et al., 2010] to provide insights into the emerged data in social tagging systems

[Seitlinger et al., 2013]. These generative models implement assumptions about

human information processing in order to derive computational models for predicting

tag distributions. When comparing the predicted to the empirical tag distributions,

claims about the validity of the underlying cognitive assumptions can be made

[Seitlinger et al., 2013].

In order to provide a stricter test of these theoretical claims, controlled experi-

ments can be conducted as these experiments allow for testing causal relationships

more directly. Examples of such user studies have been conducted in [Cress et al.,

2013] to test a social variant of information foraging theory, in [Fu et al., 2009] to test

the semantic imitation model of social tagging, and in [Seitlinger and Ley, 2012] to

find evidence that both semantic and lexical memory mechanisms play a role when

users choose tags. The latter has also been investigated in [Seitlinger et al., 2013].

However, these studies also have limitations as they have to rely on controlled

settings and specific study designs. Thus, to generalize the findings of these studies

and to relate them to naturally occurring tag distributions, the models need to

be tested in real-world folksonomy settings [Seitlinger et al., 2013]. Therefore, in

this thesis, a tag recommendation algorithm, which implements basic mechanisms

of human memory theory, is proposed and evaluated using large datasets gathered

from real-world social tagging systems (see Chapter 3).

2.2 Tag-Based Recommender Systems

This section gives an overview over state-of-the-art tag-based recommender systems.

Since this thesis focuses on tag recommendations in Research Questions 1 to 3, the
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Figure 2.3: Example of a simple tag recommendation mechanism in BibSonomy
(retrieved 07-July-2017). In the “recommendation” field, the tagging interface shows
popular tags associated with the currently bookmarked resource and the current user
to assist the user during the bookmarking process.

focus of this section is on tag recommendation algorithms. Apart from that, hashtag

recommendation approaches are discussed as a prerequisite for Research Question

4. This section is based on P1 [Kowald, 2015], P5 [Trattner et al., 2016] (Section

2.2.1) and P10 [Kowald et al., 2017b].

2.2.1 Tag Recommendations

Tag recommendations aim at supporting users in providing meaningful tags for their

bookmarked resources. It was shown that tag recommendations reduce the cognitive

effort from generation to recognition [Gemmell et al., 2009]. Figure 2.3 illustrates
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this process, in which a user tags a Web link in BibSonomy and is supported via a

list of tag recommendations.

To date, the following two approaches have been established: (i) content-based,

and (ii) folksonomy-based tag recommendation algorithms. In relation to the topic

of this thesis, a third strand of tag recommendation algorithms, namely cognitive-

inspired approaches, is investigated as well [Trattner et al., 2016].

Content-Based Tag Recommendations

Content-based tag recommendation systems aim at analyzing the content of the

target resource to identify tags that could be used to describe this resource. Among

these systems, one of the most recognizable works is a study conducted by [Heymann

et al., 2008]. The paper illustrates that page text is a significantly better predictor

for the user’s social tags than anchor texts or surrounding hosts of Web links. This

was explored for tags gathered from the bookmarking system Delicious (see Section

3.2.1). The same effect has been validated in the work of [Lipczak et al., 2009,

Lipczak and Milios, 2010, Lipczak and Milios, 2011, Lin et al., 2015]. Apart from

that, tag recommendations based on visual content has been studied by [Lindstaedt

et al., 2008, Lindstaedt et al., 2009].

Another relevant and recent research in this area has been contributed by [Lor-

ince and Todd, 2013, Floeck et al., 2010, Moltedo et al., 2012], who show on a

theoretical and empirical level that existing tags (e.g., tag clouds) influence the way

people generate their own tags for a target resource.

However, while content-based tag recommendation algorithms provide powerful

mechanisms for recommending tags, they rely on content data of the resources, which

is often not included in publicly available social tagging datasets (see Section 3.2).

Furthermore, [Rendle et al., 2009] proved that personalized folksonomy-based ap-

proaches outperform the theoretically best unpersonalized method, to which content-

based algorithms typically belong. Therefore, this thesis focuses on folksonomy-

based rather than content-based approaches [Kowald, 2015, Trattner et al., 2016].

Folksonomy-Based Tag Recommendations

In contrast to content-based tag recommendation approaches, folksonomy-based

ones do not analyze the content of the bookmarked resource but rather use past
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tag assignments collected in the system. The probably most notable research in this

context was presented by [Hotho et al., 2006] who introduced an algorithm called

FolkRank (FR), which uses the structures of folksonomies for searching and ranking

entities. These rankings can also be used to recommend tags.

Subsequent studies of [Marinho and Schmidt-Thieme, 2008] and [Hamouda and

Wanas, 2011] show how the classic Collaborative Filtering (CF) approach can be

adopted for the recommendation of tags. Significant studies of [Rendle and Schmidt-

Thieme, 2010, Wetzker et al., 2010], [Krestel et al., 2009, Krestel and Fankhause,

2010] and [Rawashdeh et al., 2013, Pujari and Kanawati, 2012] introduce a factoriza-

tion model, a Latent Dirichlet Allocation (LDA) model and a link prediction model,

respectively, to recommend tags to users.

Although these approaches perform reasonably well, they are computationally

expensive compared to simple “most popular tags” approaches [Jäschke et al., 2007,

Jäschke et al., 2008]. Furthermore, they ignore recent observations with regard to

social tagging systems, such as the variation of the individual tagging behavior over

time [Yin et al., 2011b].

To that end, related research has made the first promising steps towards more

accurate folksonomy-based algorithms that also account for the variable of time. For

example, [Yin et al., 2011a, Zhang et al., 2012] have shown that these time-dependent

approaches outperform other tag recommendation algorithms such as FolkRank (see

Section 3.3). BLLAC+MPr introduced in this thesis also incorporates the variable

of time using a power function.

Cognitive-Inspired Tag Recommendations

Cognitive-inspired tag recommendation systems utilize models of human cognition

in order to model and predict the next tag assignments a user is going to apply.

To date, there is only a small body of research available in the area of cognitive-

inspired tag recommendations. One illustrative example is presented in [Stanley and

Byrne, 2013]. In this work, the authors use the activation equation of the cognitive

architecture ACT-R [Anderson et al., 2004] to predict the reuse of tags for posts in

the Question & Answering site StackOverflow1. In contrast to BLLAC+MPr, which

also relies on the activation equation of ACT-R to predict the reuse of tags, the

1http://stackoverflow.com/
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approach of [Stanley and Byrne, 2013] works in an unpersonalized manner. Thus,

tag suggestions are solely contextualized to the content of the current StackOverflow

post. Furthermore, the temporal information is ignored in this approach.

In their follow-up work [Stanley and Byrne, 2016], the authors worked on these

limitations and presented a personalized tag prediction model using the activation

equation of ACT-R. The authors tested their approach not only on a dataset gath-

ered from StackOverflow but also on a dataset gathered from the microblogging

service Twitter2.

However, in contrast to this thesis, the scope of [Stanley and Byrne, 2016] is a

more psychological one rather than a technical one. Thus, it is the goal of their work

to compare the predictions of an ACT-R-based model with a random permutation

vector-based model. On the contrary, this thesis aims to contribute to the research

area of tag-based recommender systems by improving the current state-of-the-art.

Furthermore, BLLAC+MPr also incorporates tag imitation processes, which is not

the case in [Stanley and Byrne, 2016].

Apart from this strand of research, the author of this thesis has also contributed

to the design of other cognitive-inspired tag recommendation methods presented in

[Seitlinger et al., 2013] and [Kowald et al., 2015b]. These methods are based on a

computational model of human categorization called MINERVA2 [Hintzman, 1984]

in order to process a network constituted by a input, hidden and output layer. In

[Seitlinger et al., 2013], the 3Layers (3L) algorithm was presented, which uses cate-

gories assigned to the current resource in order to recommend tags of semantically

similar resources. This approach is extended in [Kowald et al., 2015b] to create 3LT,

which enriches 3L in order to also incorporate temporal processes of tag usage (see

Section 3.3).

However, while 3L and 3LT provide good results in terms of recommender ac-

curacy and ranking, they rely on category information of the resources, which are

not available in most public social tagging datasets. Therefore, in [Seitlinger et al.,

2013, Kowald et al., 2015b] it was shown that LDA topics derived from the tags in

the datasets can also be used as resource categories. Although the presented evalu-

ation results proved this claim, the LDA topic creation process is computationally

expensive. This could lead to problems when integrating this approach into a live

tag recommendation setting, in which runtime and memory consumption are crucial

2https://twitter.com/
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Figure 2.4: Example of hashtags in Twitter (retrieved 07-July-2017). The interface
allows for searching tweets based on a given hashtag, in this example “#recsys”.

factors [Kowald and Lex, 2015].

2.2.2 Hashtag Recommendations

Hashtags are freely-chosen keywords starting with the hash character “#” to an-

notate, categorize and contextualize Twitter posts, which are also known as tweets

[Kowald et al., 2017b]. In contrast to social tags, which are mainly used to index

resources for later retrieval, hashtags have a more conversational nature and are

used to filter and direct content to certain streams of information [Huang et al.,

2010, Romero et al., 2011]. This process is illustrated in Figure 2.4, in which tweets

are searched based on the hashtag “#recsys” to receive tweets related to the research

area of recommender systems.

There is already a large body of research available that focuses on the recom-
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mendation of hashtags in Twitter. One illustrative example is the work presented

in [Godin et al., 2013], in which hashtag recommendations are provided by catego-

rizing tweets into general topics using LDA-based topic modeling. The approach

then recommends the hashtags that best fit the topics of a new tweet. The authors

evaluate their approach using a qualitative study, in which they ask persons if the

recommended hashtags describe the topics of a tweet and could be used to semanti-

cally enrich it. In 80% of the cases, they provide a suitable hashtag from a selection

of five possibilities. Other similar approaches using topic models are presented in

[She and Chen, 2014, Wang et al., 2014, Xu et al., 2015, Efron, 2010]. Moreover,

a related algorithm based on a hashtag classification scheme is proposed in [Jeon

et al., 2014].

The most notable work in the context of hashtag recommendations is proba-

bly the content-based SimRank approach presented in [Zangerle et al., 2011] and

[Zangerle et al., 2013]. The authors use a content-based similarity statistic to cal-

culate similarities between tweets and identify suitable hashtags based on these

similarity scores. They show that SimRank improves prediction accuracy by around

35% compared to a popularity-based approach. In [Kywe et al., 2012], a personal-

ized extension of SR is presented, in which the authors combine it with user-based

Collaborative Filtering. Apart from that, a content-based hashtag recommendation

algorithm for hyper-linked tweets is proposed in [Sedhai and Sun, 2014].

Related research has studied temporal effects on hashtag usage, for instance in

the context of popular hashtags in Twitter [Lin and Mishne, 2012, Lehmann et al.,

2012, Tsur and Rappoport, 2012, Ma et al., 2012]. For example, in [Ma et al.,

2012], the authors aim to predict if a specific hashtag will be popular on the next

day. By formulating this task as a classification problem, they find that both content

features (e.g., the topic of the hashtag) and context features (e.g., the users who used

the hashtags) are effective features for popularity prediction. A similar approach is

presented in [Yang and Leskovec, 2011], in which the authors uncover the temporal

dynamics of online content (e.g., tweets) by formulating a time series clustering

problem. One of the very few examples of a time-aware hashtag recommendation

approach is the recently proposed algorithm described in [Harvey and Crestani,

2015].

The authors extend the content-based SimRank approach [Zangerle et al., 2011]

with a personalization technique by means of Collaborative Filtering and further
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consider the temporal relevance of hashtags. To account for this temporal relevance,

they divide the hashtags into two categories: “organizational” ones, which are used

over a long period of time and “conversational” ones, which are used only during a

short time span (e.g., for a specific event).

In Chapter 7 of this thesis, a cognitive-inspired hashtag recommendation al-

gorithm is presented, which builds upon BLLAC+MPr and thus, incorporates the

activation equation of the cognitive architecture ACT-R.

2.3 Summary

In this chapter, the research related to this thesis was presented. This included

research on social tagging and tag recommendations. With respect to social tag-

ging in general, the motivation and the underlying cognitive processes behind social

tagging were discussed. Here, two types of tagging models can be distinguished: (i)

the personal tagging model, and (ii) the collaborative tagging model. Apart from

that, research has shown that the way users choose tags for annotating resources

strongly corresponds to processes in human memory and its cognitive structures,

which underpins the relevance of this thesis.

With respect to tag recommendations, three types of current state-of-the-art

algorithms exist: (i) content-based approaches, (ii) folksonomy-based approaches,

and (iii) cognitive-inspired approaches. The algorithm proposed in this thesis con-

tributes to the small body of research conducted in the area of cognitive-inspired

approaches. Moreover, there is currently a lot of interest in hashtag recommendation

algorithms, which is investigated in detail in Chapter 7 of this thesis.

In the next chapter, insights from related work will be used to propose a method-

ology, which is used to tackle the four research questions of this thesis.
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Chapter 3

Methodology

“Effective and meaningful evaluation of recommender systems is

challenging.” [Herlocker et al., 2004]

The aim of this chapter is to present the methodology that is used to answer

the research questions of this thesis. Therefore, common practice in research on rec-

ommender systems is followed to build on an offline evaluation study design. This

means that publicly available data collections (see Section 3.2) are used in order

to study the relation between activation processes in human memory and tagging

behavior of users on a large scale (Research Question 1, “How are activation pro-

cesses in human memory influencing the tag reuse behavior of users in social tagging

systems?”). Additionally, these data collections are used to conduct an offline tag

recommender study (see Section 3.4) to address Research Question 2, “Can the

activation equation of the cognitive architecture ACT-R, which accounts for activa-

tion processes in human memory, be exploited to develop a model for predicting the

reuse of tags?”, and Research Question 3, “Can a tag prediction model based on

the activation equation be expanded with tag imitation processes in order to improve

tag recommendations in real-world folksonomies?”. For addressing Research Ques-

tion 4, “Can a tag prediction model based on the activation equation be expanded

with tag imitation processes in order to improve tag recommendations in real-world

folksonomies?”, data collections from Twitter are used as described in Chapter 7.

Parts of this chapter have been published in P2 [Kowald and Lex, 2016] (Section

3.2), P5 [Trattner et al., 2016] (Sections 3.3, 3.2 and 3.4.2), P8 [Kowald and Lex,

2015] (Sections 3.2, 3.4.1 and 3.4.2) and P6 [Kowald et al., 2014a] (Section 3.5).
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Figure 3.1: Schematic illustration of the methodology used in this thesis to conduct
the four proposed experiments. Therefore, the TagRec framework supports vari-
ous data collections, tag recommendation algorithms and a consistent evaluation
method.

3.1 Experiments

In order to address the four research questions of this thesis, four experiments were

conducted:

• Experiment 1: Analyzing the influence of activation processes in human mem-

ory on tag reuse (see Chapter 4).

• Experiment 2: Designing and evaluating a cognitive-inspired algorithm for tag

reuse prediction (see Chapter 5).

• Experiment 3: Implementing and evaluating a hybrid approach for tag recom-

mendations in real-world folksonomies (see Chapter 6).

• Experiment 4: Utilizing and evaluating the approach for recommending hash-

tags in Twitter (see Chapter 7).

These experiments are based on a common methodology, which is visualized in Fig-

ure 3.1. As shown, this methodology consists of three main parts: (i) data collections

(see Section 3.2), (ii) tag recommendation algorithms (see Section 3.3), and (iii) a

consistent evaluation method (see Section 3.4). All three parts are supported by the

TagRec tag recommendation evaluation framework (see Section 3.5). Since TagRec

is open-source software, this facilitates the reproducibility of the experiments.

43



Please note that methodological aspects, which specifically address Experiment

4, are described in Chapter 7.

3.2 Data Collections

In this section, the data collections analyzed in this thesis are described. This

includes descriptions of the social tagging systems from which the datasets have

been gathered, the applied preprocessing steps and the final dataset statistics.

This section is based on P2 [Kowald and Lex, 2016], P5 [Trattner et al., 2016]

and P8 [Kowald and Lex, 2015]. Please note that the Twitter data collections are

described in Section 7.2.

3.2.1 Social Tagging Systems

For the purpose of this thesis and to foster reproducibility, investigations focused on

the six well-known social tagging systems Flickr, CiteULike, BibSonomy, Delicious,

LastFM and MovieLens. The publicly available datasets gathered from these sys-

tems have also been used in many of the related works in tag-based recommender

systems and can be seen as the state-of-the-art benchmarking datasets [Jäschke

et al., 2007, Doerfel and Jäschke, 2013].

Furthermore, these systems do not only differ in terms of their domain type

(i.e., images, URLs, citations, music and movies) and size but also in terms of their

folksonomy type: (i) narrow, (ii) mixed, and (iii) broad (see [Kowald and Lex, 2016]).

In a broad folksonomy, typically, many users annotate a particular resource, whereas

in a narrow folksonomy only the user who has uploaded the resource is permitted

to apply tags to it [Helic et al., 2012]. A mixed folksonomy is a folksonomy that

cannot be strictly assigned to the narrow or broad case (i.e., typically only a few

users annotate a particular resource).

With respect to tag recommendation methods already utilized in these systems,

most of them only use very simple methods based on tag popularity (i.e., recom-

mend the most frequently used tags of the target user and / or target resource).

The only system, which uses a more sophisticated method is BibSonomy, in which

the FolkRank algorithm [Hotho et al., 2006] is integrated, which ranks tags based

on the well-known PageRank statistic adapted to folksonomies. Thus, an unbi-
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ased evaluation of this thesis’ approaches is ensured since neither time-based nor

cognitive-inspired tag recommendation algorithms are already implemented in these

social tagging systems.

Narrow Folksonomies

In a narrow folksonomy, only the user who has uploaded the resource is permitted

to apply tags to it. In this thesis, the narrow folksonomy Flickr is analyzed.

Flickr. Flickr1 is an image hosting and sharing platform, which also offers online

community elements. The Flickr dataset used in this thesis was crawled and pro-

vided by the University of Koblenz2 within the Tagora EU project3. The dump

from 2010-January-07 contains 28,153,045 bookmarks, 319,686 users, 28,153,045 re-

sources, 1,607,879 tags, and 112,900,000 tag assignments.

Mixed Folksonomies

Mixed folksonomies are networks that cannot be strictly assigned to the narrow or

broad case. In this thesis, datasets from CiteULike, BibSonomy and Delicious are

used for evaluation.

CiteULike. CiteULike4 is a scientific reference management system, which gives

free access to their data to researchers for non-commercial uses5. The whole data

dump from 2015-February-03 consists of 4,658,570 bookmarks, 92,374 users, 3,589,546

resources, 899,056 tags and 19,062,426 tag assignments.

BibSonomy. The dataset of the social bookmark and publication sharing system

BibSonomy6 is freely available and can be downloaded for scientific purposes7. From

the 2015-January-01 dump, we utilized all tags assigned to bookmarks and references

(i.e., bibtex), which resulted in 772,112 bookmarks, 10,180 users, 683,482 resources,

199,594 tags and 2,981,038 tag assignments.

1http://www.flickr.com/
2https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Research/DataSets/

PINTSExperimentsDataSets/
3http://www.tagora-project.eu/
4http://www.citeulike.org/
5http://www.citeulike.org/faq/data.adp
6http://www.bibsonomy.org/
7http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
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Delicious. The dataset of the social bookmarking Web service Delicious8 is freely

available for scientific purposes via the University of Koblenz (see Flickr dataset).

The dump from 2010-January-07 contains 47,208,747 bookmarks, 532,924 users,

17,262,480 resources, 2,481,698 tags and 140,126,586 tag assignments.

Broad Folksonomies

In a broad folksonomy, typically many users annotate a particular resource. Two

examples of such folksonomies are LastFM and MovieLens.

LastFM. LastFM 9 is a social Web portal for browsing, annotating and discovering

music. The social tagging dataset of LastFM10 was published by GroupLens Re-

search11 in the course of 2nd International Workshop on Information Heterogeneity

and Fusion in Recommender Systems (HetRec 2011)12. The dump from 2011-May-12

consists of 71,062 bookmarks, 1,892 users, 12,522 resources, 9,748 tags and 186,474

tag assignments. It has to be noted that this is not a complete dataset of LastFM

but a crawl of 1,892 users and its metadata in the system.

MovieLens. MovieLens is a movie recommender system developed by GroupLens

Research (see LastFM). The 10m movie-rating dataset of MovieLens has become one

of the most utilized datasets for research on recommender systems. For this thesis, a

subset of this dataset was used, in which only users with tagging data are included13.

The tagging data dump from 2009-January-05 contains 55,484 bookmarks, 4,009

users, 7,601 resources, 15,237 tags and 95,580 tag assignments.

3.2.2 Dataset Preprocessing

In the course of this thesis, three methods for dataset preprocessing were taken into

account: (i) sampling, (ii) p-core pruning, and (iii) tag cleaning.

8http://www.delicious.com/
9http://www.last.fm/

10http://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-2k.zip
11http://grouplens.org/
12http://ir.ii.uam.es/hetrec2011/
13http://files.grouplens.org/datasets/movielens/ml-10m.zip
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Sampling

To reduce computational effort, a dataset sampling technique proposed by [Gem-

mell et al., 2009] has been applied to the very big Flickr, CiteULike and Delicious

datasets. Thus, for Flickr and Delicious, 3% of the user profiles (i.e., all the book-

marks of these users) and for CiteULike, 15% of the user profiles were randomly

selected. According to [Gemmell et al., 2009], when following this pruning method,

experiments on larger dataset samples (or even the whole datasets) provide nearly

identical trends in the algorithmic results. A similar behavior was shown in [Trat-

tner et al., 2016], where multiple samples were drawn from the datasets that all

provided almost the same recommender evaluation results.

p-core Pruning

In order to avoid a biased evaluation and to simulate a real-world folksonomy setting,

no p-core pruning methods have been applied to the datasets as suggested by [Doerfel

and Jäschke, 2013, Doerfel et al., 2016]. This p-core pruning is an iterative process,

where in each iteration all resources, tags and users are deleted that occur less than

p times in a dataset. This algorithm terminates when no more tag assignments can

be deleted, which ensures that all resources, tags and users can be found at least p

times in the remaining core [Batagelj and Zaveršnik, 2002]. Based on this definition,

it becomes clear that even a small p-core of 2 would delete a lot of bookmarks and

thus, substantially distort the underlying distribution of the datasets. Simulating

a real-world folksonomy setting is especially important for the development of live

recommender services [Kowald and Lex, 2015].

Tag Cleaning

Since automatically generated tags affect the performance of the tag recommender

algorithms, all of these tags were removed from the datasets (e.g., no-tag, import,

etc.). Apart from that, all tags have been decapitalized. To follow common practice

in tag recommender research, more sophisticated tag cleaning methods, such as

stemming, have not been applied (see [Krestel and Fankhause, 2010]).
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Folksonomy Dataset |U | |R| |T | |Y | |B| |B|/|U | |B|/|R|

Narrow Flickr 9,590 856,755 125,119 3,328,590 856,755 89.338 1.000

Mixed

CiteULike 18,474 811,175 273,883 3,446,650 900,794 48.760 1.110

BibSonomy 10,179 683,478 201,254 2,986,396 772,108 75.853 1.129

Delicious 15,980 963,741 184,012 4,266,206 1,447,267 90.567 1.501

Broad
LastFM 1,892 12,522 9,748 186,474 71,062 37.559 5.674

MovieLens 4,009 7,601 15,238 95,580 55,484 13.839 7.299

Table 3.1: Summary of the real-world folksonomy datasets used in this thesis. Here,
|U | is the number of users, |R| is the number of resources, |T | is the number of tags,
|Y | is the number of tag assignments and |B| is the number of bookmarks/posts
in the datasets. The datasets are sorted from the narrowest one to the broadest
one, where the degree of narrowness is given by the average number of bookmarks
assigned to a resource (i.e., |B| / |R|).

3.2.3 Dataset Statistics

The final dataset statistics after all preprocessing steps are shown in Table 3.1.

Based on the number of bookmarks, the biggest dataset is Delicious, whereas the

smallest one is MovieLens. The same is true for the average number of bookmarks

per user, where the highest number (around 91) can be found in Delicious and the

smallest one (around 14) in MovieLens.

Interestingly, the highest narrowness degree (i.e., the average number of book-

marks per resource, |B|/|R|) is available in MovieLens. Based on this narrowness

degree, the datasets can also be categorized into the three folksonomy types (i.e.,

narrow, mixed and broad) discussed in this thesis.

3.3 Tag Recommendation Algorithms

A rich set of 20 folksonomy-based tag recommendation algorithms were chosen,

implemented and evaluated in the course of this thesis. The algorithms were selected

based on their popularity in the community, performance and novelty (see also

[Marinho et al., 2011, Balby Marinho et al., 2012]). A summary of the algorithms

and their relation to the factors of interest of this thesis (i.e., frequency, recency,

semantic context and social influences, see Chapter 4) is shown in Table 3.2. Please

note that ACu, BLL, BLLAC and BLLAC+MPr, which have been developed in the

course of this thesis, are not described in this section but in Chapters 5 and 6.
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Algorithm Frequency Recency Semantic Context Social Influence
MP x
MPu x
MPr x
MPu,r x x
CF x x
APR x x x
FR x x x
LDA x x
FM x x x
PITF x x x
MRu x
GIRP x x
GIRPTM x x x
3L x x
3LT x x x
3LT+MPr x x x x
ACu x
BLL x x
BLLAC x x x
BLLAC+MPr x x x x

Table 3.2: Overview of the 20 algorithms evaluated in this thesis. The algorithms
are assigned to the factors of tag usage frequency, recency, semantic context and
social influences. Please note that novel algorithms that have been developed in the
course of this thesis are visualized in bold.

Additionally, Table 3.3 at the end of this section presents an overview of the

hyperparameters of the algorithms as used in the experiments. This section is based

on P5 [Trattner et al., 2016]. Please also note, that the algorithms for hashtag

recommendations are described in Section 7.5.1.

3.3.1 Frequency-Based Algorithms

Frequency-based tag recommender algorithms are solely based on tag popularity.

These approaches are highly computationally efficient but neglect other factors such

as temporal effects.

49



MostPopular (MP)

This approach recommends for any user u ∈ U and any resource r ∈ R the same set

of tags T̃ (u, r). This set of tags is weighted by the frequency in all tag assignments

Y [Jäschke et al., 2008]:

T̃k(u, r) =
k

argmax
t∈T

(|Yt|) (3.1)

MP is a completely unpersonalized method but has the advantage that it is able

to provide tag suggestions for cold-start users and resources (i.e., users or resources

without any tagging data available).

MostPopularu (MPu)

The most popular tags by user approach suggests the most frequent tags in the tag

assignments of the user Yu [Jäschke et al., 2008]:

T̃k(u, r) =
k

argmax
t∈Tu

(|Yt,u|) (3.2)

MPu typically provides good results in narrow folksonomy settings, where the tag-

ging process is solely influenced by the individual behavior.

MostPopularr (MPr)

The most popular tags by resource algorithm is the resource-based equivalent to

MPu and weights the tags based on their frequency in the tag assignments of the

resource Yr [Jäschke et al., 2008]:

T̃k(u, r) =
k

argmax
t∈Tr

(|Yt,r|) (3.3)

Since MPr incorporates the tags already assigned to the target resource r, it provides

good results in broad folksonomy settings, where a lot of bookmarks are available

for each resource.
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MostPopularu,r (MPu,r)

This algorithm is a mixture of the most popular tags by user and resource ap-

proaches:

T̃k(u, r) =
k

argmax
t∈Tu∪Tr

(β|Yt,u|+ (1− β)|Yt,r|) (3.4)

The β parameter can be used to balance the influence of the user and the resource

components [Jäschke et al., 2008]. However, for the experiments of this thesis, it

was set to .5 to give equal importance to both components.

3.3.2 Collaborative Filtering

Collaborative Filtering (CF) is one of the most frequently used algorithms in the

area of recommender systems [Schafer et al., 2007]. There are two variants of it,

user-based CF, which is based on user similarities, and resource-based CF, which

is based on resource similarities. In the course of this thesis, both variants were

implemented and evaluated but user-based CF provided better results in almost all

settings. Thus, only results for user-based CF are reported in this thesis.

User-Based Collaborative Filtering (CF)

User-based CF algorithms aim to find similar users for the target user u and rec-

ommend items of these so-called neighbors. [Marinho and Schmidt-Thieme, 2008]

described how the classic Collaborative Filtering (CF) approach can be used for tag

recommendations. Since folksonomies have ternary relations (i.e., users, resources

and tags), the classic CF approach cannot be applied directly. Thus, the neigh-

borhood Nu of a user u is formed based on the tag assignments in the user profile

Yu. Furthermore, in CF-based tag recommendations only the subset Vr of users

that have tagged the active resource r are taken into account when calculating the

user neighborhood. The set of k recommended tags can then be determined based

on the tags used by the users in this neighborhood [Marinho and Schmidt-Thieme,

2008, Jäschke et al., 2007]:

T̃k(u, r) =
k

argmax
t∈TNu

(
∑
v∈Nu

sim(Yu, Yv) · δ(v, r, t)) (3.5)
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where δ(v, r, t) = 1 if (v, r, t) ∈ Y and 0 otherwise. The only variable parameter here

is the number of users in the neighborhood, which has to be set in advance. For the

experiments, a neighborhood size |Nu| of 20 was used as suggested in related work

[Gemmell et al., 2009]. Other values for |Nu| were tested but CF has not generated

significant higher values of accuracy when setting |Nu| > 20.

There are different ways to calculate the similarity sim(Yu, Yv) between two users

u and v. For the experiments, the simple Jaccard similarity coefficient was used.

The Okapi BM25 similarity measure [Parra and Brusilovsky, 2009, Parra-Santander

and Brusilovsky, 2010, Xu et al., 2008] was tested as well but this one reached almost

the same results as Jaccard with a significantly higher computational effort.

Resource-Based Collaborative Filtering (CFr)

CFr is very similar to user-based CF but, in contrast to it, is based on resource

similarities. The set of most similar resources Sr for resource r is calculated based

on the resources that have been tagged by user u. More formally, this is given by:

T̃k(u, r) =
k

argmax
t∈TSr

(
∑
s∈Sr

sim(Yr, Ys) · δ(u, s, t)) (3.6)

where δ(u, s, t) = 1 if (u, s, t) ∈ Y and 0 otherwise. As in the case of user-based

CF, the neighborhood size |Sr| is set to 20 and the similarity between resources is

calculated using the Jaccard coefficient.

3.3.3 Graph-Based Algorithms

Graph-based tag recommender approaches incorporate the graph structure of the

folksonomy to calculate tag recommendations. In the course of this thesis, two

graph-based methods have been developed and evaluated, (i) Adapted PageRank

and (ii) FolkRank. Since FolkRank provided better results than Adapted PageRank

in the settings evaluated, only the results of FolkRank are reported.

Adapted PageRank (APR)

[Hotho et al., 2006] adapted the well-known PageRank algorithm [Page et al., 1999]

in order to rank the nodes within the graph structure of a folksonomy. This is

52



based on the idea that a resource is important if it is tagged with important tags by

important users. Therefore, the folksonomy has to be converted into an undirected

graph where the set of nodes s is the disjoint union of all users U , resources R and

tags T : s = U ∪ R ∪ T . The co-occurrences of users and resources, users and tags,

and resources and tags are treated as weighted edges in this graph and can also be

represented as an adjacency matrix A. The update of the weightings is done using

the following formula where �p is a preference vector and d is a variable to set its

impact [Hotho et al., 2006]:

�w ← dA�w + (1− d)�p (3.7)

For recommending tags, the preference vector �p is used to give higher weights to

the target user and resource of the recommendation task. While all other users and

resources get a weight of 1, they get a weight of 1 + |U | and 1 + |R| [Jäschke et al.,

2007].

FolkRank (FR)

The FolkRank algorithm is an extension of the APR approach that was also proposed

by [Hotho et al., 2006]. This extension gives a higher importance to the preference

vector �p using a differential approach, where �w(0) is the weighting vector calculated

using the APR algorithm with �p = 1 and �w(1) is the result with a �p-setting as

described above. Taken togehter, �w is given by:

�w = �w(1) − �w(0) (3.8)

The FR version used in this thesis is based on an open-source Java implementation

provided by the University of Kassel14. In this implementation, the preference vector

weight d is set to .7 and the maximum number of iterations l is set to 10 [Jäschke

et al., 2007].

3.3.4 Factorization Models

Two algorithms based on factorization models were implemented and evaluated

in the course of this thesis: First, Latent Dirichlet Allocation (LDA) and second,

14http://www.kde.cs.uni-kassel.de/code
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Pairwise Interaction Tensor Factorization (PITF). Since PITF has established itself

as the leading method for tag recommendations, it is also one of the most important

baselines for BLLAC+MPr. Factorization Machines (FM) have also been evaluated

in the course of this thesis but PITF always provided better results. Thus, only

results for LDA and PITF are reported.

Latent Dirichlet Allocation (LDA)

LDA is a probability model that helps to find latent topics for documents where

each topic is described by words in these documents [Krestel et al., 2009]. This can

be formalized as follows:

P (ti|d) =
Z∑

j=1

(P (ti|zi = j) · P (zi = j|d)) (3.9)

Here P (ti|d) is the probability of the ith word for a document d and P (ti|zi = j)

is the probability of ti within the topic zi. P (zi = j|d) is the probability of using a

word from topic zi in the document. The number of latent topics Z is determined

in advance and defines the level of granularity. The LDA results for this thesis were

calculated for Z = 1000 topics.

When using LDA for tag recommendations, documents are either users or re-

sources described by tags. This means that based on the tag vectors of the users

and resources, these entities can also be represented with the topics identified by

LDA. The LDA-based tag recommender suggests then the top-k tags associated with

these topics. LDA was implemented using the Java framework Mallet15 with Gibbs

sampling and 2000 iterations as suggested in the framework documentation and by

related work (e.g., [Krestel et al., 2009]). Moreover, only topics with a minimum

probability value of .001 were considered in order to reduce noise.

Pairwise Interaction Tensor Factorization (PITF)

This approach proposed by [Rendle and Schmidt-Thieme, 2010] is an extension

of Factorization Machines (FM) [Rendle, 2010] that explicitly models the pairwise

interactions between users, resources and tags. PITF determines a prediction score

15http://mallet.cs.umass.edu/topics.php
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s(u, r, t) based on factorizations of these relationships:

s(u, r, t) =

kU∑
f

ûT
u,f · t̂

U
t,f +

kR∑
f

r̂Tr,f · t̂
R
t,f +

kT∑
f

ûR
u,f · r̂

U
r,f (3.10)

where kU , kR and kT are the dimensions of factorization. The PITF results presented

in this thesis were calculated using the open-source C++ tag recommender frame-

work provided by the University of Konstanz16. The dimensions of factorization kU ,

kR and kT were set to 256, the learning rate α was set to .01, the regularization

constant λ was set to .0 and the number of iterations l was set to 50 as suggested

by the framework documentation.

Additional experiments with factors of 64, 128 and 512, and with more and

less than 50 iterations were conducted but across all datasets, the setting of 256

factors and 50 iterations showed almost always the best results. More specifically, a

number of factors less than 256 decreased the results significantly whereas a number

of factors higher than 256 did not result in any higher estimates while varying the

number of iterations. The same is true for α and λ.

3.3.5 Time-Based Algorithms

With respect to time-based algorithms, the GIRPTM approach proposed by [Zhang

et al., 2012] is the most prominent one in the field of tag recommendations. Further-

more, this one is especially of interest for this thesis since in contrast to BLLAC+MPr,

GIRPTM models the time component using an exponential function rather than a

power function. Thus, besides PITF, GIRPTM is the most important baseline of

this thesis. Additionally, a simple “most recent tags” approach was utilized.

MostRecentu (MRu)

MRu recommends the k most recently used tags of user u. It is formally given by

[Campos et al., 2014]:

T̃k(u, r) =
k

argmax
t∈Tu

(time(Yt,u)) (3.11)

16http://www.informatik.uni-konstanz.de/rendle/software/tag-recommender/
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where time(Yt,u) is the timestamp of the most recent assignment of tag t by user u.

Temporal Tag Usage Patterns (GIRP)

This time-dependent tag-recommender algorithm was presented by [Zhang et al.,

2012] and is based on the frequency and the temporal usage of a user’s tag assign-

ments. In contrast to the BLL and BLLAC approaches presented in this thesis,

GIRP models the temporal tag usage with an exponential function rather than a

power function, which can be formalized as follows:

s(u, r, t) = dfu,t,p · (d
l
u,t,p)

−d
f
u,t,p ·

Yt,u∑
t′∈Yu

Yt′,u

(3.12)

where dfu,t,p denotes the distance from the current bookmark index p to the first

bookmark index f (i.e., 1) and dfu,t,p denotes the distance from p to the last bookmark

index l (i.e., p - 1) for user u and tag t. This term is multiplied with the relative

tag frequency of t used by u to account for the factor of tag frequency (i.e., MPu).

GIRP with Tag Relevance to Resource (GIRPTM)

This is an extension of the GIRP algorithm [Zhang et al., 2012] using the relative

tag frequency of t for the target resource r (i.e., MPr). This is achieved using a

linear combination in the same way as also done in the BLLAC+MPr approach of

this thesis:

T̃k(u, r) =
k

argmax
t∈Tu∪Tr

(β · s(u, r, t) + (1− β)
Yt,r∑

t′∈Yr

Yt′,r

) (3.13)

where β was set to .5 to give equal weights to both components.

3.3.6 Cognitive-Inspired Algorithms

Three cognitive-inspired algorithms have been utilized for the evaluation of this

thesis. In contrast to BLLAC+MPr, these methods incorporate another type of

data, namely category information by means of LDA topics. In this thesis, only the

results of the best performing approach (i.e., 3LT+MPr) are reported.
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The main disadvantage of these three algorithms compared to BLLAC+MPr is

that they rely on the computationally expensive calculation of LDA topics since

social tagging datasets typically do not provide category information.

3Layers (3L)

The 3L tag recommender algorithm is based on a mechanism from MINERVA2,

a computational theory of human categorization [Hintzman, 1984], to process a

network constituted by a input, hidden and output layer. In contrast to other

approaches, 3L incorporates not only tagging data but also category information in

form of latent topics (i.e., calculated by means of LDA with Z = 1000 topics). The

prediction score s(u, r, t) for 3L is given by [Seitlinger et al., 2013]:

s(u, r, t) =
l∑

i=1

(Li,t · Ai) (3.14)

where Li,t is an entry in the lexical tag matrix, which indicates if tag t has been

used by user u in bookmark i. Ai is an activation value, which reflects the Cosine-

similarity between the semantic topic vector of resource r and the resource tagged

in bookmark i.

Time-Based 3Layers (3LT)

3LT is a time-dependent extension of 3L. Similar to BLLAC , the time component is

calculated using the BLL equation of [Anderson and Schooler, 1991]. Formally, 3LT

is given by [Kowald et al., 2015b]:

s(u, r, t) =
l∑

i=1

(Li,t ·BLL(t) · Ai) (3.15)

where BLL(t) is the BLL value of tag t for user u.
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Algorithms Parameters Value
CF |Nu| 20
FR d .7
FR l 10
LDA, 3LT+MPr Z 1000
PITF kU , kR, kT 256
PITF l 50
PITF α .01
PITF λ .0
MPu,r, GIRPTM, 3LT+MPr, BLLAC+MPr β .5
3LT+MPr, BLL, BLLAC, BLLAC+MPr d .5

Table 3.3: Hyperparameter settings of the algorithms as used in the experiments.
These parameters were chosen based on values available in the literature, own ex-
perimentation and framework descriptions and were used across all six datasets
to ensure generalizable results, which should also hold across a number of other
datasets.

Time-Based 3Layers with MPr (3LT+MPr)

3LT+MPr combines 3LT with MPr using the relative tag frequency of t for r [Kowald

et al., 2015b]:

T̃k(u, r) =
k

argmax
t∈Tu∪Tr

(βs(u, r, t) + (1− β)
Yt,r∑

t′∈Yr

Yt′,r)
(3.16)

where β was set to .5 to give equal weights to both components.

3.3.7 Hyperparameters

The hyperparameters of the algorithms, as used in the experiments, are summarized

in Table 3.3. The hyperparameters were chosen based on values available in the

literature and the experiments conducted in the course of this thesis. The parameters

were not optimized towards the given datasets although the author understands

that this is a necessary precondition for arriving at an optimal performance of each

algorithm.

However, the aim of this thesis is not so much in optimizing the algorithmic

performance but to arrive at generalizable, stable and traceable conclusions that

hold across a number of datasets. The author would be concerned that by optimiz-
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ing parameters for concrete dataset characteristics, generalizability, stability and

traceability would be compromised.

3.4 Evaluation Method

In this section, the evaluation method for conducting the tag recommender study

of this thesis is described. This includes the evaluation protocol (Section 3.4.1)

and metrics (Section 3.4.2), which are used to conduct the four experiments of this

thesis. This section is based on P5 [Trattner et al., 2016] and P8 [Kowald and Lex,

2015].

3.4.1 Evaluation Protocol

In order to evaluate the tag recommender approaches, a leave-one-out method as

proposed by related work (e.g., [Jäschke et al., 2007]) is used. Thus, to split the

datasets into training (i.e., Btrain) and test sets (i.e., Btest), each user’s most recent

bookmark in time is determined and removed from the original dataset. The now

reduced version of the original dataset is used for training, and the newly created

one for testing the algorithms. Each bookmark in the test set consists of a collection

of one or more tags applied by a target user to a target resource, which are further

referred as relevant tags. In order to make sure that at least one bookmark per user

is available for training, only users with more than one bookmark are considered for

the test set. Thus, users with less than two bookmarks (i.e., non-cold-start users)

are only represented in the training set.

This protocol is a plausible simulation of a real-world environment since it uses

the most recent bookmark of each user for testing instead of a random one. Thus,

the protocol retains the chronological order of a user’s bookmarks, which makes it a

suggested offline evaluation procedure for time-based recommender systems [Campos

et al., 2014, Song et al., 2008]. Additionally, the leave-one-out strategy ensures that

each user with more than one bookmark is represented in the test set, which would

not be the case for other methods such as 80/20 splits (i.e., using randomly 80% of

the data for training and the rest for testing).
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3.4.2 Evaluation Metrics

In order to validate the approaches in a real-world folksonomy setting, a rich set of

metrics have been applied to measure recommendation accuracy, diversity, novelty

and computational costs. These metrics have been chosen based on related literature

[Gunawardana and Shani, 2009, Konstan, 2004, Baeza-Yates et al., 1999].

Recommendation Accuracy

Recommendation accuracy is typically measured using the three metrics Recall,

Precision and F1-score.

Recall (R). Recall is calculated as the number of correctly recommended tags

divided by the number of relevant tags [Van Rijsbergen, 1974]:

R@k =
1

|Btest|

∑
u,r∈Btest

|T̃k(u, r) ∩ T (u, r)|

|T (u, r)|
(3.17)

where T̃k(u, r) denotes the k recommended tags and T (u, r) the list of relevant tags

of a user u for resource r that is determined by the bookmark in the test set Btest.

Thus, Recall is a measure for the completeness of the recommendations and rises

with the number of recommended tags k.

Precision (P). Precision is calculated as the number of correctly recommended

tags divided by the number of recommended tags k [Van Rijsbergen, 1974]:

P@k =
1

|Btest|

∑
u,r∈Btest

|T̃k(u, r) ∩ T (u, r)|

k
(3.18)

Based on this definition, Precision is a measure for the usefulness of the recommen-

dations and falls with the number of recommended tags k. Recall and Precision are

typically presented in the form of Recall / Precision plots for k = 1 - 10.

F1-score (F1). F1-score combines Recall and Precision into one score [Van Rijs-

bergen, 1974]:

F1@k = 2 ·
P@k ·R@k

P@k +R@k
(3.19)
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F1-score can be defined as the harmonic mean of Recall and Precision and thus,

reaches its highest value typically at k = 5 (i.e., F1@5)17.

Recommendation Ranking

Since Recall, Precision and F1-score only take the proportion of correctly identi-

fied recommendations into account, metrics that also measure the ranking of these

recommendations have been defined.

Mean reciprocal rank (MRR). MRR is the sum of the reciprocal ranks of all

relevant tags in the list of recommended tags [Rawashdeh et al., 2013]:

MRR@k =
1

|Btest|

∑
u,r∈Btest

1

|T (u, r)|

∑
t∈T (u,r)

1

rank(t)
(3.20)

This means that a high MRR is achieved if relevant tags occur at the beginning of

the recommended tag list.

Mean average precision (MAP). MAP is an extension of the Precision metric

that additionally looks at the ranking of recommended tags. MAP is described in

the subsequent formula, where Bi is 1 if the recommended tag at position i is among

the relevant tags and 0 otherwise [Rawashdeh et al., 2013]:

MAP@k =
1

|Btest|

∑
u,r∈Btest

1

|T (u, r)|

k∑
i=1

Bi · Pu,r@i (3.21)

where Pu,r@i depicts Precision@i calculated for user u and resource r.

Normalized Discounted Cumulative Gain (nDCG). nDCG is another ranking-

dependent metric that not only measures how many tags can be correctly predicted

but also takes the position of the tags in the list of recommended tags with length

k into account. The nDCG metric is based on the Discounted Cumulative Gain

(DCG), which is given by [Järvelin and Kekäläinen, 2000]:

DCG@k =
k∑

i=1

(
2Bi − 1

log2(1 + i)
) (3.22)

17http://www.kde.cs.uni-kassel.de/ws/dc09/evaluation
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where Bi is 1 if the i
th recommended tag is a relevant one and 0 otherwise. nDCG@k

is calculated as DCG@k divided by the ideal DCG value iDCG@k, which is the

highest possible DCG value that can be achieved if all the relevant tags would be

recommended in the correct order. It is given by [Järvelin and Kekäläinen, 2000]:

nDCG@k =
1

|Btest|

∑
u,r∈Btest

(
DCG@k

iDCG@k
) (3.23)

All three metrics MRR, MAP and nDCG rise with the number of recommended tags

k and thus, are reported for k = 10 in this thesis.

Recommendation Diversity and Novelty

Recommender evaluation strategies have mainly focused on recommendation accu-

racy and ranking, and neglect other important factors that a recommender system

should be aware of [Kowald and Lex, 2015]. Therefore, recent research on tag rec-

ommender evaluation has promoted the importance of diversity and novelty in tag

recommendations [Belém et al., 2016].

Average IntraList Distance (AILD). Tag recommender diversity is measured

by means of the AILD metric as defined in [Vargas and Castells, 2011]. According

to this metric, the dissimilarity of two recommended tags ti and tj is given by the

relative difference by means of the Jaccard coefficient between the sets of resources

to which the tags were applied (i.e., dist(ti, tj)). More formally, this is given by:

AILD@k =
1

|Btest|

∑
u,r∈Btest

2

k2 − k

k∑
i=1

k∑
j=i+1

dist(ti, tj) (3.24)

This means that a set of tags is diverse if the tags were used for different sets of

resources [Belém et al., 2013].

Average Inverse Popularity (AIP). The novelty of the recommended tag list is

calculated using the AIP metric. As defined by [Belém et al., 2013], a recommended

tag ti is novel if it was not previously used to annotate the target resource r.

AIP@k =
1

|Btest|

∑
u,r∈Btest

1

K

k∑
i=1

1

log(1 + i)
· IFFi (3.25)
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where IFFi is the Inverse Feature Frequency defined as IFFi = log( Yr+1
Yt,r+1

) [Belém

et al., 2011] and K is a normalization factor based on the maximum IFF score

IFFmax. Thus, the lower the popularity of a tag for a resource, the higher its

novelty. Both AILD and AIP are reported for k = 10 recommended tags.

Computational Costs

Since recommendations should not only be accurate, diverse and novel but also

be provided in (near) real-time, the computational costs in terms of runtime and

memory consumption need to be determined.

Runtime. The runtime of the algorithms was measured in two ways. First, the

runtime complexity was determined by means of O-notations and second, the run-

time was measured in milliseconds [ms] for the complete workflow of the algorithms

(i.e., including training and testing).

Memory. The memory consumption of the algorithms was measured in Megabytes

[MB]. Since the memory consumption typically varies over the workflow of an al-

gorithm, the maximum value of memory consumption over time is reported in this

thesis. Runtime and memory were measured on an IBM System x3550 M4 server

with one Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz and 256GB RAM using

Ubuntu 12.04.2 and Java 1.8.

3.5 The TagRec Framework

In this section, a tag recommendation evaluation framework termed TagRec is pre-

sented, which is one of the core contributions of this thesis. This section is based

on P6 [Kowald et al., 2014a] and P7 [Kowald et al., 2017a].

In order to ensure reproducibility, all four experiments mentioned in Section

3.1 have been conducted by using the TagRec evaluation framework, which was

developed in course of this thesis. Thus, TagRec implements all dataset processing

methods, algorithms, evaluation protocols and metrics described in this chapter.

In general, the purpose of TagRec is to provide the research community with

a standardized framework that supports all steps of the development and evalua-

tion process of tag-based recommendation algorithms in a reproducible way. This

includes methods for data processing, data modeling and recommender evaluation.
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Figure 3.2: System architecture of the TagRec framework. The framework consists
of five main components: (i) Data Processing, (ii) Data Model & Analytics, (iii)
Recommendation Algorithms, (iv) Evaluation Engine, and (v) Recommendation
Results [Kowald et al., 2017a].

Thus, TagRec aims (i) to increase the transparency in tag-based recommender

research (see also [Said and Belloǵın, 2014]), and (ii) to decrease the workload as-

sociated with developing novel tag-based recommender algorithms by providing re-

searchers with an easy-to-use and easy-to-extend framework. To date, TagRec has

supported the recommender development and evaluation processes in two large-

scale European research projects, which have been published in 17 research papers

[Kowald et al., 2017a].

Fully implemented in the Java programming language, TagRec is open-source

software that can be freely downloaded from GitHub18 for scientific purposes. Figure

3.2 shows the system architecture of TagRec, which consists of five main components

briefly described in the remainder of this section.

3.5.1 Data Processing

TagRec offers various methods for data preprocessing: (i) parsing and processing of

social tagging datasets (see Section 3.2) into the frameworks’s internal data format,

(ii) p-core pruning (see Section 3.2.2), (iii) training / test set splitting (see Section

18https://github.com/learning-layers/TagRec/
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3.4.1), and (iv) creating Latent Dirichlet Allocation (LDA) [Krestel and Fankhause,

2010] topics for category-based algorithms such as 3Layers [Seitlinger et al., 2013,

Kowald et al., 2015b].

3.5.2 Data Model and Analytics

The data model of TagRec is generated from a folksonomy that represents the book-

marks (i.e., the combination of user-id, resource-id, timestamp and assigned tags)

in a dataset. Furthermore, the data model is fully object-oriented, and provides

distinct classes and powerful methods for modeling and analyzing the relationship

and interactions between users, resources and tags. This includes for example the

number of times a specific tag has been assigned to a target resource and the time

since the last usage of a specific tag in the tag assignments of a target user.

Apart from that, the data model of TagRec is connected to Apache Solr19 and

thus, enables fast access to content-based data of entities.

3.5.3 Recommendation Algorithms

Along with the state-of-the-art approaches for tag-based recommendations (see Sec-

tion 3.3), TagRec contains a set of algorithms based on models derived from human

cognition to predict tags in folksonomies. All algorithms implement a common in-

terface, which makes it easy to develop and integrate new approaches. Moreover,

connectors to external libraries based on factorization machines20 are offered to use

frameworks in other programming languages such as C++.

3.5.4 Evaluation Engine

The evaluation engine quantifies the quality of implemented recommendation strate-

gies based on training / test set splits of a dataset with respect to standard metrics

known from the area of recommender systems (see Section 3.4.2). Moreover, the

evaluation engine offers data post-processing functionality that can, for example,

limit the evaluation to users with a given minimum or maximum number of book-

marks or to users with certain tagging behavior (e.g, categorizers versus describers

19http://lucene.apache.org/solr/
20https://cms.uni-konstanz.de/informatik/rendle/software/tag-recommender/
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[Körner et al., 2010b]).

For evaluating an algorithm, TagRec needs to be provided with three parame-

ters, where the first one specifies the algorithm, the second one specifies the dataset

directory and the third one specifies the file name of the dataset sample. For exam-

ple, java jar tagrec.jar cf bib bib sample runs Collaborative Filtering on a sample of

the BibSonomy dataset. The calculated evaluation metrics are then either written

to a “metrics” file or printed to the console.

3.5.5 Recommendation Results

As indicated in Figure 3.2, the recommendation results generated by the different

algorithms can be forwarded either to the evaluation engine or directly to a client

application (e.g., a graphical user interface).

3.6 Summary

In this chapter, the methodology, which is used to conduct the four experiments

for answering the research questions of this thesis, was presented. Since this thesis

builds on an offline study design, this included descriptions of the evaluated social

tagging datasets, evaluation protocol, evaluation metrics and tag recommendation

algorithms.

With respect to the data collections, the narrow folksonomy Flickr, the mixed

folksonomies CiteULike, BibSonomy and Delicious, and the broad folksonomies

LastFM and MovieLens are analyzed. In order to split these datasets into training

and test sets, a time-based leave-one-out evaluation protocol is used.

Based on these splits, a rich set of evaluation metrics is utilized in order to

measure the prediction accuracy, ranking, diversity, novelty and computational

costs of tag recommendations. These metrics are then used for comparisons of

20 tag recommendation algorithms evaluated in course of this thesis. This includes

simple frequency-based methods, classic Collaborative Filtering, graph-based algo-

rithms, factorization models as well as modern time-based and cognitive-inspired

approaches.

One of the core contributions of this thesis was the development of the TagRec

evaluation framework, which was used to conduct the four experiments of this thesis.
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Thus, TagRec implements all dataset processing methods, algorithms, evaluation

protocols and metrics described in this thesis.

In the next chapter of this thesis, parts of the presented methodology are used

to address Research Question 1, “How are activation processes in human memory

influencing the tag reuse behavior of users in social tagging systems?”.
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Chapter 4

Research Question 1: The

Influence of Activation Processes

in Human Memory on Tag Reuse

“What memory is inferring is something we call the need probability,

which is the probability that we will need a particular memory trace

now.” [Anderson and Schooler, 1991]

In this chapter, the influence of activation processes in human memory on the

reuse of tags is analyzed. Thus, it is the aim of this chapter to shed light on Research

Question 1, “How are activation processes in human memory influencing the tag

reuse behavior of users in social tagging systems?”, which is a prerequisite for the

design of the cognitive-inspired tag recommendation algorithm BLLAC+MPr. To do

so, at first the importance of activation processes in human memory for social tagging

is discussed (see Section 4.1). This discussion leads to three factors of interest that

influence the information access in human memory: (i) usage frequency, (ii) usage

recency, and (iii) semantic context. Using the six datasets presented in Chapter

3, the influence of these three factors on tag reuse is evaluated (see Section 4.2).

Within this evaluation, it is also validated if the factor of recency can be better

modeled via a power or an exponential function.

Parts of this chapter have been published in P2 [Kowald and Lex, 2016] (Section

4.2.1), P3 [Kowald et al., 2014b] (Section 4.1), P4 [Kowald et al., 2015a] (Section

4.1) and P5 [Trattner et al., 2016] (Sections 4.1 and 4.2.2).
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4.1 Activation Processes in Human Memory

Human memory is very adaptive to make appropriate memory units quickly available

and thus, tunes the activation of its units to statistical regularities of the environment

(e.g., [Anderson and Schooler, 1991, Cress et al., 2013]). This means that the more

useful a memory unit has been and the stronger it is related to the current context

(i.e., environmental cues), the higher is its activation level and hence, probability

of being retrieved. This probability of being retrieved is also referred as “need

probability” in human memory theory [Anderson and Schooler, 1991].

The aim of Research Question 1 is to analyze if these activation processes also

determine a user’s tagging behavior and if the need probability of a tag can be de-

rived from estimates of its activation in the user’s memory. According to [Anderson

et al., 2004], the activation of a memory unit (e.g., a tag) should depend on at least

two variables: (i) the general usefulness of this memory unit (see Section 4.1.1), and

(ii) its associations to the current semantic context (e.g., to elements of the resource

to be tagged - see Section 4.1.2). This means that a memory unit is more likely

to be brought into consciousness, if it was important in the past and if it fits the

current topic the user is dealing with.

This section is based on P3 [Kowald et al., 2014b], P4 [Kowald et al., 2015a]

and P5 [Trattner et al., 2016].

4.1.1 General Usefulness of a Memory Unit / Tag

The issue of how human memory ensures a fast and automatic information retrieval

from its huge long-term memory has been extensively examined by memory psy-

chology (e.g., [Anderson et al., 2004]). Essentially, human memory is tuned to the

statistical structure of an individual’s environment and keeps available those mem-

ory units that have been generally useful in the past. It has been shown that this

general usefulness depends on how frequently and recently (i.e., the time since the

last usage) the memory unit has been needed in the past (i.e., the need probability)

[Anderson and Schooler, 1991].

Social tagging provides an illustrative example of the strong interplay between

external, environmental and internal memory structures (e.g., [Held et al., 2012]).

For instance, the development of generative models of social tagging demonstrated

that the probability of a tag i being applied can be modeled through the preferential
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attachment principle (e.g., [Dellschaft and Staab, 2008]): the higher the frequency

of i’s past occurrence in the tagging environment is, the more likely it will be reused

by an individual.

Additionally, the same probability is also a function of i’s recency, which is the

time elapsed since i last occurred in the environment [Cattuto et al., 2007]. Based

on this, it can be assumed that these two factors (i.e., usage frequency and recency)

also influence the reuse of tags [Trattner et al., 2016].

4.1.2 Usefulness of a Memory Unit / Tag in the Current

Semantic Context

The current semantic context is given by any contextual element that is important

in the current situation (e.g., related tags). Through learned associations based on a

spreading activation mechanism in human memory [Anderson, 1983], the contextual

elements are connected with a memory unit i (e.g., a tag) and can increase i’s

activation depending on the strength of association between i and these contextual

elements.

To simplify matters, in the case of social tagging, the current semantic context is

defined as the tags associated with a given resource r due to previous tag assignments

of other users. Thus, the strength of association can be derived from the number of

co-occurrences between i and these resource tags [Kowald et al., 2015a].

Thus, in the next section, the assumption is evaluated if a strong relation be-

tween activation processes in human memory and the reuse of social tags exists.

Specifically, in Section 4.2.1, it is evaluated if the three factors of interest that have

been discussed in this section really influence the reuse of tags in social tagging

systems.

4.2 Influencing Factors of Tag Reuse

In this section, the evaluation results of analyzing the influence of activation pro-

cesses in human memory on tag reuse are presented. The goal of this evaluation is

to address Research Question 1, “How are activation processes in human memory

influencing the tag reuse behavior of users in social tagging systems?”. To achieve

this goal, the evaluation is split in two parts: firstly, the influence of tag frequency,
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recency and current semantic context on tag reuse is discussed and secondly, the

question is addressed if a power-law or exponential distribution is better suited for

modeling the time-dependent decay of tag reuse.

This section is based on P2 [Kowald and Lex, 2016] and P5 [Trattner et al.,

2016].

4.2.1 The Influence of Tag Frequency, Recency and Seman-

tic Context on Tag Reuse

In order to quantify the influence of usage frequency, recency and semantic context

on the reuse of tags, the tag assignments of the first n−1 bookmarks in the training

set (i.e., reflecting the past) of a user u were compared with the tag assignments of

u’s nth bookmark in the test set (i.e., reflecting the future). For detailed descriptions

of the datasets and the dataset splitting method, please refer to Sections 3.2 and

3.4.1.

In the remainder of this section, it is described how this procedure was conducted

for each individual factor (i.e., tag frequency, tag recency and semantic context).

Tag Frequency

In the case of tag frequency, for each tag t of user u, the number of times t was

used by u in the training set was counted (i.e., the frequency value). Then, it was

determined if t was also reused by u in the test set (i.e., the reuse probability of

t by u). This procedure was repeated for the tags of each user u ∈ U . Finally,

to obtain a statistically reliable value, all tags with the same frequency value were

pooled together and the mean reuse probability of these tags was calculated and

reported.

In Figure 4.1, the mean tag reuse probability is plotted over the tag frequency

on a log-log scale. Additionally, the linear regression model on this data (i.e., y =

k ∗ x + d) is visualized and the corresponding slope k is provided. Across all six

datasets, it can be seen that k > 0, which means that the more frequently a tag was

used in the past, the higher its reuse probability.

71



(a) Flickr (k=.490) (b) CiteULike (k=.708)

(c) BibSonomy (k=.733) (d) Delicious (k=.703)

(e) LastFM (k=.427) (f) MovieLens (k=.838)

Figure 4.1: The influence of usage frequency on tag reuse. The more frequently a
tag was used in the past (k > 0), the higher its reuse probability.

Tag Recency

In the case of tag recency, a similar procedure as for the tag frequency was followed.

Thus, the days elapsed since the last use of tag t by user u were calculated. Then,

as in the case of tag frequency, the tags with the same recency values were pooled

together and the mean reuse probability was calculated and reported.

In Figure 4.2, the mean tag reuse probability is plotted on a log-log scale with

the corresponding linear regression model, but this time not over the tag frequency
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(a) Flickr (k=-1.074) (b) CiteULike (k=-.755)

(c) BibSonomy (k=-.565) (d) Delicious (k=-1.415)

(e) LastFM (k=-.659) (f) MovieLens (k=-.243)

Figure 4.2: The influence of usage recency on tag reuse. The more recently a tag
was used in the past (k < 0), the higher its reuse probability.

but the tag recency in days. Here, a different behavior as for tag frequency can be

observed since slope k < 0 across all six datasets. This means that more recently a

tag was used in the past, the higher its reuse probability.

One interesting finding in this respect is that the plot of LastFM differs from

the plots of the other datasets in the fact that there are only a few tags with small

tag recency values available. This could be a consequence of the crawling strategy

of the LastFM dataset sample since, in contrast to the other datasets, this one is
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(a) Flickr (-) (b) CiteULike (k=.565)

(c) BibSonomy (k=.492) (d) Delicious (k=.728)

(e) LastFM (k=.558) (f) MovieLens (k=.448)

Figure 4.3: The influence of the current semantic context on tag reuse. The more
similar a tag is to tags in the current semantic context (k > 0), the higher its reuse
probability. Please note that there is no semantic context in Flickr since in this
narrow folksonomy only own images can be tagged.

not a complete dump of all tag assignments in the system but a crawl of the tagging

data of specific users (see Section 3.2).
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Current Semantic Context

As already mentioned in this chapter, in this thesis, the current semantic context for

social tagging is defined as the tags that are already associated with the currently

tagged resource r. Thus, to identify the influence of the semantic context on tag

reuse, a tag co-occurrence value between t and the tags assigned to r was determined

by means of a spreading activation mechanism (see Section 4.1.2). Then, as in the

case of tag frequency and recency, the tags with the same tag co-occurrence values

were pooled together and the mean reuse probability was calculated and reported.

Figure 4.3 shows the mean tag reuse probability and its linear regression model

plotted over the tag similarity with the semantic context on a log-log scale. Similarly

as in the case of tag frequency, slope k > 0, which means that the more similar a

tag is to tags in the current semantic context, the higher its reuse probability. It

has to be noted that there is no semantic context in the Flickr dataset since here

only users who have uploaded a resource (i.e., an image) are allowed to tag it (i.e.,

Flickr is a narrow folksonomy, see Section 3.2).

4.2.2 Power-Law Versus Exponential Recency Decay

This section addresses the question as to whether the effect of recency decays ac-

cording to a power or an exponential function. The same question has already been

investigated in a different context (i.e., re-occurrence of words in New York Times

headings) in [Anderson and Schooler, 1991]. The authors found that the power

function produces a better fit. Up to now, research on time-aware recommender

systems has not applied a power function to model the temporal tagging patterns

of users. Surprisingly, state-of-the-art approaches utilized only linear or exponential

distributions (e.g., [Huang et al., 2014, Zheng and Li, 2011, Zhang et al., 2012, Yin

et al., 2011b, Yin et al., 2011b, Campos et al., 2014]).

It is therefore the aim of this section to investigate as to whether the results

obtained by [Anderson and Schooler, 1991] generalize to social tagging environments.

This is achieved via a traditional least squares fitting test and a more sophisticated

likelihood ratio test.
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R2 Flickr CiteULike BibSonomy Delicious LastFM MovieLens
Exponential .587 .306 .220 .756 .330 .111
Power .802 .672 .495 .873 .342 .437

Table 4.1: Power-law versus exponential recency decay using a least squares fitting
test. Across all six datasets, except of LastFM, the R2 estimates clearly speak in
favor of a power-law distribution for explaining the time-dependent decay of tag
reuse.

Least Squares Fitting

The traditional least squares fitting test is a rather easy way to check for power-law

and exponential distributions in data, and was also used by [Anderson and Schooler,

1991] to check for re-occurrences of words in New York Times headings. This test

compares the least squares fitting (i.e., R2 values) of the linear regression in the log-

log transformed data (see Figure 4.2) and the log-linear transformed data. In cases

where the R2 value is larger for the log-log transformed data, a power distribution

produces a better fit and in cases where the R2 value is larger for the log-linear

transformed data, an exponential distribution is better suited to explain the data.

Table 4.1 shows the R2 estimates for both cases and for all six datasets analyzed

in this thesis. It can be seen that the R2 values are generally higher in the power-

law case than in the exponential one, which speaks in favor of the power function

for explaining the time-dependent decay of tag reuse. This is especially the case

for Flickr, CiteULike, BibSonomy, Delicious and MovieLens. Only in the case of

LastFM, the difference between the exponential and the power-law fit is not clear

and thus, needs to be investigated in more detail.

Likelihood Ratio Test

[Clauset et al., 2009] has shown that the least squares-based method can lead to

misinterpretations and thus, suggests a likelihood ratio-based test for determining

distributions in empirical data. To validate the results of the least squares fitting

test, the python package powerlaw [Alstott et al., 2014], which implements the

method of [Clauset et al., 2009], is used. As shown in Figure 4.4, in all datasets,

except of LastFM, the estimated power function provides a better fit for the data

than an exponential function. To test for statical significance, the likelihood ratio

R between the two observed functions and the empirical data was calculated. Here,
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(a) Flickr (R=114, xmin=2) (b) CiteULike (R=122, xmin=28)

(c) BibSonomy (R=48, xmin=39) (d) Delicious (R=65, xmin=50)

(e) LastFM (R=-2, xmin=18,313,200) (f) MovieLens (R=13, xmin=17)

Figure 4.4: Power-law versus exponential recency decay using a likelihood ratio test.
In all datasets, except of LastFM, a power function provides a better fit than an
exponential one (R > 0 with p < .001).
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R > 0 means that the data is statistically more likely to follow a power distribution

rather than an exponential one. As presented in Figure 4.4 this is the case in all

datasets, except of LastFM.

As already mentioned, the crawling strategy of the LastFM dataset sample is

different than for the other datasets since LastFM is not a complete dump of all tag

assignments in the system (see Section 3.2). Hence, it can be assumed that this is

the reason for the large xmin value in the case of LastFM, which produces also the

negative R value. Furthermore, it should be noted that the decay in Flickr is more

pronounced than, for example, in BibSonomy, which might imply that scientific

topics in BibSonomy (e.g., research on recommender systems) do not change as fast

as topics of photos of different leisure events (e.g., pictures of the last weekend).

From this pattern of results, it can be concluded that the findings revealed by

[Anderson and Schooler, 1991] generalize to social tagging environments: the effect

of recency on the reuse probability of tags is more likely to follow a power-law

distribution than an exponential one.

4.3 Summary

In this chapter, the influence of activation processes in human memory on the reuse

of tags was analyzed. Based on human memory theory, the usefulness of a memory

chunk (e.g., a tag) depends on at least three factors: (i) past usage frequency, (ii)

past usage recency (i.e., the time since the last usage), and (iii) the current semantic

context. Thus, it has been the aim of this chapter to evaluate the assumption of

this thesis that there exists a strong relation between activation processes in human

memory and the reuse of social tags (i.e., Research Question 1, “How are activation

processes in human memory influencing the tag reuse behavior of users in social

tagging systems?”).

With respect to this research question, the results presented in this chapter lead

to the following four findings:

1. The more frequently a tag was used in the past, the higher its probability of

being reused.

2. The more recently a tag was used in the past, the higher its probability of

being reused.
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3. The more similar a tag is to tags in the current semantic context, the higher

its probability of being reused.

4. The effect of recency on the reuse probability of tags is more likely to follow a

power-law distribution than an exponential one.

Based on these findings, the strong relation between activation processes in hu-

man memory and the use of tags in social tagging systems is verified, which posi-

tively answers Research Question 1. Additionally, these findings are a prerequisite

for designing a cognitive-inspired approach for tag reuse predictions and tag recom-

mendations. More specifically, the activation equation of the cognitive architecture

ACT-R [Anderson, 1996, Anderson et al., 2004] integrates the factors of frequency,

recency and semantic context using a power function and a spreading activation-

based model to determine the usefulness of chunks in human memory.

Hence, the next chapter of this thesis discusses if this equation can be utilized for

tag reuse predictions in order to address Research Question 2, “Can the activation

equation of the cognitive architecture ACT-R, which accounts for activation processes

in human memory, be exploited to develop a model for predicting the reuse of tags?”.
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Chapter 5

Research Question 2: Designing a

Cognitive-Inspired Algorithm for

Tag Reuse Prediction

“Activation-Level = Base-Level + Contextualized-Priming.”

[Anderson, 1996]

This chapter presents a cognitive-inspired algorithm for tag reuse prediction,

which is one of the core contributions of this thesis. Based on the findings high-

lighted in Chapter 4, which showed that the reuse of tags in social tagging systems

highly corresponds to activation processes in human memory, the activation equa-

tion of the cognitive model ACT-R (see Section 5.1) is utilized to design a novel tag

reuse prediction algorithm termed BLLAC (see Section 5.2). Furthermore, BLLAC is

evaluated (see Section 5.2.3) using the methodology presented in Chapter 3. These

evaluation results contribute to Research Question 2, “Can the activation equation

of the cognitive architecture ACT-R, which accounts for activation processes in hu-

man memory, be exploited to develop a model for predicting the reuse of tags?”,

which provides the basis for the implementation of a hybrid approach for tag rec-

ommendations in real-world folksonomies (see Chapter 6).

Parts of this chapter have been published in P2 [Kowald and Lex, 2016] (Section

5.2.3), P3 [Kowald et al., 2014b] (Section 5.2), P4 [Kowald et al., 2015a] and P5

[Trattner et al., 2016] (Sections 5.1 and 5.2).
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5.1 Formalizing the Activation of Memory Units

In this section, background information on the formalization of the activation of

memory units is presented. This includes a short description of the cognitive ar-

chitecture ACT-R as well as the activation equation, which is part of ACT-R and

also the basis for the tag reuse prediction algorithm presented in this thesis (i.e.,

BLLAC). This section is based on P4 [Kowald et al., 2015a] and P5 [Trattner et al.,

2016].

5.1.1 The Cognitive Architecture ACT-R

ACT-R, which is short for “Adaptive Control of Thought – Rational”, is a cognitive

architecture developed by John Robert Anderson [Anderson, 1996, Anderson et al.,

2004, Anderson et al., 1997]. ACT-R deals with defining and formalizing the basic

cognitive operations of the human mind (e.g., the access on information in human

memory).

Figure 5.1 schematically illustrates the main architecture of ACT-R. In general,

ACT-R differs between short-term memory modules, such as the working memory

module, and long-term memory modules, such as the declarative and procedural

memory modules. Via a sensory register (i.e., the ultra short-term memory), en-

coded information is passed to the short-term working memory module, which in-

teracts with the long-term memory modules. In case of the declarative memory,

(i) the encoded information can be stored, and (ii) already stored information can

be retrieved. In case of the procedural memory, the information can be matched

against stored rules that can lead to executions [Wheeler, 2014].

Thus, declarative memory holds factual knowledge (e.g., what something is) and

procedural memory consists of sequences of actions (e.g., how to do something).

This thesis focuses on the declarative part, which contains the well-known activation

equation of human memory.

5.1.2 The Activation Equation

Consider a user retrieving a unit from her memory, such as a tag that she has used

previously. To derive its usefulness in the current context, the activation level Ai

of this memory unit i has to be determined. According to the following activation
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Figure 5.1: Schematic illustration of the cognitive architecture ACT-R. In general,
ACT-R differs between short-term memory modules (i.e., working memory) and
long-term memory modules (i.e., declarative and procedural memory). This figure
was adapted from [Wheeler, 2014].

equation, which is part of the declarative module of the cognitive architecture ACT-

R, the usefulness of i is given by:

Ai = Bi +
∑
j

Wj · Sj,i (5.1)

The Bi component represents the base-level activation and quantifies the general

usefulness of a unit i by considering how frequently and recently it has been used

in the past. It is given by the base-level learning (BLL) equation:

Bi = ln(
n∑

j=1

t−d
j ) (5.2)
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where n is the frequency of the unit’s occurrences and tj is the recency (i.e., the time

in seconds since the jth occurrence of i). For example, if a user has applied the two

tags “recognition” and “recommender” with equal frequency but “recommender” has

dominated the user’s recent bookmarks, the equation predicts a higher activation

level for “recommender”. The exponent d accounts for the power-law of forgetting,

which means that each unit’s activation level caused by the jth occurrence decreases

in time according to a power function [Anderson et al., 2004].

The second component of Equation 5.1 represents the associative component

(i.e., the contextualized priming) that tunes the base-level activation of the unit i

to the current semantic context. The context is given by any contextual element

j important in the current situation (e.g., the tags “memory” and “recollection”).

Through learned associations, the contextual elements are connected with tag i

and can increase i’s activation depending on the weight Wj and the strength of

association Sj,i.

To simplify matters, the tags associated with a given resource r (due to previous

tag assignments of other users) are used as the contextual elements. The weight

Wj is derived from the number of times tag j has been assigned to resource r, and

Sj,i is derived from the number of co-occurrences between the tags i and j. The

next section contains a more detailed and formal description of all calculation steps

related to the task of predicting tag reuse.

5.2 A Tag Reuse Prediction Algorithm Based on

Activation in Human Memory

The analysis presented in Chapter 4 revealed that the three factors (i) tag frequency,

(ii) recency, and (iii) semantic context greatly influence the reuse probability of tags

in social tagging systems (see Research Question 1, “How are activation processes

in human memory influencing the tag reuse behavior of users in social tagging sys-

tems?”). Furthermore, it was shown that the factor of recency can be best modeled

by using a power-law distribution.

It was therefore decided to implement the activation equation [Anderson et al.,

2004] for predicting the reuse of tags and for addressing Research Question 2, “Can

the activation equation of the cognitive architecture ACT-R, which accounts for ac-
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tivation processes in human memory, be exploited to develop a model for predicting

the reuse of tags?”. This is achieved via three algorithms.

The first algorithm is termed BLL as it implements the BLL equation in the

form of a tag reuse prediction approach using the two factors of frequency and

recency. This approach should not only be able to outperform a solely frequency-

based method such as MPu [Jäschke et al., 2007] but also an alternative time-

dependent algorithm termed GIRP [Zhang et al., 2012], which models the temporal

decay of tag reuse using an exponential function rather than a power function.

Algorithms two (i.e., ACu) and three (i.e., BLLAC) use the associative component

of the activation equation to account for the current semantic context of tag usage.

While ACu solely implements this associative component, and thus accounts only

for the current semantic context, BLLAC combines it with the BLL equation to

integrate all three factors (i.e., frequency, recency and semantic context) via the

activation equation (see Equation 5.1).

This section is based on P2 [Kowald and Lex, 2016], P3 [Kowald et al., 2014b],

P4 [Kowald et al., 2015a] and P5 [Trattner et al., 2016].

5.2.1 Formalization

In this section, the formalization of the proposed tag reuse prediction algorithm

is presented by means of the activation equation. As indicated, this consists of a

base-level activation and an associative component.

BLL Equation

For each tag t in a user u’s training set Btrain, the base-level activation B(t, u) of t

in u’s set of tag assignments (i.e., Yu) was calculated. Thus, a reference timestamp

timestampu,ref , which is the timestamp of the most recent bookmark of user u in

seconds, was determined. In this respect, timestampu,ref corresponds to the most

recent timestamp of the user’s bookmark that has been selected for the test set Btest

(see Section 3.4.1).

Next, if j = 1 ... n indexes all tag assignments in Yu, the recency of a tag assign-

ment is given by timestampu,ref − timestampt,u,j. Hence, the base-level activation
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B(t, u) of tag t for user u is given by the BLL equation (see also Equation 5.2):

B(t, u) = ln(
n∑

j=1

(timestampu,ref − timestampt,u,j)
−d) (5.3)

where d is set to .5 based on [Anderson et al., 2004]. Please note that other d values

were also tested but this did not lead to better results in terms of recommender

accuracy and thus, the value from the literature was kept.

In order to map the values onto a range of 0 to 1 that sum up to 1, a softmax

function σTu(B(t, u)) as proposed in related work [McAuley and Leskovec, 2013]

was applied:

σTu
(B(t, u)) =

exp(B(t, u))∑
t′∈Tu

exp(B(t′, u))
(5.4)

where t′ is a tag in Tu, the set of tags used by user u in the past.

Activation Equation

To investigate not only the factors of tag frequency and recency but also the factor

of the current semantic context by means of an associative activation, the activation

equation (see Equation 5.1) has been implemented in form of:

A(t, u, r) = σTu
(B(t, u)) +

∑
c∈Tr

(|Yc,r| · S(c, t)) (5.5)

where the first part represents the base-level component by means of the BLL equa-

tion and the second part represents the associative component evoked by the asso-

ciative activation.

To calculate the variables of the associative activation (i.e., the contextualized

priming) to model a user’s current semantic context, the set of tags Tr assigned

by other users to the given resource r was incorporated. A user’s current semantic

context certainly consists of a greater variety of aspects, such as content words in

the title or in the page text of the resource. However, since not all social tagging

datasets contain title information or page text and other studies have convincingly

demonstrated the impact of a resource’s prominent tags on a user’s tagging behavior

(e.g., [Lorince and Todd, 2013]), it was decided to approximate the context by means

of other users’ tags.
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When applying the formula to a recommender system, related literature [Sig-

urbjörnsson and Van Zwol, 2008, Van Maanen and Marewski, 2009] suggests to use

a measure of normalized tag co-occurrence to represent the strength of an associa-

tion. Accordingly, the co-occurrence between two tags was defined as the number of

bookmarks in which both tags are included. To add meaning to the co-occurrence

value, the overall frequency of the two tags is also taken into consideration. This

is done by normalizing the co-occurrence value according to the Jaccard coefficient

following the approach described in [Sigurbjörnsson and Van Zwol, 2008]:

S(c, t) =
|Bc ∩Bt|

|Bc ∪Bt|
(5.6)

where S(c, t) is calculated as an association value between a tag t previously given

by the target user and a tag c that has been assigned to a resource of interest.

Based on a tag co-occurrence matrix that depicts the tag relations of an entire

dataset, information about how many times two tags co-occur (Bc∩Bt) in bookmarks

is retrieved and set into relation with the number of bookmarks in which at least

one of the two tags appear (Bc ∪ Bt). The attentional weight Wc of c was set to

the number of times c occurred in the tag assignments of the target resource (i.e.,

|Yc,r|).

Hence, the associative component in Equation 5.5 works in a similar way as

resource-based Collaborative Filtering in the tag recommender literature [Tso-Sutter

et al., 2008]. This means, that tags with a higher similarity to the target resource

(measured by tag co-occurrence) get a higher associative activation value than tags

with a lower similarity to the target resource (i.e., with a smaller usefulness in the

current semantic context).

Tag Reuse Prediction

For tag reuse predictions, the activation levels of a user u’s tags can be sorted in

order to identify the top-k tags for u bookmarking a resource r. In this respect,

three different tag prediction algorithms can be defined. The first one (i.e., BLL) is

given by:

T̃k(u, r) =
k

argmax
t∈Tu

(σTu
(B(t, u))︸ ︷︷ ︸
BLL

) (5.7)
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and calculates predictions based on the frequency and recency of u’s tags in the

past. The second one (i.e., ACu) is defined as:

T̃k(u, r) =
k

argmax
t∈Tu

(
∑
c∈Tr

(|Yc,r| · S(c, t))

︸ ︷︷ ︸
ACu

) (5.8)

where u’s tags are ranked according to their usefulness in the given semantic context

(i.e., based on co-occurrences with the tags of resource r). Finally, the third one

(i.e., BLLAC) implements the full activation equation via:

T̃k(u, r) =
k

argmax
t∈Tu

(σTu
(A(t, u, r))︸ ︷︷ ︸
BLLAC

) (5.9)

Hence, BLLAC combines the former two algorithms BLL and ACu into one approach.

5.2.2 Illustration

In order to further clarify how the equations have been applied to characterize a

user’s individual tagging history, two simple examples illustrated in Figures 5.2 and

5.3 are provided. This also aims at demonstrating the advantage of BLLAC over

conventional “most popular tags” approaches.

BLL Equation

The example in Figure 5.2 shows how the BLL equation provides a more differen-

tiated characterization of a user’s tagging pattern than the “most popular tags by

user” (i.e., MPu) approach. In this example, a user u applied a tag t three times (i.e.,

n = 3). It is assumed that she applied the tag ten, eight and seven days ago. The

three corresponding recency values are recency1 = 10, recency2 = 8 and recency3 =

7.

The recency of a tag t’s use was calculated by subtracting the timestamp of the

jth use of t from the timestamp of u’s most recent bookmark. Each of the three uses

of t activates the corresponding memory unit. In Figure 5.2, the upward directed

arrows symbolize this hypothesized activation. Due to the power-law of forgetting,

each activation decreases in time (represented by the sloping curves) and each of

the three recency values is raised by the power d = -.5 [Anderson et al., 2004].
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Present

tag t
recency3 = 7 days

Decay

tag t tag t

recency2 = 8 days

recency1 = 10 days

Activation

Past

��B(t,u)

Conventional "Most Popular Tags" approach
MP(t,u) = c(t) / |Yu | = 3 / |Yu | = 0.3 (if |Yu |=10)

BLL-based approach

B(t,u) = ln(�recencyj ) = ln(10-0.5 + 8-0.5 + 7-0.5) = 0.05

Figure 5.2: Illustration of the BLL equation. Example for applying the BLL equation
(i.e., the first component of the activation equation) to estimate the activation value
of a tag t and to show the advantage over the conventional “most popular tags by
user” (MPu) approach. This figure was taken from [Trattner et al., 2016] with
permission from Paul Seitlinger.

Finally, the base-level activation level of the memory unit for tag t is given by

summing the remaining effects of the three tag uses (i.e., ln(10−.5 + 8−.5 + 7−.5)),

resulting in the base-level activation of .05. To the contrary, a conventional “most

popular tags by user” (i.e., MPu) approach, only takes into account the tag’s usage

frequency and thus, treats every tag assignment the same, independent of the time

elapsed since its use. Given the user’s entire set of tag assignments Yu encompasses

10 assignments, this approach would yield a value of .3 (i.e., 3 / 10).

This should demonstrate that the BLL equation allows for a more differentiated

characterization of a user’s tagging history than MPu.
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t2

t1

Ranking after calculating the 
base level activation 

Ranking after calculating the 
base level + associative activation

Sc,t1

t2

t1

Wc

B(t2,u) A(t2,u,r)

t2

B(t2,u)

t1

Figure 5.3: Illustration of the activation equation. Example showing the impact of
the associative activation (i.e., the second component of the activation equation).
Please note that black filled nodes and unfilled nodes represent contextual and target
tags, respectively; their sizes represent their attentional weights Wc (in case of con-
textual tags) and activation (in case of the target tags t1 and t2). The edge length
represents the co-occurrence-based association strength Sc,t. Left panel: ranking
based on base-level activation B(t, u) not taking into account the contextual tags.
Right panel: refined ranking after considering the associative activation evoked by
contextual tags, resulting in the full activation A(t, u, r). This figure was taken from
[Trattner et al., 2016] with permission from Paul Seitlinger.

Activation Equation

In the example of Figure 5.3, the additional impact of the associative activation de-

fined by the second component of the activation equation is shown. The associative

activation is evoked by the current context (i.e., the tags assigned by preceding users

to the target resource – in the following called contextual tags).

The left panel of Figure 5.3 shows two target tags, t1 and t2 exhibiting different

base-level activation levels (represented by the circle size): t1 reaches a higher base-

level activation and thus, a higher ranking than t2. This relationship changes when

considering the influence of the contextual tags, as schematically visualized in the

right panel of Figure 5.3. These contextual tags are represented by the black nodes.

Depending on their weights Wj (represented by the size of the black-filled nodes)

and strength of association Sj,i (represented by the length of the edges), the contex-

tual tags spread additional associative activation to the target tags t1 and t2 (i.e.,

making them more easily available for retrieval and use). t2 is stronger associated
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with the contextual tags and thus, receives stronger associative activation than t1.

Summed up, it can be seen that t2 is assigned a higher ranking than t1 when

considering both, the base-level and associative activation by means of the full ac-

tivation equation.

5.2.3 Evaluation

The aim of this evaluation is to answer Research Question 2, “Can the activation

equation of the cognitive architecture ACT-R, which accounts for activation pro-

cesses in human memory, be exploited to develop a model for predicting the reuse

of tags?”. Thus, BLLAC is compared with algorithms representing its individual

components (i.e., MPu for frequency, MRu for recency and ACu for the semantic

context), combinations of its components (i.e., GIRP [Zhang et al., 2012] and BLL

for frequency and recency) and social influences (i.e., FolkRank (FR) [Hotho et al.,

2006]). Additionally, BLL is compared with GIRP in order to verify if a power

function is better suited to model the time-dependent decay of tag reuse than an

exponential one.

In Table 5.1, the results of this tag reuse prediction evaluation are shown. Across

all datasets and metrics, BLLAC provides higher accuracy and ranking estimates

than algorithms reflecting its individual components and combinations of its com-

ponents. In the narrow and broad settings, BLLAC even outperforms FR, which also

utilizes social influences by means of recommending other users’ tags. In contrast,

BLLAC uses other users’ tags solely for contextualized priming but just predicts the

reuse of the current user’s tags.

When further analyzing the results with respect to the folksonomy type of the

given social tagging system (i.e., narrow, mixed and broad folksonomies), three

different patterns of results can be observed. These observations are also summarized

in Table 5.2.

Narrow Folksonomies

In the narrow folksonomy Flickr, the semantic context (i.e, ACu) has no influence

since users are solely tagging their own images. The results show that frequency

(i.e., MPu) and especially recency (i.e., MRu) can be exploited to efficiently predict a

user’s tag reuse in this narrow setting. Furthermore, these factors even outperform
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Individual factors Combination Social

Folksonomy Dataset Metric MPu MRu ACu GIRP BLL BLLAC FR

Narrow Flickr

F1@5 .371 .464 - .455 .470 .470 .365

MRR .392 .506 - .488 .512 .512 .387

MAP .509 .671 - .647 .680 .680 .501

nDCG .569 .702 - .686 .711 .711 .561

Mixed

CiteULike

F1@5 .231 .236 .041 .243 .254 .259 .250

MRR .261 .284 .051 .287 .304 .312 .276

MAP .307 .333 .059 .335 .358 .367 .327

nDCG .367 .385 .069 .394 .413 .422 .392

BibSonomy

F1@5 .253 .252 .063 .262 .269 .280 .279

MRR .250 .249 .059 .262 .269 .278 .269

MAP .307 .307 .074 .323 .333 .346 .337

nDCG .371 .368 .090 .386 .396 .409 .408

Delicious

F1@5 .173 .179 .108 .190 .203 .243 .196

MRR .176 .201 .106 .204 .222 .261 .184

MAP .206 .235 .131 .238 .261 .312 .226

nDCG .267 .287 .158 .298 .318 .374 .292

Broad

LastFM

F1@5 .193 .189 .202 .198 .202 .251 .270

MRR .192 .195 .205 .203 .213 .260 .257

MAP .226 .228 .248 .239 .250 .312 .313

nDCG .292 .293 .302 .303 .313 .375 .399

MovieLens

F1@5 .077 .076 .077 .077 .079 .086 .153

MRR .156 .164 .156 .157 .168 .183 .243

MAP .159 .168 .160 .160 .172 .188 .253

nDCG .177 .183 .176 .177 .187 .203 .319

Table 5.1: Tag reuse prediction accuracy and ranking results of algorithms that (i)
reflect the individual factors of frequency (i.e, MPu), recency (i.e, MRu) and semantic
context (i.e., ACu), (ii) combine these factors (i.e., GIRP, BLL and BLLAC), and
(iii) utilize social influences (i.e, FR).

FR, the algorithm that also utilize social influences by means of recommending

popular tags of other users.

When combining frequency and recency, it can be seen that the accuracy of the

strong recency factor can only be slightly improved in the case of BLL, which models

the time component via a power function, and even decreases in the case of GIRP,

which builds on an exponential temporal decay function.
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Folksonomy Frequency Recency Semantic Context Combination Social
Narrow +/- + - +/- -
Mixed + + +/- + +/-
Broad +/- +/- + +/- +

Table 5.2: Summary of the tag reuse prediction accuracy results showing the per-
formance of the algorithms and their underlying factors with respect to the un-
derlying factors and the given folksonomy type. Please note that “+” indicates a
good performance, “+/-” indicates an average performance and “-” indicates a poor
performance of a factor / an approach in a specific setting.

Mixed Folksonomies

In the mixed folksonomies CiteULike, BibSonomy and Delicious, a good performance

for the factors of frequency and recency (i.e., they nearly reached the accuracy esti-

mates of GIRP and BLL), and an average one for the semantic context is observed.

Additionally, the results suggest that a combination of all three factors in the form

of BLLAC provides the highest accuracy estimates and outperforms FR.

Again, BLL (and thus, the power function) is apparently better suited to combine

frequency and recency than GIRP (and thus, the exponential function).

Broad Folksonomies

Interestingly, the algorithms in the broad folksonomies LastFM and MovieLens show

a completely different behavior. In these datasets, since there are a lot of tags

assigned by other users to the currently tagged resource, the semantic context has a

larger impact on the tag prediction accuracy than in the narrow and mixed settings.

Similarly to the narrow case, the combination of the factors only slightly improves

the accuracy of the individual factors. Due to a high number of average posts per

resource (5.674 for LastFM and 7.299 for MovieLens – see Table 3.1), FR that

recommends popular tags of other users as well, provides the best results in the

broad setting.

5.3 Summary

In this chapter, the design of a cognitive-inspired algorithm for tag reuse prediction

(i.e., BLLAC) was presented, which is one of the core contributions of this thesis.
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This algorithm implements the activation equation of the cognitive architecture

ACT-R to model (i) past tag usage frequency, (ii) past tag usage recency, and (iii)

the current semantic context using a power-law model. Furthermore, this algorithm

was evaluated with respect to reuse prediction accuracy and ranking in order to

shed light on Research Question 2, “Can the activation equation of the cognitive

architecture ACT-R, which accounts for activation processes in human memory, be

exploited to develop a model for predicting the reuse of tags?”.

With respect to this research question, the results presented in this chapter,

which are summarized in Table 5.2, lead to the following four findings:

1. BLL outperforms GIRP, which further underlines that the time-dependent de-

cay of tag reuse is better modeled using a power function than an exponential

one.

2. BLLAC provides higher accuracy and ranking estimates than algorithms re-

flecting its individual components and combinations of its components.

3. In the narrow and mixed folksonomy settings, BLLAC outperforms the well-

known FolkRank algorithm.

4. In the broad folksonomy setting, FolkRank provides the best results, which

shows the importance of incorporating social influences by means of imitating

popular tags of other users.

These findings show that the activation equation of the cognitive architecture

ACT-R can be exploited to predict the reuse of tags and thus, Research Question

2 can be positively answered. Furthermore, the strong results of the FolkRank

algorithm in broad folksonomy settings indicate the importance of incorporating

also social influences into the tag prediction and recommendation process by means

of imitating popular tags of other users.

Therefore, the next chapter of this thesis discusses if BLLAC can be extended

with social influences by means of tag imitation processes with the aim to contribute

to Research Question 3, “Can a tag prediction model based on the activation equation

be expanded with tag imitation processes in order to improve tag recommendations

in real-world folksonomies?”.
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Chapter 6

Research Question 3:

Implementing a Hybrid Approach

for Tag Recommendations in

Real-World Folksonomies

“Personalized recommendations will replace the navigation grid on

Netflix.” [Hunt, 2014]

This chapter describes the implementation process of a hybrid approach for tag

recommendations in real-world folksonomies termed BLLAC+MPr. This hybrid rec-

ommendation approach combines the tag reuse prediction algorithm BLLAC pre-

sented in Chapter 5, which implements the activation equation of the cognitive

architecture ACT-R, with tag imitation processes to not only account for the fac-

tors of (i) tag usage frequency, (ii) recency, and (iii) semantic context but also for

social influences by means of tag imitation processes (Section 6.1). BLLAC+MPr is

evaluated against various state-of-the-art tag recommendation algorithms (Section

6.2) to contribute to Research Question 3, “Can a tag prediction model based on the

activation equation be expanded with tag imitation processes in order to improve tag

recommendations in real-world folksonomies?”.

Parts of this chapter have been published in P4 [Kowald et al., 2015a] (Section

6.1,) P5 [Trattner et al., 2016] (Sections 6.1 and 6.2.2), P8 [Kowald and Lex, 2015]

(Section 6.2.1) and P9 [Kopeinik et al., 2016b] (Section 6.2.2).
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6.1 A Hybrid Tag Recommendation Approach

The findings presented in Chapter 5 showed that the activation equation of the

cognitive architecture ACT-R can be exploited to predict the reuse of tags via the

BLLAC approach (Research Question 2). Furthermore, the strong results of the

FolkRank (FR) algorithm [Hotho et al., 2006] in broad folksonomy settings indicated

the importance of incorporating also social influences into the tag prediction and

recommendation process by means of imitating popular tags of other users.

Therefore, in this section it is presented how BLLAC can be extended with social

influences by means of tag imitation processes in order to realize the hybrid tag

recommendation approach BLLAC+MPr (Research Question 3). This section is

based on P4 [Kowald et al., 2015a] and P5 [Trattner et al., 2016].

6.1.1 Incorporating Tag Imitation Processes

Research on social tagging [Floeck et al., 2010, Seitlinger and Ley, 2012, Seitlinger

et al., 2015b, Fu et al., 2010, Fu et al., 2009] has shown that a substantial variance

in a user’s tag choices can be explained by her tendency to imitate tags previously

assigned by other users to a resource. Furthermore, modeling this imitation process

allows recommending novel tags, which were not used by the current user in her

previous tagging history [Lorince and Todd, 2013, Lipczak, 2012].

In this thesis, tag imitation is realized by taking the most popular tags in the

tag assignments of the current resource (MPr) [Jäschke et al., 2007] into account:

T̃k(u, r) =
k

argmax
t∈Tr

(|Yt,r|) (6.1)

We have selected MPr over other methods like Collaborative Filtering (CF), which is

also able to suggest novel tags, because as mentioned before, users in social tagging

systems are more likely to directly imitate tags that have already been assigned to

a target resource. Additionally, this approach was also chosen by other researchers

in the field (e.g., [Zhang et al., 2012]).
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6.1.2 Combining Activation Processes in Human Memory

with Tag Imitation Processes

Finally, the top-k recommended tags for a given user u and resource r (i.e., T̃k(u, r))

based on the BLLAC+MPr algorithm are calculated via a linear combination:

T̃k(u, r) =
k

argmax
t∈Tu∪Tr

(β σTu
(A(t, u, r)︸ ︷︷ ︸
BLLAC

+(1− β)σTr
(|Yt,r|)

︸ ︷︷ ︸
BLLAC+MPr

) (6.2)

where β is used to weigh the two components, (i) the activation values A(t, u, r)

and (ii) the scores of the most popular tags of the target resource given by MPr.

The results presented in this thesis were calculated using β = .5, thus giving equal

weights to both components. Please also note, that both components are normalized

by the softmax function σ in order to ensure the same value ranges between 0 and

1 that sum up to 1 (see [McAuley and Leskovec, 2013]).

6.2 Tag Recommendation Evaluation

The aim of this section is to evaluate the BLLAC+MPr approach and thus, to answer

Research Question 3, “Can a tag prediction model based on the activation equation

be expanded with tag imitation processes in order to improve tag recommendations

in real-world folksonomies?”. Therefore six datasets are used that are gathered from

the real-world folksonomies Flickr, CiteULike, BibSonomy, Delicious, LastFM and

MovieLens (see Section 3.2.1). Apart from that, evaluation results in two additional

settings (i.e., the ECML PKDD Discovery Challenge 2009 and Technology Enhanced

Learning) are presented.

All the evaluation results presented in this section were calculated using the

TagRec framework (see Section 3.5) and were reported in P5 [Trattner et al., 2016],

P8 [Kowald and Lex, 2015] and P9 [Kopeinik et al., 2016b].

6.2.1 Evaluation in Real-World Folksonomies

It was important for the author of this thesis to benchmark the tag recommendation

algorithms in the unfiltered datasets without p-core pruning to avoid a biased eval-
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uation and to simulate a real-world folksonomy setting (see Section 3.2.2). This is

especially important for the development of live recommender services. The narrow-

ness degrees of the datasets used (see Section 3.2.3) justifies this approach since the

average number of bookmarks assigned to a resource is lower than 2 in four of the

six datasets (Flickr, CiteULike, BibSonomy and Delicious). This means that even a

small p-core of 2 would delete a lot of bookmarks and so, substantially distort the

natural structures of these datasets.

Regarding the evaluated algorithms (see Section 3.3), the simplest approaches

that are utilized in this experiment are the frequency-basedMostPopularr (MPr) and

MostPopularu,r (MPu,r) algorithms [Jäschke et al., 2007], and Collaborative Filtering

(CF) [Marinho and Schmidt-Thieme, 2008] with a neighborhood size of 20. As for

algorithms that apply latent factor models, two types of algorithms are chosen: (i)

Latent Dirichlet Allocation (LDA) [Krestel et al., 2009] with 1000 latent topics, and

(ii) Pairwise Interaction Tensor Factorization (PITF) [Rendle and Schmidt-Thieme,

2010] with 256 dimensions of factorization.

Another well-known tag recommender approach that was chosen for this exper-

iment is FolkRank (FR) [Jäschke et al., 2007]. With regard to time-dependent

tag recommenders, four algorithms are included: Temporal Tag Usage Patterns

(GIRPTM) [Zhang et al., 2012] that works in a more data-driven way and three

that are inspired by models of cognitive science. Apart from the two algorithms

proposed in this thesis (i.e., BLLAC and BLLAC+MPr), the 3LT+MPr approach is

used in this study, which incorporates category information by means of LDA topics

into the recommendation process [Seitlinger et al., 2013, Kowald et al., 2015b].

In Table 6.1, the evaluation results of this experiment are presented based on var-

ious metrics used to measure the performance of recommender systems (see Section

3.4.2). These results are also summarized in Table 6.5.

Tag Recommendation Accuracy

Tag recommendation accuracy is measured in Table 6.1 via F1 for k = 5, and

MRR, MAP and nDCG for k = 10. In general, these results indicate that the two

cognitive inspired algorithms BLLAC+MPr and 3LT+MPr were the best with regard

to recommender accuracy across all six datasets.

With respect to Research Question 3, this means that BLLAC+MPr is able to

outperform a set of state-of-the-art baseline algorithms such as CF, LDA, PITF and
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Metric MPr MPu,r CF LDA PITF FR GIRPTM 3LT+MPr BLLAC BLLAC+MPr

F
li
ck
r

F1@5 - .371 .453 .178 .350 .365 .455 .482 .470 .470
MRR - .392 .474 .184 .366 .387 .488 .525 .512 .512
MAP - .509 .631 .216 .469 .501 .647 .698 .680 .680
nDCG - .569 .666 .280 .535 .561 .686 .727 .711 .711
AILD - .789 .975 .980 .980 .980 .789 .670 .789 .789
AIP - - - - - - - - - -
Runtime [s] - 1 4,342 1,227 228,868 18,090 2 10,594 5 5
Memory [MB] - 4,672 8,488 9,652 2,502 9,190 4,974 6,942 6,053 6,053

C
it
eU

L
ik
e

F1@5 .042 .249 .231 .089 .178 .250 .262 .277 .259 .273
MRR .043 .277 .263 .086 .207 .276 .303 .321 .312 .319
MAP .054 .329 .311 .094 .233 .327 .359 .383 .367 .380
nDCG .063 .392 .359 .138 .294 .392 .420 .440 .422 .438
AILD .152 .916 .961 .991 .991 .991 .916 .893 .902 .916
AIP .142 .952 .960 .983 .991 .958 .953 .953 .985 .951
Runtime [s] 1 2 6,315 10,673 343,181 27,305 3 10,796 1,290 1,424
Memory [MB] 5,725 5,913 9,301 11,943 3,030 9,347 6,631 9,474 8,177 8,789

B
ib
S
on

om
y

F1@5 .068 .281 .260 .145 .215 .279 .291 .307 .279 .298
MRR .054 .268 .248 .143 .218 .269 .282 .298 .278 .289
MAP .073 .337 .310 .162 .257 .337 .356 .378 .346 .365
nDCG .091 .407 .369 .219 .327 .408 .425 .445 .409 .434
AILD .199 .916 .941 .990 .991 .991 .916 .889 .901 .916
AIP .182 .939 .954 .966 .973 .944 .940 .941 .976 .937
Runtime [s] 1 2 2,797 9,847 219,573 12,549 2 9,316 502 601
Memory [MB] 4,811 4,972 9,405 14,012 2,432 9,494 5,567 9,137 8,078 8,307

D
el
ic
io
u
s

F1@5 .135 .238 .243 .182 .199 .196 .261 .284 .243 .283
MRR .117 .232 .241 .171 .193 .184 .258 .291 .261 .290
MAP .153 .279 .296 .204 .229 .226 .314 .357 .312 .358
nDCG .187 .358 .356 .271 .302 .292 .393 .430 .374 .431
AILD .353 .968 .972 .999 .999 .999 .968 .946 .955 .968
AIP .256 .882 .874 .887 .895 .877 .873 .874 .938 .863
Runtime [s] 1 3 9,645 15,373 324,737 44,747 4 12,869 395 396
Memory [MB] 12,198 12,596 35,090 11,894 3,075 7,381 13,672 59,425 16,469 17,620

L
as
tF

M

F1@5 .199 .258 .226 .258 .276 .270 .263 .279 .251 .283
MRR .186 .251 .208 .254 .276 .257 .255 .277 .260 .283
MAP .226 .301 .252 .306 .336 .313 .310 .338 .312 .344
nDCG .283 .386 .317 .388 .414 .399 .397 .421 .375 .425
AILD .722 .902 .855 .918 .919 .919 .902 .900 .840 .902
AIP .604 .730 .761 .741 .797 .728 .736 .722 .866 .711
Runtime [s] 1 1 6 265 8,657 101 1 225 1 1
Memory [MB] 80 92 214 593 87 237 155 3,332 204 301

M
ov
ie
L
en
s

F1@5 .135 .153 .124 .141 .156 .153 .159 .162 .086 .160
MRR .211 .260 .198 .233 .264 .243 .251 .263 .183 .265
MAP .223 .269 .209 .242 .275 .253 .262 .274 .188 .276
nDCG .271 .328 .254 .296 .324 .319 .326 .336 .203 .338
AILD .910 .954 .935 .958 .957 .957 .954 .954 .726 .954
AIP .787 .741 .861 .785 .816 .777 .751 .755 .976 .756
Runtime [s] 1 1 11 206 6,091 90 1 120 1 1
Memory [MB] 365 375 1,043 761 96 833 434 3,297 500 501

Table 6.1: Accuracy, diversity, novelty, runtime [seconds] and memory consumption
[megabytes] estimates of the tag recommender algorithms in the six datasets.
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FR. Moreover, BLLAC+MPr also outperforms GIRPTM, the currently leading time-

depended tag recommendation algorithm. Particularly good results are derived with

the ranking-dependent metrics MRR, MAP and nDCG. This observation clearly

illustrates the advantages of BLLAC+MPr, which is build upon long-standing models

of human memory theory, over the less-theory driven GIRPTM algorithm that also

utilizes time information of social tags.

The difference between the narrow, mixed and broad folksonomy settings are es-

pecially of interest when comparing these results with previous studies (e.g., [Jäschke

et al., 2008, Jäschke et al., 2007, Rendle et al., 2009, Lipczak, 2012]), in which FR

and PITF typically had the best recommender accuracy in p-core pruned (i.e., very

broad) folksonomies. The results presented in this section also indicate a good per-

formance of FR and PITF in broad folksonomies (i.e., LastFM and MovieLens) but

a fairly poor one in the narrow (i.e., Flickr) and mixed (i.e., CiteULike, BibSonomy

and Delicious) settings. The opposite is the case for the BLLAC approach presented

in this thesis, which strictly recommends individual tags of the current user and

thus, performs well in the narrow and mixed settings but is only average in the

broad setting.

Tag Recommendation Diversity and Novelty

In Table 6.1, tag recommendation diversity is indicated by the AILD metric and

novelty by the AIP metric (see Section 3.4.2).

Tag recommendation diversity. According to the AILD metric, the dissimilarity

of two recommended tags is given by the relative difference by means of the Jaccard

coefficient between the sets of resources to which the tags were applied [Vargas and

Castells, 2011]. In this respect, the most diverse tag recommendations are provided

via the classic approaches LDA, PITF and FR.

Tag recommendation novelty. According to the AIP metric, a recommended

tag is novel if it was not previously used to annotate the target resource (i.e., if

it cannot be found in the resource r’s set of tags Tr) [Belém et al., 2013]. With

regard to novelty, the strictly individual BLLAC approach outperforms all the other

algorithms, which also recommend tags of other users.

Summed up, the cognitive-inspired BLLAC+MPr approach that has the highest

recommender accuracy also provides fair results in terms of these two metrics.
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Algorithm Complexity Reference
MP O(|Y |) [Jäschke et al., 2008]
MPu O(|U | · |Yu|) [Jäschke et al., 2008]
MRu O(|U | · |Yu|) [Campos et al., 2014]
GIRP O(|U | · |Yu|) [Zhang et al., 2012]
BLL O(|U | · |Yu|) [Trattner et al., 2016]
MPr O(|R| · |Yr|) [Jäschke et al., 2008]
MPu,r O(|U | · |Yu|+ |R| · |Yr|) [Jäschke et al., 2008]
GIRPTM O(|U | · |Yu|+ |R| · |Yr|) [Zhang et al., 2012]
ACu O(|B| · |Yb|) [Trattner et al., 2016]
BLLAC O(|U | · |Yu|+ |B| · |Yb|) [Trattner et al., 2016]
BLLAC+MPr O(|U | · |Yu|+ |B| · |Yb|+ |R| · |Yr|) [Trattner et al., 2016]
CF O(|U | · |Vr| · |Yv|) [Jäschke et al., 2008]
FR O(|U | · l · (|Y |+ |U |+ |R|+ |T |)) [Jäschke et al., 2008]
LDA O((|U |+ |R|) · |T | · Z) [Blei et al., 2003]
3LT O(|R| · |T | · Z + |U | · |Yu|) [Kowald et al., 2015b]
3LT+MPr O(|R| · |T | · Z + |U | · |Yu|+ |R| · |Yr|) [Kowald et al., 2015b]
PITF O(l · |B| · (kT · |T |2 + kU · kR · kT )) [Rendle et al., 2009]

Table 6.2: Computational complexity of BLLAC and BLLAC+MPr compared to
state-of-the-art algorithms. Pleae note, that the algorithms are sorted in ascending
order according to their complexity.

Computational Costs

In addition to recommender accuracy, diversity and novelty, the computational costs

of the tag recommendation approaches were investigated in terms of computational

complexity (see Table 6.2), monitored runtime (see Figure 6.1) and memory con-

sumption (see Figure 6.2).

Computational complexity. Table 6.2 shows the complexity of all algorithms in

ascending order. It can be seen that the popularity-based algorithms MP, MPu, MPr

and MPu,r, which count frequencies by simply iterating over the tag assignments of

the user (i.e., Yu) and / or the resource (i.e., Yr), provide linear runtime. For

the time-based algorithms MRu, GIRP, GIRPTM and BLL, similar behavior can

be observed. An additional term is introduced, when calculating ACu, BLLAC and

BLLAC+MPr. This term describes the initialization of the co-occurrence matrix that

holds the semantic context. The matrix is built by iterating over each bookmark b in

the set of bookmarks B of a folksonomy and checking the tag assignments of b (i.e.,
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(b) CiteULike
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(c) BibSonomy
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(d) Delicious

MPr MPu,r CF LDA PITF FR GIRPTM BLLAC BLLAC+MPr 3LT+MPr

Algorithms

10
1

10
2

10
3

10
4

10
5

10
6

10
7

L
o
g

o
ve

ra
ll

ru
n
ti
m

e
[m

s
]

(e) LastFM
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(f) MovieLens

Figure 6.1: Runtime measurements (im milliseconds) of tag recommendation algo-
rithms showing the efficiency of BLLAC+MPr.

Yb) for co-occurences. Even though this calculation step increases the computational

complexity of the approach, this step only needs to be performed once, which may

be done offline (especially for big datasets) and subsequently, it may not effect the

online runtime in a live system.

Moreover, it can be seen that BLLAC and BLLAC+MPr show better performance

than state-of-the-art methods such as CF, LDA, FR and PITF. As these cognitive-

inspired algorithms rely on relatively little but meaningful operations considering

only user tag frequency, recency and semantic context in terms of resource tags, this

algorithm outperforms the former. CF on the other hand, processes not only the tag

assignments Yu of the target user, but additionally the tag assignments of each user

v in the set of users (i.e., neighbors) that have also tagged the target resource (i.e.,

Vr). In cases where there are no other users available that have tagged the target

resource (i.e., cold-start resources), Vr becomes the set of all users, which then could

lead to much higher computational costs as expected. With regard to FR, which

depends on the number of nodes |U |, |R| and |T |, and PITF, which depends on the
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(b) CiteULike
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(c) BibSonomy
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(d) Delicious
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(e) LastFM
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(f) MovieLens

Figure 6.2: Memory consumption measurements (in megabytes) of tag recommen-
dation algorithms showing the efficiency of BLLAC+MPr.

dimensions of factorization kU , kR and kT , even multiple iterations l are computed,

which leads to higher runtime complexities (see Section 3.3).

When comparing BLLAC+MPr with 3LT+MPr (i.e., the two best performing

approaches in the accuracy experiment), it becomes apparent that 3LT+MPr has a

much higher computational complexity. This is due the fact that 3LT+MPr relies

on a very expensive topic creation process.

Runtime. To furthermore prove the theoretical assumptions made in the complex-

ity analysis, a real runtime experiment was carried out. In particular, an experiment

was conducted on an IBM System x3550 M4 server with one Intel(R) Xeon(R) CPU

E5-2640 v2 @ 2.00GHz and 256GB RAM using Ubuntu 12.04.2 and Java 1.8 to

determine the overall runtime performance of the algorithms. All algorithms were

executed as single core, single thread instances to ensure that the measured runtime

is not affected by the implementation.

The results of this evaluation (in milliseconds) can be found in Figure 6.1.
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As expected, the experiment provides further evidence that the popularity-based

approaches, such as MP, MPu, MPr and MPu,r, the time-dependent approaches

MRu, GIRP and GIRPTM, and also the cognitive-inspired approaches BLLAC and

BLLAC+MPr perform significantly better than the more sophisticated approaches

FR, LDA, PITF and 3LT+MPr.

Memory consumption. The memory consumption measurements (in megabytes)

of the algorithms are visualized in Figure 6.2. Here, the lowest memory is required by

the PITF approach. One reason for the low memory consumption of PITF is surely

the fact that it was developed in C++ (the other approaches were implemented in

Java).

With respect to the memory consumption measurements of BLLAC+MPr, it is

much smaller than the ones of CF, LDA and especially 3LT+MPr. This is again

due the fact that 3LT+MPr relies on the computationally expensive topic modeling

process, which has to be calculated for each resource in the dataset.

6.2.2 Evaluation in Related Settings

In order to demonstrate that BLLAC+MPr does not only provide accurate results

in folksonomy settings, this section shows evaluation results in related settings: (i)

the ECML PKDD Discovery Challenge 2009 dataset, and (ii) two datasets from

Technology Enhanced Learning projects.

Evaluation on the ECML PKDD Discovery Challenge 2009 Dataset

In order to increase the reproducibility of the presented results and to ensure that

these results can be compared with the results of other studies, another experiment

was conducted on the well-known ECML PKDD discovery challenge 2009 dataset1.

Experimental setup. This dataset is an rather “old” snapshot (from 2009) of

BibSonomy at p-core level 2 consisting of 64,406 bookmarks, 1,185 users, 22,389

resources, 13,276 tags and 253,615 tag assignments, but is used in many related tag

recommendation studies. Additionally, the dataset provides already a given train /

test set split, which further ensures the comparability of results.

1http://www.kde.cs.uni-kassel.de/ws/dc09/

103



Algorithm F1@5 Reference
GIRP .087 [Trattner et al., 2016]
MPu .098 [Rendle and Schmidt-Thieme, 2009]
BLL .104 [Trattner et al., 2016]
BLLAC .238 [Trattner et al., 2016]
GIRPTM .248 [Trattner et al., 2016]
MPr .288 [Rendle and Schmidt-Thieme, 2009]
MPu,r .290 [Rendle and Schmidt-Thieme, 2009]
FR .290 [Rendle and Schmidt-Thieme, 2009]
CF .295 [Rendle and Schmidt-Thieme, 2009]
PITF .302 [Rendle and Schmidt-Thieme, 2009]
BLLAC+MPr .308 [Trattner et al., 2016]
Challenge winner .355 [Rendle and Schmidt-Thieme, 2009]

Table 6.3: F1@5 estimates for selected algorithms on the ECML PKDD Discovery
Challenge 2009 dataset [Trattner et al., 2016]. It can be seen that BLLAC+MPr is
only outperformed by the winning algorithm (optimized ensemble of Factorization
Machines [Rendle and Schmidt-Thieme, 2009]).

The winning algorithm based on the F1@5 evaluation metric in this tag recom-

mender challenge was an optimized ensemble of factorization machines algorithms

and was proposed by [Rendle and Schmidt-Thieme, 2009]. In Table 6.3, the results

presented in [Rendle and Schmidt-Thieme, 2009] together with the results of the

novel time-dependent approaches of this thesis are shown.

Results. The F1@5 estimates indicate that the dataset and the splitting method

is of advantage for resource-based approaches since MPr clearly outperforms MPu.

Interestingly, GIRP [Zhang et al., 2012], reaches an even lower F1@5 score than

MPu, which also indicates that the information of time seems not to be important

in this setting. However, BLL reaches a higher F1@5 score than MPu, which again

shows the advantage of its power decay function.

Another indication of the importance of the current semantic context in form

of resource tags, is given by the very good results of the BLLAC approach, which

are similar to the results of GIRPTM. Although, BLLAC still recommends only tags

already used by the given user, it adjusts the ranking using already assigned resource

tags (i.e., the current semantic context).

Moreover, BLLAC+MPr reaches a F1@5 score of .308 and thus, again outper-

forms other sophisticated methods such as GIRPTM, CF, FR, FM and PITF. With
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regard to the final ECML PKDD discovery challenge 2009 ranking, this would result

in the 8th position without any optimizations to the dataset or the length of the

recommended tag list. Additionally, BLLAC+MPr is much more efficient in terms

of computational complexity than the better performing approaches (especially the

ones based on Factorization Machines; see also Table 6.2) and can be executed for

this dataset on a single machine in a few seconds.

Summed up, the results of this experiment show that BLLAC+MPr is capable of

providing high estimates of recommender accuracy in different settings without the

need of dataset optimization or complex calculation steps.

Evaluation on Technology Enhanced Learning Datasets

In the previous evaluations, the performance of the tag recommendation algorithms

has been shown on datasets gathered from large social tagging systems. However,

these settings differ from Technology Enhanced Learning (TEL) settings, in which

information like ontologies, learning object metadata and even user ratings are very

limited [Manouselis et al., 2011]. Specifically, the spectrum of commonly available

tracked learner activities varies greatly, but typically includes implicit usage data

like learner-ids, some general information on learning resources, timestamps and

indications of a user’s interest in learning resources (e.g., opening, downloading or

bookmarking) [Verbert et al., 2012].

Thus, it is the aim of this section to show the performance of BLLAC+MPr also

in these small and sparse TEL environments.

Experimental setup. Two datasets from the TEL projects MACE and TravelWell

are used for this study. Additionally, results for CiteULike and BibSonomy are

provided in order to increase comparability.

In the MACE project, an informal learning platform was created that links

different repositories from all over Europe to provide access to meta-data-enriched

learning resources from the architecture domain. The dataset encompasses user

activities like the accessing and tagging of learning resources and additional learning

resource descriptions such as topics and competences [Stefaner et al., 2007]. The

MACE dataset used in this study consisted of 23,017 users, 627 resources and 12,360

tags.
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Dataset Metric MPu MPr MPu,r CF BLLAC BLLAC+MPr

CiteULike
R@5 .3665 .0631 .3933 .3639 .4114 .4325
P@5 .1687 .0323 .1829 .1698 .1897 .2003
F1@5 .231 .042 .249 .231 .259 .273
F1@10 .1672 .0294 .1825 .1560 .1797 .1928
nDCG .367 .063 .392 .359 .422 .438

BibSonomy
R@5 .3486 .0862 .3839 .3530 .3809 .4071
P@5 .1991 .0572 .2221 .2066 .2207 .2359
F1@5 .253 .068 .281 .260 .279 .298
F1@10 .1879 .0523 .2131 .1875 .2028 .2237
nDCG .371 .091 .407 .369 .409 .434

TravelWell
R@5 .2207 .0714 .2442 .1740 .2491 .2828
P@5 .1000 .0366 .1333 .0800 .1300 .1400
F1@5 .137 .048 .172 .109 .170 .187
F1@10 .1125 .0388 .1356 .0744 .1287 .1426
nDCG .241 .080 .268 .173 .278 .290

MACE
R@5 .1306 .0510 .1463 .1522 .1775 .1901
P@5 .0576 .0173 .0618 .0631 .0812 .0812
F1@5 .079 .025 .086 .089 .111 .113
F1@10 .0662 .0170 .0692 .0615 .0829 .0848
nDCG .133 .048 .147 .156 .183 .190

Table 6.4: Results of the tag recommendation evaluation in TEL settings. It can be
seen that the cognitive-inspired BLLAC+MPr clearly outperforms its competitors
[Kopeinik et al., 2016b].

Originating from the Learning Resource Exchange platform2, the TravelWell

dataset captures teachers’ search for and access of open educational resources from

a variety of providers all over Europe. Thus, it covers multiple languages and subject

domains. Activities in the dataset are supplied in two files with either bookmarks or

ratings [Vuorikari and Massart, 2010]. For this study, the bookmarks file was used,

which contained 2,572 users, 97 resources and 1,890 tags.

Results. The results of this study are shown in Table 6.4 by means of R@5, P@5,

F1@5, F1@10 and nDCG. As expected, the recommendation accuracy for the algo-

rithms is smaller in the two TEL datasets MACE and TravelWell than in CiteULike

and BibSonomy. This is due to the fact that these datasets are very small and

sparse, which makes it very hard to predict tag usage. However, BLLAC+MPr can

2http://lreforschools.eun.org
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Algorithm Accuracy Diversity Novelty Runtime Memory

Narrow Mixed Broad

MPr - - - - ++ +

MPu,r ++ +

CF +

LDA - - ++ - -

PITF - + ++ + - ++

FR + ++

GIRPTM + + + ++ +

3LT+MPr ++ ++ ++ - -

BLLAC + + - ++ +

BLLAC+MPr ++ ++ ++ +

Table 6.5: Summary of the evaluation of the tag recommendation algorithms show-
ing the relation between the performance of the algorithms and the given evaluation
metric. This table shows tag recommender accuracy in narrow, mixed and broad
settings, diversity, novelty, runtime and memory consumption. Please note that
“++” indicates best, “+” good, “-” poor and an empty space average performance.

again be identified as the best performing algorithm both in non-TEL and TEL

settings.

Because runtime and computational complexity are considered very important

factors in most TEL environments [Manouselis et al., 2010], the performance of

MPu,r, which outperforms the comparably cost-intensive CF approach in three of

four datasets, should be emphasized. Hence, it forms a good alternative in runtime-

sensitive settings.

6.3 Summary

In this chapter, the implementation process of a hybrid tag recommendation algo-

rithm (i.e., BLLAC+MPr) for real-world folksonomies was presented. This approach

is based on the tag reuse prediction algorithm BLLAC illustrated in Chapter 5 and

extends it via incorporating social influences (i.e., imitating and recommending pop-

ular tags of other users).

Furthermore, BLLAC+MPr was validated in several real-work folksonomy datasets

and settings by comparing it to state-of-the-art tag recommendation algorithms via

various evaluation metrics. The main results regarding this research question are

summarized in Table 6.5. These results contributed to Research Question 3, “Can a
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tag prediction model based on the activation equation be expanded with tag imitation

processes in order to improve tag recommendations in real-world folksonomies?” and

led to the following four findings:

1. BLLAC can be expanded with tag imitation processes in order to realize the

hybrid tag recommendation algorithm BLLAC+MPr.

2. BLLAC+MPr provides the most robust results over all datasets with respect

to various evaluation metrics and folksonomy settings.

3. BLLAC+MPr also provides accurate recommendations in related settings such

as the ECML PKDD Discovery Challenge 2009 dataset, and two datasets from

Technology Enhanced Learning projects.

4. In contrast to related cognitive-inspired tag recommendation approaches such

as 3LT+MPr, BLLAC+MPr provides reasonable results with respect to compu-

tational costs.

Based on these findings, Research Question 3 can be answered positively, which

shows that BLLAC+MPr can be applied for various use cases in the area of tag

recommendations in social tagging systems. In the next chapter, this approach is

generalized for the task of recommending hashtags in Twitter in order to contribute

to Research Question 4, “Given that activation processes in human memory can

be modeled to improve tag recommendations, can they also be utilized for hashtag

recommendations in Twitter?”.
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Chapter 7

Research Question 4: Utilizing the

Approach for Hashtag

Recommendations in Twitter

“How do you feel about using # (pound) for groups. As in #barcamp

[msg]?” [Messina, 2007]

This chapter describes how activation processes in human memory can be uti-

lized for recommending hashtags in Twitter. Thus, it is the aim of this chapter to

demonstrate that the cognitive-inspired tag recommendation algorithm proposed in

this thesis (i.e., BLLAC+MPr) can be generalized for related use cases in the field

of tag-based recommender systems, such as hashtag recommendations in Twitter

(Section 7.1). Therefore, data collections are crawled from Twitter (Section 7.2)

and temporal dynamics are studied in these data collections (Section 7.3) in order

to propose two cognitive-inspired hashtag recommendation approach called BLLI,S

and BLLI,S,C (Section 7.4). These approaches are evaluated against various baseline

algorithms (Section 7.5) in order to address Research Question 4, “Given that acti-

vation processes in human memory can be modeled to improve tag recommendations,

can they also be utilized for hashtag recommendations in Twitter?”.

This chapter is based on P10 [Kowald et al., 2017b].
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7.1 Hashtag Recommendations

Over the past years, the microblogging platform Twitter has become one of the most

popular social networks on the Web. Users can build a network of follower connec-

tions to other Twitter users, which means that they can subscribe to content posted

by their followees [Myers and Leskovec, 2014, Kwak et al., 2010]. Twitter was also

the first social platform that adopted the concept of hashtags, as suggested by Chris

Messina1. Meanwhile, many social platforms, such as Instagram and Facebook, have

adopted hashtags as well.

Unsurprisingly, the widespread acceptance of hashtags has sparked a lot of re-

search in the field of hashtag recommendations to support users in assigning the most

descriptive hashtags to their tweets. As described in Section 2.2.2, existing methods

typically utilize collaborative, content and topic features of tweets to recommend

hashtags to users. Undoubtedly, these features play an important role in recom-

mending hashtags that best describe a tweet but lack of a way of predicting which

hashtags a user will likely apply in a newly created tweet given previous hashtag

assignments [Kowald et al., 2017b].

As shown in the previous chapters of this thesis, activation processes in human

memory can be modeled by means of the activation equation of ACT-R in order

to predict and recommend tags in social tagging systems. Thus, it is the aim of

this chapter to show that activation processes in human memory can also be uti-

lized for the recommendation of hashtags in Twitter (Research Question 4). This

demonstrates that the cognitive-inspired tag recommendation approach proposed in

this thesis (i.e., BLLAC+MPr) can be generalized for related use cases in the area

of tag-based recommender systems.

7.2 Twitter Data Collections

In this section, the data collection procedure and the two datasets used to address

Research Question 4 are described. Additionally, individual as well as social hashtag

reuse patterns are investigated in these datasets as a prerequisite for the proposed

hashtag recommendation approaches. This section is based on P10 [Kowald et al.,

2017b].

1https://twitter.com/chrismessina/status/223115412
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7.2.1 Crawling Strategy and Dataset Statistics

Two datasets are crawled using the Search API of Twitter2. The final statistics of

these datasets are illustrated in Table 7.1.

The first one (i.e., CompSci dataset) consists of researchers from the field of

computer science and their followees, while the second one (i.e., Random dataset)

consists of random people and their followees. These two datasets are used to

test the hashtag recommendation approaches in two different network settings: (i)

a domain-specific one (i.e., the domain of computer scientists), and (ii) a more

general one consisting of random Twitter users. The crawling strategy for both

datasets comprises of the following four steps:

Crawl Seed Users

Firstly, a list of seed users US for each dataset is identified and crawled. In the case

of the CompSci dataset, the users who were identified as computer scientists in the

work of [Hadgu and Jäschke, 2014] are taken. In the case of the Random dataset,

the Streaming API of Twitter3 was used in October 2015 to get a stream of tweets.

Then, the user-ids are extracted from those tweets to get the list of random seed

users. From both user lists, all users with more than 180 followees are removed,

which results in |US| = 2,551 seed users for the CompSci dataset and |US| = 3,466

seed users for the Random dataset. The threshold of using a maximum of 180

followees is chosen because the Twitter Search API only allows 180 requests per 15

minutes, which enables to crawl the tweets of all followees of a seed user within this

reasonable time window.

Crawl Followees

Next, these follower relationships are used to crawl the followees F of the seed

users in order to create a directed user network for analyzing the social influence on

hashtag reuse. Based on the number of seed users, the average number of followees

per seed user |F |/|US| = 94 in the case of the CompSci dataset and 72 in the case

of the Random dataset. Following these notations, the set of followees of user u is

denoted as Fu in the remainder of this chapter. Overall, this crawling procedure

2https://dev.twitter.com/rest/public/search
3https://dev.twitter.com/streaming/overview
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Dataset |US | |F | |U | |T | |HT | |HTAS|

CompSci 2,551 241,225 91,776 5,649,359 1,081,403 9,161,842

Random 3,466 252,219 127,112 8,157,702 1,507,773 13,628,750

Table 7.1: Statistics of the CompSci and Random Twitter datasets. Here, |US| is
the number of seed users, |F | is the number of followees of these seed users, |U | is
the number of distinct users, |T | is the number of tweets, |HT | is the number of
distinct hashtags and |HTAS| is the number of hashtag assignments.

results in |U | = 91,776 distinct users for the CompSci dataset and |U | = 127,112

distinct users for the Random dataset.

Crawl Tweets

In the third step, the 200 most recent tweets of all the users are crawled and the

tweets without hashtags are removed. The threshold of a maximum of 200 most

recent tweets is set because of another restriction of the Twitter Search API that

only allows 200 tweets to be received per a single request. This crawling procedure

results in |T | = 5,649,359 tweets for the CompSci dataset with an average number

of tweets per user |T |/|U | = 61, and |T | = 8,157,702 tweets for the Random dataset

with |T |/|U | = 64. The crawled tweets cover a time range from 2007 to 2015 for

both datasets.

Extract Hashtag Assignments

In the final step of the crawling procedure, the hashtag assignments are extracted

by searching for all words that start with a “#” character. This results in |HTAS|

= 9,161,842 hashtag assignments for |HT | = 1,081,403 distinct hashtags in the

CompSci network and |HTAS| = 13,628,750 for |HT | = 1,507,773 in the Random

network. Thus, in both datasets, each distinct hashtag is used approximately 9

times on average and each user uses approximately 100 hashtag assignments in her

tweets on average. Examples for popular hashtags are #bigdata, #iot and #ux in

case of the CompSci dataset, and #shahbag, #ff and #art in case of the Random

dataset.
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Figure 7.1: Analysis of hashtag usage types in Twitter. For each hashtag assignment,
it is studied whether the corresponding hashtag has been used by the same user
before in time (“individual”), by some of the users she follows (“social”), by both
(“individual/social”), by anyone else in the dataset (“network”) or neither of them
(“external”). It can be seen that between 66% and 81% of hashtag assignments in
both datasets can be explained by individual or social hashtag usage (i.e., the sum
of “individual”, “social” and “individual/social”).

7.2.2 Analysis of Hashtag Usage Types

In these datasets, hashtag reuse practices are studied with the aim of identifying

the different types of hashtag usages as a prerequisite for the proposed hashtag

recommendation approaches. Specifically, for each hashtag assignment, it is studied

whether the corresponding hashtag has either been used by the same user before

(“individual”), by some of her followees (“social”), by both (“individual/social”),

by anyone else in the dataset (“network”) or by neither of them (“external”).

The results of this study are shown in Figure 7.1. It can be seen that 66% of

hashtag assignments in the CompSci dataset and 81% in the Random dataset can

be explained by individual or social hashtag reuse. This finding further supports the

choice to utilize these two types of influences (i.e., individual and social) for recom-

mending hashtags. In contrast to these large numbers, the 6% to 8% of hashtags in

the “network” category is relatively small. Interestingly, the amount of “external”

hashtags is twice as high in the CompSci dataset (i.e., 26%) as in the Random one

(i.e., 13%). Thus, in these datasets, computer scientists tend to use more hashtags,

which have not been previously introduced in the network, than random Twitter
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users. Because of this, it can be assumed that the recommendation accuracy results

would generally be lower in the CompSci dataset than in the Random one, which

will be evaluated in Section 7.5. Summing up, both individual and social hashtags

have an impact on users’ choice of hashtags for a new tweet.

7.3 Temporal Effects on Hashtag Reuse

In this section, it is studied to what extent temporal effects play a role in the reuse

of individual and social hashtags in the two datasets (i.e., CompSci and Random).

Specifically, the recency of hashtags assignments (i.e., the time since the last hashtag

usage/exposure), as well as whether this effect of time-dependent decay follows a

power-law or exponential distribution. In Section 4.2, this was already analyzed in

the context of social tagging systems. This section is based on P10 [Kowald et al.,

2017b].

7.3.1 Temporal Effects on Individual Hashtag Reuse

The effect of time on individual hashtag reuse is visualized in the plots of Figure

7.2. To put the x-scale of these plots onto a meaningful range, the threshold for

the maximum hashtag reuse recency is set to one year (i.e., 8,760 hours). The plots

show the individual hashtag reuse count plotted over the reuse recency of a hashtag

ht by a user u in hours. Hence, for each hashtag assignment of a hashtag ht by user

u, the time since the last usage of ht by u (i.e., the reuse recency) is taken and all

hashtag assignments with the same recency value (i.e., the same time difference in

hours) are pooled together. The individual reuse count for this recency value is then

given by the size of the set of these hashtag assignments.

The two plots show similar results for both datasets and indicate that the more

recently a hashtag ht was used by a user u in the past, the higher its individual

reuse count is. Interestingly, there is a clear peak after 24 hours in both datasets,

which further indicates that users typically use the same set of hashtags in this time

span and thus, tend to tweet about similar topics on a daily basis. Furthermore,

high R2 values of nearly .9 can be observed for the linear fits in the log-log scaled

plots, which indicates that a large amount of the data can be explained by a power

function. This is also suggested by the power-law-based model of the BLL equation
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(a) Individual hashtag reuse

CompSci dataset (R2 = .883)
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(b) Individual hashtag reuse

Random dataset (R2 = .894)

Figure 7.2: The effect of time on individual hashtag reuse for the CompSci and
Random datasets (plots are in log-log scale). The plots show that the more recently
a hashtag ht was used by a user u, the higher its individual reuse count (i.e., people
tend to reuse hashtags that have been used very recently by their own). Additionally,
the R2 estimates for the linear fits of the data are reported. It can be seen that
temporal effects play an important role in individual hashtag reuse in both datasets.

[Anderson et al., 2004]. In contrast, the linear fits in log-linear scaled plots only

provide R2 values of approximately .7, where high values would speak in favor of an

exponential function.

7.3.2 Temporal Effects on Social Hashtag Reuse

The plots of Figure 7.3 show the effect of time on the social hashtag reuse for the

CompSci and Random datasets. These plots are created similarly as the plots of

Figure 7.2 but this time the social hashtag reuse count is plotted over the reuse

recency of a hashtag ht by the followees Fu of user u. Hence, for each hashtag

assignment of ht by u, the most recent usage timestamp of ht by Fu is taken. The

difference between this timestamp and the timestamp of the currently analyzed

hashtag assignment indicates the time since the last social exposure of ht to u.

Again, the threshold for the maximum hashtag reuse recency is set to one year (i.e.,

8,760 hours).

In these plots, similar results can be observed since, in both datasets, the more

recently a user was exposed to a hashtag, the higher its social reuse count. Fur-

thermore, there is again (i) a clear peak after 24 hours, and (ii) the R2 values for
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100 101 102 103 104

Reuse recency of ht by Fu [hours]

100

101

102

103

104

105

S
o
c
ia

l
re

u
s
e

c
o
u
n
t
o
f
h
t

(b) Social hashtag reuse

Random dataset (R2 = .771)

Figure 7.3: The effect of time on social hashtag reuse for the CompSci and Random
datasets (plots are in log-log scale). The plots show that the more recently a user
u was exposed to a hashtag ht, which was used by her followees Fu, the higher its
social reuse count (i.e., people tend to reuse hashtags that have been used recently
in the social network). Additionally, the R2 estimates for the linear fits of the data
are reported. It can be seen that temporal effects play an important role in social
hashtag reuse in both datasets.

the linear fits in the log-log scaled plots (i.e., = .7) are larger than in the log-linear

scaled plots (i.e., = .4), which speaks in favor of a power function.

7.3.3 Power-Law Versus Exponential Time-Dependent De-

cay of Hashtag Reuse

The question whether a power or an exponential function is better suited to model

the time-dependent decay of hashtag reuse is of interest especially for the design of

a hashtag recommendation approach since both types of functions have been used

in the area of time-aware recommender systems. While the BLL equation suggests

the use of a power function to model the decay of item exposure in human memory

[Anderson and Schooler, 1991], related hashtag recommender approaches, such as

the one proposed in [Harvey and Crestani, 2015], use an exponential function for

this purpose. As already mentioned, the visual inspection of Figures 7.2 and 7.3

and the R2 values of the linear fits favor a power function. However, [Clauset et al.,

2009] has shown that this least squares-based method can lead to misinterpretations

and thus, a likelihood ratio-based test is suggested (see also Section 4.2).
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Dataset Parameter Individual hashtag reuse Social hashtag reuse

CompSci

xmin 141 1

α 1.699 1.242

R 188 164

Random

xmin 141 1

α 1.723 1.269

R 235 294

Table 7.2: Power-law versus exponential time-dependent decay in Twitter. It can be
seen that a power function provides a better fit than an exponential function (R > 0
with p < .001) for explaining temporal effects on individual and social hashtag reuse
in the two datasets.

Thus, the Python implementation [Alstott et al., 2014] of the method described

in [Clauset et al., 2009] is used to validate if a power function produces a better fit

than an exponential one. The results of this test are shown in Table 7.2. The main

value of interest here is the log-likelihood ratio R between the two functions. It can

be seen that R > 0 in all four cases with p < .001. This means that the power

function indeed provides a better fit than the exponential function for explaining

temporal effects on individual and social hashtag reuse. The xmin and α values

of the fits are also provided. In this respect, the α slopes can be used to set the

d parameter of the BLL equation (i.e., 1.7 in the individual case and 1.25 in the

social case, see Section 7.4). Interestingly, these values are much higher than the

suggested value of BLL’s d parameter, which is .5 [Anderson et al., 2004]. It can

be assumed that this is the case because tweeting is more strongly influenced by

temporal interest drifts than other applications studied in the ACT-R community

(e.g., [Anderson and Schooler, 1991]).

7.4 Hashtag Recommendation Approach

In the previous section, it was shown that temporal effects are important factors

when users reuse individual and social hashtags. In this section, these insights are

used as a basis to design the hashtag recommendation approach illustrated in Figure

7.4. Thus, one can distinguish between hashtag recommendations without (Scenario

1 ) and with (Scenario 2 ) incorporating the current tweet t. This section is based

on P10 [Kowald et al., 2017b].
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Whereas the first variant of this approach solely uses the past hashtags of a user

u and/or her followees Fu, the second variant also utilizes the text of the current

tweet t. Hence, these two scenarios also differ in their possible use cases since the

first one aims to foresee the topics a specific user will tweet about based on the

predicted hashtags, whereas the second one aims to support a user in finding the

most descriptive hashtags for a new tweet text [Godin et al., 2013].

7.4.1 Scenario 1: Hashtag Recommendations Without the

Current Tweet

For the first variant of the approach, the content of the current tweet t is ignored

and solely past hashtag usages are utilized. As already stated, the BLL equation

coming from the cognitive architecture ACT-R [Anderson et al., 2004] is used for this

task. As visualized in Scenario 1 of Figure 7.4, the BLL equation is adapted for (i)

modeling the reuse of individual hashtags (BLLI), (ii) modeling the reuse of social

hashtags (BLLS), and (iii) combining the former two into a hybrid recommendation

approach (BLLI,S).

Modeling Individual Hashtag Reuse

In order to model the reuse of individual hashtags, the individual base-level activa-

tion BI(ht, u) of a hashtag ht for a user u is defined as follows:

BI(ht, u) = ln(
n∑

j=1

(TSref − TSht,u,j)
−dI ) (7.1)

where n denotes the number of times ht was used by u in the past (i.e., |HTASht,u|)

and the term TSref − TSht,u,j states the recency of the jth usage of ht by u. In

this respect, TSref is the reference timestamp (i.e., when recommendations should

be calculated) and TSht,u,j is the timestamp when ht was used by u for the jth

time. Based on the results of the analysis presented in Table 7.2, the individual

time-dependent decay factor dI is set to 1.7.
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Figure 7.4: Schematic illustration of the cognitive-inspired approach for hashtag
recommendations in Twitter. The approach is implemented in two scenarios (i.e.,
without and with incorporating the content of the current tweet). In Scenario
1 , the BLL equation is used to realize (i) the individual BLLI algorithm, (ii) the
social BLLS algorithm, and (iii) the hybrid BLLI,S algorithm, which combines both.
In Scenario 2 , a content analysis is used to identify similar tweets for a currently
proposed tweet t and to identify the hashtags of the most similar ones. This content-
based tweet analysis is combined with the BLLI,S method to provide personalized
and content-aware hashtag recommendations in the form of the hybrid BLLI,S,C

approach.

Modeling Social Hashtag Reuse

The reuse of social hashtags is modeled in a similar way but instead of analyzing

how frequently and recently a hashtag ht was used by user u, it is analyzed how

frequently and recently ht was used by the set of followees Fu of u. Thus, the social

base-level activation BS(ht, u) of ht for u is formulated as follows:

BS(ht, u) = ln(
m∑
j=1

(TSref − TSht,Fu,j)
−dS) (7.2)

where m is the number of times ht was used by Fu before the reference timestamp

TSref (i.e., |HTASht,Fu
|). The term TSref − TSht,Fu,j states the recency of the jth

exposure of ht to u caused by Fu, where TSht,Fu,j is the timestamp when ht was used

by Fu for the jth time. As when modeling the individual hashtag reuse, the social

time-dependent decay factor dS is set based on the results of the analysis presented

119



in Table 7.2 (i.e., dS = 1.25).

Combining Individual and Social Hashtag Reuse

In order to mix these two components in form of a hybrid approach, a linear combi-

nation is used in the same way as it was done to realize BLLAC+MPr (see Section

6.1). Hence, in order to be able to add the individual and social base-level acti-

vations BI(ht, u) and BS(ht, u), these values have to be mapped onto a common

range of 0 to 1 that add up to 1. Therefore, the softmax functions σ(BI(ht, u))

and σ(BS(ht, u)) are defined as proposed by [McAuley and Leskovec, 2013]. This is

given by:

σ(BI(ht, u)) =
exp(BI(ht, u))∑

ht′∈HTu

exp(BI(ht′, u))
(7.3)

where HTu is the set of distinct hashtags used by u. For BS(ht, u), the softmax

function σ(BS(ht, u)) can be calculated in the same way but on the basis of HTFu

(i.e., the set of hashtags used by u’s followees Fu).

Taken together, the combined base-level activation BI,S for the BLLI,S approach

is given by a linear combination:

BI,S(ht, u) = β σ(BI(ht, u))︸ ︷︷ ︸
BLLI

+(1− β) σ(BS(ht, u))︸ ︷︷ ︸
BLLS

(7.4)

where the β parameter can be used to give weights to the two components. Based

on experimentation, β is set to .5 in order to equally weigh the individual and social

influence. As indicated in Equation 7.4 and Figure 7.4, predictions can also be

calculated either solely based on the individual hashtag reuse, referred as BLLI , or

the social hashtag reuse, referred as BLLS.

7.4.2 Scenario 2: Hashtag Recommendations With the Cur-

rent Tweet

As shown in Scenario 2 of Figure 7.4, the second variant of the recommendation

approach aims to provide hashtag suggestions while also incorporating the content

of the currently proposed tweet t. Thus, the unpersonalized method proposed by

[Zangerle et al., 2011] is used to find hashtags of similar tweets and combined with
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the BLLI,S approach to generate personalized and content-aware recommendations.

Content-Based Tweet Analysis

The content of tweets is analyzed in order to find similar tweets for a target tweet

t and to extract the hashtags of these similar ones. Therefore, the term frequency-

inverse document frequency (TF-IDF) statistic is incorporated, which identifies the

importance of a term for a document in a collection of documents. TF-IDF can be

further used to calculate the similarity between two documents d and d by summing

up the TF-IDF statistics of d’s terms in d. When applying this statistic to Twitter,

tweets are treated as documents and the similarity between the target tweet t and

a candidate tweet t is calculated as follows:

sim(t, t) =
∑
c∈Ct

nc,t × log(
|T |

|{t′ : c ∈ t′}|
) (7.5)

where Ct are the terms in the text of target tweet t, nc,t is the number of times

c ∈ Ct occurs in the candidate tweet t, |T | is the number of tweets in the dataset

and |{t′ : c ∈ t′}| is the number of times c occurs in any tweet t′ ∈ T . The first

factor of this equation reflects the term frequency TF , whereas the second factor of

this equation reflects the inverse document frequency IDF [Zangerle et al., 2011].

Based on these similarity values, the most similar tweets St for t are identified

and the hashtags used in these tweets (i.e., HTSt
) are extracted. For each hashtag

ht ∈ HTSt
, a content-based score CB(ht, t) is assigned, which is the highest sim-

ilarity value within the most similar tweets St in which ht occurs. This method

is implemented using the Lucene-based full-text search engine Apache Solr 4.7.104.

Based on Solr’s software documentation and experimentation, the minimum term

frequency tf is set to 2 and the minimum document frequency df to 5.

Combining Personalized and Content-Aware Hashtag Recommendations

The personalized BLLI,S approach is combined with this content-based analysis (C)

in order to generate personalized hashtag recommendations (see Figure 7.4). Again,

this is achieved via a linear combination of both approaches. Taken together, the

4http://lucene.apache.org/solr/
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top-k recommended hashtags H̃T u,t for u and t are given by a linear combination:

H̃T u,t =
k

argmax
ht∈HTu,t

(λBI,S(ht, u)︸ ︷︷ ︸
BLLI,S

+(1− λ) σ(CB(ht, t))︸ ︷︷ ︸
C

)
(7.6)

where HT u,t is the set of candidate hashtags for u and t (i.e., HTu ∪HTFu
∪HTSt

).

The λ parameter is used to give weights to the personalized and content-aware

components. To that end, λ is set to .3 based on experimentation. Please note that

the content-based score CB(ht, t) has to be normalized using the softmax function

(see Equation 7.3), whereas BI,S(ht, u) is already normalized (see Equation 7.4).

This finally constitutes the personalized hashtag recommendation algorithm termed

BLLI,S,C .

7.5 Hashtag Recommendation Evaluation

In this section, the evaluation procedure to address Research Question 4 is presented.

This includes the methodology used as well as the results in terms of recommendation

accuracy and ranking for the two scenarios (i.e., with and without the current tweet).

This section is based on P10 [Kowald et al., 2017b].

7.5.1 Methodology

The methodology is given by the evaluation protocol, evaluation metrics and base-

line algorithms used. Although this methodology is based on the the methodology

described in Chapter 3, it was necessary to adapt it to the case of hashtag recom-

mendations in Twitter and therefore, the most important aspects are described in

this section.

Evaluation Protocol

In order to split the Twitter datasets into training and test sets, the evaluation

protocol described in Section 3.4.1 is used. Therefore, for each seed user in the

datasets (see Section 7.2) with at least two tweets (i.e., 2,020 users in the CompSci

dataset and 2,679 users in the Random dataset), the most recent tweet of the user

is determined and put into the test set. The remaining tweets are then put into the
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training set. This protocol ensures not only that the hashtags of at least one tweet

per user are available for training but also that the chronological order of the data is

preserved (i.e., future hashtags are predicted based on usage patterns of past ones).

These training and test sets are used in the following two evaluation scenarios:

Hashtag recommendations w/o current tweet. In the first scenario, the con-

tent of the currently proposed tweet is ignored (i.e., the one in the test set) and

hashtag predictions are provided solely based on the current user-id. Thus, in Sce-

nario 1 , all test set tweets are evaluated.

Hashtag recommendations w/ current tweet. In the second scenario, the

content of the current tweet is also incorporated. In this setting, only the test set

entries are evaluated, which do not include retweets (i.e., 954 test set tweets in the

CompSci dataset and 1,504 test set tweets in the Random dataset). The reason for

excluding the retweets from the test set in Scenario 2 is that searching for similar

tweets in the training set would result in identical tweets with identical hashtags,

which would heavily bias the evaluation (see also [Zangerle et al., 2011]).

Evaluation Metrics

To finally quantify the quality of the algorithms, for each test set entry, the top-10

hashtags an algorithm predicts for the given user u and tweet t (i.e., H̃T u,t) are

compared with the set of relevant hashtags actually used by u in t.

This comparison is done using various evaluation metrics, which have been de-

scribed in Section 3.4.2. Specifically, Precision (P) and Recall (R) are reported for

k = 1 to 10 predicted hashtags by means of Precision/Recall plots, and F1-score

(F1@5) is reported for k = 5 predicted hashtags. Additionally, the three ranking-

dependent metrics, namely (i) Mean Reciprocal Rank (MRR), (ii) Mean Average

Precision (MAP), and (iii) Normalized Discounted Cumulative Gain (nDCG) are

reported for k = 10 predicted hashtags.

Baseline Algorithms

The proposed approach is compared to a rich set of state-of-the-art hashtag rec-

ommendation algorithms. These algorithms are partly based on the approaches

described in Section 3.3. Specifically, results for the following approaches are pre-

sented:
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MPI . The Most Popular Individual Hashtags algorithm ranks the hashtags based

on the frequency in the hashtag assignments of current user u. MPI is also referred

to as Most Popular Tags by User (MPu) in tag recommendation terms [Jäschke

et al., 2008].

MRI . Most Recent Individual Hashtags is a time-dependent variant of MPI . MRI

suggests the k most recently used hashtags of current user u [Campos et al., 2014].

The BLLI approach can be seen as an integrated combination of MPI and MRI

based on human memory theory.

MPS. The Most Popular Social Hashtags algorithm is the social correspondent to

the individual MPI approach [Jäschke et al., 2008]. Thus, MPS does not rank the

hashtags based on the frequency in the hashtag assignments of user u but based on

the frequency in the hashtag assignments of user u’s set of followees Fu.

MRS. Most Recent Social Hashtags is the time-dependent equivalent to MPS. MRS

sorts the hashtag assignments of u’s followees Fu by time and recommends the k

most recent ones. The BLLS algorithm is a cognitive-inspired integration of MPS

and MRS.

MP. The unpersonalized Most Popular Hashtags approach returns the same set of

hashtags for any user. These hashtags are ranked by their overall frequency in the

dataset [Jäschke et al., 2008].

FR & CF. The well-known FolkRank and User-based Collaborative Filtering tag

recommendation approaches (see Sections 3.3.3 and 3.3.2) have been adapted for

the task of hashtag recommendation by simply treating each tweet as a resource

that has been tagged.

SR. SimilarityRank is an unpersonalized hashtag recommendation algorithm, which

utilizes the content of the currently proposed tweet t [Zangerle et al., 2011]. Similarly

to the BLLI,S,C approach, this is achieved using TF-IDF to determine content-based

similarity scores between tweets. These scores are used to recommend the k hashtags

that occur in t’s most similar tweets.

TCI. TemporalCombInt is one of the most recent approaches for personalized hash-

tag recommendations and also one of the very few approaches that accounts for

the effect of time on hashtag usage [Harvey and Crestani, 2015]. TCI builds on a

linear combination of SR and CF and incorporates temporal effects by considering
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Dataset Metric MPI MRI BLLI MPS MRS BLLS MP FR CF BLLI,S

CompSci

F1@5 .086 .098 .101 .022 .076 .118 .006 .083 .099 .153∗∗∗

MRR .136 .188 .193 .032 .122 .187 .007 .130 .163 .268∗∗∗

MAP .143 .195 .202 .033 .128 .205 .007 .136 .169 .285∗∗∗

nDCG .175 .218 .225 .046 .154 .235 .012 .169 .196 .324∗∗∗

Random

F1@5 .160 .169 .175 .072 .103 .138 .012 .159 .165 .208∗∗∗

MRR .261 .300 .314 .109 .159 .220 .023 .260 .278 .361∗∗∗

MAP .279 .315 .335 .116 .171 .240 .024 .279 .296 .389∗∗∗

nDCG .323 .352 .370 .144 .205 .280 .035 .324 .333 .434∗∗∗

Table 7.3: Recommender accuracy results for Scenario 1 of Research Question 4.
In this scenario, approaches are compared that ignore the current tweet content. It
can be observed that (i) BLLI outperforms MPI and MRI , (ii) BLLS outperforms
MPS and MRS, and (iii) BLLI,S outperforms MP, FR and CF. Based on a t-test, the
symbols ∗ (α = .1), ∗∗ (α = .01) and ∗∗∗ (α = .001) indicate statistically significant
differences between BLLI,S and CF.

the time-dependent relevance of a hashtag with respect to the recommendation date.

This is done by categorizing the hashtags into “organizational” and “conversational”

hashtags, and modeling the decay of temporal relevance using an exponential func-

tion. By fitting this model to the collected Twitter data, the two main parameters

of the algorithm, ηl and ηh, are set to .1 and .2, respectively.

7.5.2 Results and Discussion

In Section 7.3, it was shown that time is an important factor for hashtag reuse.

Because of this, it can be assumed that a time-dependent and cognitive-inspired

approach should provide reasonable results compared to other algorithms. The

accuracy estimates for the two evaluation scenarios are shown in Tables 7.3 and 7.4,

and Figure 7.5.

Scenario 1: Hashtag Recommendations Without the Current Tweet

In our first evaluation scenario, approaches that predict future hashtags without

incorporating the content of the currently proposed tweet are evaluated (see Table

7.3). Here, three main results are identified:

BLLI > MPI , MRI . When predicting individual hashtag reuse, the BLLI ap-

proach is compared to the frequency-based MPI and the recency-based MRI algo-
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rithms. The results clearly reflect the importance of the time component since MRI

and BLLI provide higher prediction accuracy and ranking estimates than MPI for

all evaluation metrics across both datasets.

Apart from that, it can be observed that BLLI outperforms MRI , which speaks

in favor of the cognitive-inspired combination of hashtag frequency and recency by

means of the BLL equation.

BLLS > MPS, MRS. Concerning the prediction of social hashtag reuse, the BLLS

approach is compared to the frequency-based MPS and the recency-based MRS

methods. Similar to the case of individual hashtag reuse, MRS and the BLL-based

method provide higher accuracy estimates than the solely frequency-based one, but

interestingly, this time the differences between these methods is much larger.

This indicates that the time information is especially important in a social set-

ting. This behavior was somehow expected since typically only the most recent

tweets of the followees are shown on a user’s Twitter timeline. Again, the combina-

tion of hashtag frequency and recency by means of the BLL equation provides the

best results.

BLLI,S > MP, FR, CF. Finally, the hybrid BLLI,S approach is compared to the

unpersonalized MP algorithm, the well-known FR method from tag recommender

research and classic user-based CF. The first observation that becomes apparent

is the poor performance of the unpersonalized MP baseline, which underpins the

importance of personalized methods for hashtag recommendation.

Additionally, and more importantly, the hybrid BLLI,S approach does not only

improve its BLLI and BLLS components but also provides significantly higher ac-

curacy and ranking estimates than FR and CF. This shows that BLLI,S is capable

of providing reasonable hashtag recommendations solely based on temporal usage

patterns of past hashtag assignments.

Scenario 2: Hashtag Recommendations With the Current Tweet

In the second scenario, hashtag recommendation methods that also incorporate the

content of the current tweet are evaluated (see Table 7.4). This includes the un-

personalized SR approach, the time-dependent TCI algorithm and the BLLI,S,C

approach. The two main results are:

TCI, BLLI,S,C > SR. The first main result of the second evaluation scenario is that
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Dataset Metric SR TCI BLLI,S,C

CompSci

F1@5 .139 .182 .200∗

MRR .264 .334 .395∗∗∗

MAP .283 .354 .417∗∗∗

nDCG .299 .385 .446∗∗

Random

F1@5 .181 .243 .261∗

MRR .341 .436 .489∗∗

MAP .374 .472 .530∗∗

nDCG .388 .507 .562∗∗

Table 7.4: Recommender accuracy results for Scenario 2 of Research Question 4.
In this scenario, approaches that also incorporate the current tweet content are
compared. It is shown that BLLI,S,C outperforms SR and TCI. Based on a t-test,
the symbols ∗ (α = .1), ∗∗ (α = .01) and ∗∗∗ (α = .001) indicate statistically significant
differences between BLLI,S,C and TCI.

both time-dependent methods TCI and BLLI,S,C outperform the unpersonalized SR

approach. The result was somehow expected since both TCI and BLLI,S,C extend

the TF-IDF-based tweet content analysis of SR with personalization techniques via

CF (TCI) or the BLL equation (BLLI,S,C).

BLLI,S,C > TCI. The second main result of Scenario 2 is that BLLI,S,C provides

significantly higher accuracy estimates than TCI. This is due to three main differ-

ences between these methods: (i) instead of using hashtags of similar users by means

of CF for adding personalization, not only individual hashtags of the current user

but also social hashtags of the current user’s followees are incorporated, (ii) instead

of applying the effect of time on a global hashtag level, the time-dependent decay is

modeled on an individual and social level, and (iii) instead of modeling this time-

dependent decay using an exponential function, a power function is used by means

of the BLL equation.

CompSci Dataset Versus Random Dataset

Another interesting finding that can be observed is that all algorithms provide better

results for the Random dataset than for the CompSci dataset. This indicates that

the task of predicting hashtags is harder in the domain-specific network of computer

scientists than in the network of random users.

According to Figure 7.1, this makes sense since the amount of “external” hash-
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Figure 7.5: Precision / Recall plots of the two evaluation scenarios showing the
accuracy of BLLI , BLLS, CF, BLLI,S, SR, TCI and BLLI,S,C for k = 1 - 10 recom-
mended hashtags. It is shown that BLLI,S provides the best results in Scenario 1
and BLLI,S,C provides the best results in Scenario 2 .
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tags is twice as high in the CompSci dataset (i.e., 26%) than in the Random one

(i.e., 13%). These “external” hashtags could be addressed in the recommendation

process by using an additional knowledge source such as the list of currently trending

hashtags.

7.6 Summary

In this chapter, the design, implementation and evaluation procedure of a cognitive-

inspired approach for hashtag recommendations in Twitter (i.e., BLLI,S) was pre-

sented. Based on the findings of the previous chapters of this thesis, this algorithm

utilizes activation processes in human memory to account for temporal effects on

individual hashtag reuse (i.e., reusing own hashtags) and social hashtag reuse (i.e.,

reusing hashtags, which has been previously used by a followee). Therefore, an anal-

ysis of hashtag usage types in two empirical networks (i.e., CompSci and Random

datasets) crawled from Twitter was conducted, which revealed that between 66%

and 81% of hashtag assignments can be explained by past individual and social

hashtag usage. By analyzing the timestamps of these hashtag assignments, it was

further shown that temporal effects play an important role for both individual and

social reuse of hashtags and that a power function provides a better fit to model

this time-dependent decay than an exponential function.

Based on this, the BLL equation of ACT-R was utilized to develop BLLI,S and

BLLI,S,C , two algorithms for recommending hashtags. Whereas BLLI,S aims to

recommend hashtags without incorporating the current tweet (i.e., Scenario 1 ),

BLLI,S,C also utilizes the content of the current tweet using the TF-IDF statistic

(i.e., Scenario 2 ). Both algorithms were compared to state-of-the-art hashtag rec-

ommendation algorithms in order to contribute to Research Question 4 (“Given that

activation processes in human memory can be modeled to improve tag recommen-

dations, can they also be utilized for hashtag recommendations in Twitter?”).

Summed up, the four main findings of this chapter are as follows:

1. A substantial amount of hashtag assignments in Twitter can be explained by

past individual and social hashtag usage.

2. Temporal effects have an important influence on both individual as well as

social hashtag reuse.
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3. A power function is better suited to model this time-dependent decay than an

exponential one.

4. BLLI,S outperforms related algorithms in the first evaluation scenario (i.e.,

without the current tweet) and BLLI,S,C in the second one (i.e., with the current

tweet).

These findings show that activation processes in human memory can be utilized

for the recommendation of hashtags in Twitter. This further demonstrates that

the cognitive-inspired tag recommendation approach proposed in this thesis can

be generalized for related use cases in the area of tag-based recommender systems,

which positively answers Research Question 4. Additionally, this opens up a number

of possible research strands for future work, such as the design of cognitive-inspired

resource recommender systems, which will (among others) be discussed in the next

(and final) chapter of this thesis.
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Chapter 8

Conclusion

“One worthwhile task carried to a successful conclusion is worth

half-a-hundred half-finished tasks.”

(Malcolm S. Forbes, Publisher of Forbes magazine)

This thesis has modeled activation processes in human memory in order to im-

prove tag recommendations. Therefore, the relation between activation processes

in human memory and the reuse of tags in social tagging system has been inves-

tigated and a novel tag recommendation algorithm termed BLLAC+MPr has been

proposed based on the activation equation of the cognitive architecture ACT-R. This

algorithm has been evaluated in six real-work folksonomy datasets to demonstrate

that a cognitive-inspired approach is able to outperform state-of-the-art tag recom-

mendation methods that ignore these insights from cognitive science. Finally, the

algorithm was adapted and extended for recommending hashtags in Twitter, which

shows that activation processes in human memory can be utilized for related use

cases in the area of tag-based recommender systems.

This chapter concludes this thesis by summarizing the achieved contributions in

Section 8.1 and by discussing the impact of this dissertation research in Section 8.2.

Apart from that, remaining open questions as well as possibilities for future work

are presented in Section 8.3.
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8.1 Contributions

This section describes the main scientific contributions that were achieved in course

of this thesis.

8.1.1 Research Question 1: The Influence of Activation Pro-

cesses in Human Memory on Tag Reuse

With respect to Research Question 1, “How are activation processes in human mem-

ory influencing the tag reuse behavior of users in social tagging systems?”, the rela-

tion between activation process in human memory and the reuse of tags was studied

in Chapter 4.

Based on human memory theory [Anderson et al., 2004], the usefulness of a piece

of information (e.g., a word or tag) depends on (at least) three factors: (i) past usage

frequency, (ii) past usage recency, and (iii) the current semantic context. The results

presented in Section 4.2.1 showed that these three factors also influence the reuse of

tags in social tagging systems. This means that (i) the more frequently a tag was

used in the past, the higher its reuse probability, (ii) the more recently a tag was

used in the past, the higher its reuse probability, and (iii) the more similar a tag is

to tags in the current semantic context, the higher its reuse probability. Apart from

that, it was shown in Section 4.2.2 that the effect of recency on the reuse probability

of tags is more likely to follow a power-law distribution than an exponential one,

which is in line with the model of time-dependent decay of item exposure in human

memory [Anderson and Schooler, 1991].

These findings verified the strong relation between activation processes in human

memory and the use of tags in social tagging systems, which positively answered

Research Question 1. Additionally, these findings were used as a prerequisite for

designing a cognitive-inspired approach for tag reuse predictions and tag recom-

mendations based on the activation equation of the cognitive architecture ACT-R.

8.1.2 Research Question 2: Designing a Cognitive-Inspired

Algorithm for Tag Reuse Prediction

Based on the outcomes of Research Question 1, a novel cognitive-inspired approach

for predicting the reuse of tags (i.e., BLLAC) was proposed in Chapter 5. This
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contributed to Research Question 2, “Can the activation equation of the cognitive

architecture ACT-R, which accounts for activation processes in human memory, be

exploited to develop a model for predicting the reuse of tags?”.

Specifically, BLLAC implements the activation equation of the cognitive archi-

tecture ACT-R [Anderson et al., 2004] to model (i) past tag usage frequency, (ii)

past tag usage recency, and (iii) the current semantic context using a power-law

model. This algorithm was evaluated with respect to tag reuse prediction accuracy

and ranking using the methodology presented in Chapter 3. The evaluation results

presented in Section 5.2.3 showed that BLLAC outperforms not only algorithms re-

flecting its individual components and combinations of its components but also the

well-known FolkRank algorithm [Hotho et al., 2006] in narrow and mixed folkson-

omy settings. In the broad folksonomy setting, however, FolkRank provided the

best results, which showed the importance of incorporating also social influences for

tag recommendations by means of imitating popular tags of other users.

Thus, it was proved that the activation equation of the cognitive architecture

ACT-R can be exploited to predict the reuse of tags, which positively answered

Research Question 2. Furthermore, the strong prediction accuracy results of the

FolkRank algorithm in broad folksonomy settings indicated the importance of in-

corporating also social influences by means of tag imitation processes in order to

realize a hybrid tag recommendation approach.

8.1.3 Research Question 3: Implementing a Hybrid Ap-

proach for Tag Recommendations in Real-World Folk-

sonomies

The next main scientific contribution of thesis was the implementation and evalua-

tion of a hybrid tag recommendation algorithm for real-world folksonomies termed

BLLAC+MPr. In this respect, the results presented in Chapter 6 contributed to

Research Question 3, “Can a tag prediction model based on the activation equation

be expanded with tag imitation processes in order to improve tag recommendations

in real-world folksonomies?”.

With respect to this research question, the contributions are threefold. Firstly,

it was shown that BLLAC can be expanded with tag imitation processes by means

of popular tags of other users in order to realize BLLAC+MPr. Secondly, according
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to the evaluation results presented in Section 6.2.1, BLLAC+MPr provided the most

robust results over all datasets with respect to various folksonomy settings and

evaluation metrics. Thirdly, these results were validated in related settings such

as the ECML PKDD Discovery Challenge 2009 dataset, and two datasets from

Technology Enhanced Learning projects (see Section 6.2.2).

Based on these findings, Research Question 3 was answered positively, which

showed that an algorithm based on activation processes in human memory can be

utilized for various use cases in the area of tag recommendations for social tagging

systems.

8.1.4 Research Question 4: Utilizing the Approach for Hash-

tag Recommendations in Twitter

In order to demonstrate the generalizability of the proposed approach, Research

Question 4, “Given that activation processes in human memory can be modeled to

improve tag recommendations, can they also be utilized for hashtag recommendations

in Twitter?”, was investigated in Chapter 7.

Specifically, this research question tackled the design, implementation and evalu-

ation procedure of two cognitive-inspired approaches for hashtag recommendations

in Twitter (i.e., BLLI,S and BLLI,S,C). In this respect, three contributions were

achieved. Firstly, it was shown that a substantial amount of hashtag assignments in

Twitter can be explained by past individual and social hashtag usage (see Section

7.2). Secondly, the analysis presented in Section 7.3 validated that temporal ef-

fects have an important influence on both individual as well as social hashtag reuse.

Thirdly, the evaluation conducted in Section 7.5 showed that BLLI,S outperforms

state-of-the-art hashtag algorithms in two evaluation scenarios.

These findings showed that activation processes in human memory can be utilized

for the recommendation of hashtags in Twitter, which positively answered Research

Question 4. This further demonstrated that the cognitive-inspired tag recommen-

dation approach proposed in this thesis (i.e., BLLAC+MPr) can be generalized for

related use cases in the area of tag-based recommender systems.
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8.1.5 TagRec: An Open-Source Tag Recommendation Eval-

uation Framework

Finally, on the methodological level (see Chapter 3), this thesis contributed with

an open-source evaluation framework for tag-based recommender systems called

TagRec.

The purpose of TagRec is to provide the research community with a standardized

framework that supports all steps of the development and evaluation process of tag-

based recommendation algorithms in a reproducible way. This includes methods for

data preprocessing, data modeling and recommender evaluation.

In order to ensure reproducibility, all experiments conducted to address the four

research questions of this thesis have been undertaken by using TagRec. Apart from

that, all described datasets are freely available on the Web and can directly be

processed using TagRec.

8.2 Impact

The impact of this dissertation research can be found in the areas of (i) recom-

mender systems, (ii) social tagging, (iii) tag recommendation evaluation, and (iv)

recommendations in informal learning settings.

8.2.1 Recommender Systems

With respect to the research area of recommender systems, this thesis showed that

principles of human cognition (e.g., activation processes in human memory) can be

utilized to improve tag recommendations [Kowald, 2015]. By taking into account

how humans access information in their memory, cognitive-inspired recommenda-

tion strategies were developed as an alternative to data-driven methods such as

Collaborative Filtering or Tensor Factorization [Kowald et al., 2014b, Kowald et al.,

2015a].

The evaluation results presented in this thesis indicated that cognitive-inspired

approaches are able to outperform purely data-driven algorithms not only in terms of

recommendation accuracy but also with respect to computational efficiency [Kowald

et al., 2015a, Trattner et al., 2016].
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These findings had an impact on the research area of recommender systems

by motivating the development of related cognitive-inspired recommendation algo-

rithms (e.g., [Seitlinger et al., 2013, Kowald et al., 2015b, Seitlinger et al., 2015a,

Kopeinik et al., 2016a]).

8.2.2 Social Tagging

This thesis contributed to the large body of research that analyzes interactions in

social tagging systems. Specifically, the relation between activation processes in

human memory and the reuse of tags was investigated, which resulted in a set of

factors that influence the reuse of tags.

As shown in [Kowald and Lex, 2016], three of these factors are (i) past usage

frequency, (ii) past usage recency, and (iii) the current semantic context cues. Es-

pecially, the second factor (i.e., recency) has led to further interesting investigations

such as the study of temporal effects on hashtag reuse in Twitter [Kowald et al.,

2017b].

In this respect, this thesis has also answered the question if a power-law or

exponential distribution is better suited to model the time-dependent decay of tag

reuse. While related work has used an exponential function for this purpose, the

experiments presented in this thesis has shown that a power function should be

favored [Kowald and Lex, 2016, Kowald et al., 2017b].

8.2.3 Tag Recommendation Evaluation

This thesis provided the to-date most extensive evaluation of tag recommendation

algorithms [Kowald and Lex, 2015]. This included the evaluation of 20 tag recom-

mendation algorithms on 6 datasets by using 10 evaluation metrics. This large-scale

study provided the research community with a performance overview of state-of-

the-art tag recommendation algorithms in various evaluation settings.

Apart from that, the open-source TagRec framework [Kowald et al., 2014a] was

developed in course of this thesis. To date, TagRec supported the development and

evaluation process of tag-based recommender systems in two large-scale European

projects described in 17 research papers. This included use cases in the areas of

(i) social tag recommendation, (ii) resource recommendations, (iii) recommendation

evaluation, and (iv) hashtag recommendations [Kowald et al., 2017a].
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8.2.4 Recommendations in Informal Learning Settings

Parts of this dissertation research were conducted in course of the large-scale Euro-

pean project Learning Layers1 [Ley et al., 2013, Ley et al., 2014], which was about

scaling informal learning at the workplace. In this respect, tag recommendations

were used to support users in finding descriptive tags to bookmark learning re-

sources. The BLLAC+MPr approach developed in this thesis especially supported

this informal learning setting, since BLLAC+MPr not only accounts for the par-

ticular expertise of a user (via the BLLAC component) but also for the knowledge

of the collective (via the MPr component)2 [Santos et al., 2016]. The evaluation

results presented in [Kopeinik et al., 2016b] demonstrated that this approach can

successfully be applied in both social bookmarking as well as Technology Enhanced

Learning settings.

Furthermore, the aforementioned TagRec framework was used as a recommenda-

tion engine in the Social Semantic Server (SSS)3 [Dennerlein et al., 2015a, Kowald

et al., 2013], which was the main back-end technology in the Learning Layers project.

Thus, various informal learning tools such as KnowBrain4 [Dennerlein et al., 2015b]

and Bits & Pieces5 [Dennerlein et al., 2014] were supported by the recommendation

algorithms developed in the course of this thesis.

Finally, it is planned to use TagRec in the course of the H2020 European project

AFEL6, which is about analytics for everyday learning. Here, principles implemented

in TagRec will be used to develop a recommendation algorithm for suggesting learn-

ing paths (i.e., ordered lists of connected learning resources for a specific topic) to

users.

8.3 Open Questions and Future Work

This thesis opens up a number of promising research directions and possibilities for

future work, which are discussed in this section.

1http://learning-layers.eu/
2http://results.learning-layers.eu/infrastructure/sss/services/tag-rec/
3https://github.com/learning-layers/SocialSemanticServer
4https://github.com/learning-layers/KnowBrain
5https://github.com/learning-layers/BitsAndPieces
6http://afel-project.eu/
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“Are there other cognitive processes that can be utilized to model the use of tags in

social tagging systems?”

This thesis focused on modeling activation processes in human memory by means

of the activation equation of the declarative memory module of the cognitive archi-

tecture ACT-R. This means, that the tags of a user with the highest activation value

in the current context are recommended.

However, the tag choices of a user are also influenced by other cognitive pro-

cesses, for example, processes defined in the procedural memory module of ACT-R

[Anderson et al., 2004]. Here, production rules are used to define actions based on

a given information goal (e.g., looking for resources in the research area of “rec-

ommender systems”). In this respect, it would be very interesting to extend the

current approach with such processes in order to decide if a given tag will be chosen

by a given user who is guided by a specific information goal. One way to realize this

could be the SNIF-ACT model [Fu and Pirolli, 2007, Pirolli and Fu, 2003, Pirolli

et al., 2002].

Apart from that, the current implementation of tag imitation processes in this

thesis is solely based on the popularity of other users’ tags. Here, the semantic

imitation model described in [Fu et al., 2010] could be applied to personalize these

tag imitation processes. Similarly, the 3Layers algorithm [Seitlinger et al., 2013]

could be used to replace MPr with tags of semantically similar resources.

“Can content information of the resources be used to model the current semantic

context of social tagging?”

One limitation of BLLAC+MPr is that it uses other users’ tags as cues to model

the current semantic context. Since most publicly available social tagging datasets

do not contain content information of resources (e.g., title or description text), this

allows BLLAC+MPr to solely utilize tagging data for this purpose. However, this

approach only works for non cold-start resources that have already been tagged by

other users.

Therefore, one potential strand of future work would be to integrate content

data of resources. This idea is supported by the work of [Lipczak and Milios, 2010],

in which it is shown that the title of a resource already has a large impact on the

choice of tags in social tagging systems.

“Can BLLAC+MPr be further improved by utilizing the fan effect of the cognitive
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architecture ACT-R?”

The associative component of BLLAC+MPr defines the usefulness of a given tag

in the current semantic context via tag co-occurrences. Consequently, general tags

have more co-occurrences with other tags than specific ones, which results in a higher

spreading activation.

In order to overcome this, [Anderson and Reder, 1999] defines the so-called fan

effect, which ensures that the spreading activation of general tags is softened and the

one of specific tags is increased. As future work, it is therefore planned to evaluate if

the integration of the fan effect into BLLAC+MPr can further improve its prediction

accuracy.

“Can the mixing parameter of the hybrid combination of BLLAC+MPr be optimized

with respect to the given dataset?”

One limitation of BLLAC+MPr is that the mixing parameter β is set to its default

value (i.e., .5), which results in equal weights of both components (i.e., BLLAC and

MPr). However, the evaluation results presented in this thesis showed that the

performance of MPr depends on the given folksonomy type.

Thus, it would be interesting to test if β can be optimized based on the given

dataset: for narrow folksonomies, β should be increased to give a higher weight to

BLLAC , and for broad folksonomies, β should be decreased to give a higher weight

to MPr.

“Can the offline evaluation results of this thesis be verified in online evaluation

settings?”

This thesis followed common practice in the area of recommender systems to

build on an offline study design. Although a rich set of baseline algorithms, evalua-

tion metrics and real-world folksonomy datasets were used, only an online study is

able to measure the real user acceptance of the generated recommendations [Jäschke

et al., 2009].

Thus, it is planned to adapt and use open-source social bookmarking tools such

as KnowBrain [Dennerlein et al., 2015b] or SemanticScuttle7 to conduct a user study,

in which BLLAC is compared with other algorithms (e.g., 3Layers [Seitlinger et al.,

2013]). Such setting would not only allow to evaluate the user acceptance of the

7http://semanticscuttle.sourceforge.net/
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algorithms but also to test the algorithms in different scenarios (e.g., individual

versus collaborative tagging).

“Can the proposed hashtag recommendation approach BLLAC+MPr be improved if

additional user information is taken into account?”

One limitation of the BLLI,S and BLLI,S,C hashtag recommendation algorithms

is that the reuse of social hashtags is solely modeled by analyzing how frequently and

recently a hashtag was used by a user’s followees. Thus, these approaches neglect

by whom the hashtag was used, which should influence a user’s choice to adapt a

followee’s hashtags.

Thus, for future research, it is planed to extend these approaches by incorporating

the social status of the followee. According to [Hasani-Mavriqi et al., 2015, Hasani-

Mavriqi et al., 2016], the reputation of the users (e.g., by means of the number

of followers) could be used as a proxy to model the social status. In this respect,

the social connection strength between the users (e.g., by means of the number of

mentions or retweets) could also be integrated to further extend these approaches.

“Can the findings of this thesis be used for the design and implementation of related

cognitive-inspired recommender systems?”

This thesis showed that activation processes in human memory can be utilized

for both tag recommendations in social tagging systems and hashtag recommenda-

tions in Twitter. These findings open up possible research strands for future work,

such as the design of cognitive-inspired recommender systems (e.g., for resource

recommendations).

A first attempt in this direction was presented in [Lacic et al., 2014b], where the

BLL equation of ACT-R is used to improve Collaborative Filtering to recommend

resources to users. Another example is the work of [Seitlinger et al., 2015a, Kopeinik

et al., 2016a], in which a model of human category learning is used to further

personalize Collaborative Filtering-based recommendations.

Thus, one possibility for future work would be to integrate such cognitive-inspired

recommender approaches into a generic recommender framework such as ScaR (Scal-

able Recommendation-as-a-Service)8 [Lacic et al., 2014a, Lacic et al., 2014c] in order

to test their applicability in various application settings (e.g., E-commerce systems).

8http://scar.know-center.tugraz.at/
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Finally, the author of this thesis believes, that general future research of recom-

mender systems should focus on a hybrid combination of (i) cognitive-inspired, and

(ii) data-driven (e.g., machine learning-based) approaches. This way, the strengths

of both types of algorithms can be combined in order to adapt to the given data

(i.e., large-scale versus small-scale settings). This thesis already provided a first step

into this research direction.
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