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ABSTRACT
Hashtags have become a powerful tool in social platforms
such as Twitter to categorize and search for content, and to
spread short messages across members of the social network.
In this paper, we study temporal hashtag usage practices in
Twitter with the aim of designing a cognitive-inspired hash-
tag recommendation algorithm we call BLLI,S . Our main
idea is to incorporate the effect of time on (i) individual
hashtag reuse (i.e., reusing own hashtags), and (ii) social
hashtag reuse (i.e., reusing hashtags, which has been previ-
ously used by a followee) into a predictive model. For this,
we turn to the Base-Level Learning (BLL) equation from the
cognitive architecture ACT-R, which accounts for the time-
dependent decay of item exposure in human memory. We
validate BLLI,S using two crawled Twitter datasets in two
evaluation scenarios. Firstly, only temporal usage patterns
of past hashtag assignments are utilized and secondly, these
patterns are combined with a content-based analysis of the
current tweet. In both evaluation scenarios, we find not only
that temporal effects play an important role for both indi-
vidual and social hashtag reuse but also that our BLLI,S ap-
proach provides significantly better prediction accuracy and
ranking results than current state-of-the-art hashtag recom-
mendation methods.
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1. INTRODUCTION
Over the past years, the microblogging platform Twit-

ter has become one of the most popular social networks on
the Web with more than 310 million monthly active users.
Users can build a network of follower connections to other
Twitter users, which means that they can subscribe to con-
tent posted by their followees [31, 23]. Twitter was also the
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first social platform that adopted the concept of hashtags,
as suggested by Chris Messina in 20071.

Hashtags are freely-chosen keywords starting with the hash
character“#”to annotate, categorize and contextualize Twit-
ter posts (i.e., tweets) [34, 12]. The advantage of hashtags
is that anyone with an interest in a hashtag can track it and
search for it [38], thus receiving content posted by some-
body outside of their own Twitter network. For example,
users can retrieve tweets created during the European foot-
ball championship by searching for the hashtag #euro2016,
even if they do not have a social link to the tweet producers.
Meanwhile, many social platforms, such as Instagram and
Facebook, have adopted hashtags as well.

Problem. Unsurprisingly, the widespread acceptance of
hashtags has sparked a lot of research in the field of hash-
tag recommendations (see Section 6 for a selection of ap-
proaches) to support users in assigning the most descriptive
hashtags to their posts. Existing methods typically utilize
collaborative, content and topic features of tweets to recom-
mend hashtags to users. Undoubtedly, these features play an
important role in recommending hashtags that best describe
a tweet. In this paper, however, we are especially interested
in predicting which hashtags a user will likely apply in a
newly created tweet given previous hashtag assignments.

The main problem we want to address is whether we can
identify temporal usage patterns that influence if a Twitter
user will likely utilize a certain hashtag in a tweet, given
the hashtags she and/or her followees have used in the past.
Our goal is to describe such temporal usage patterns by
utilizing a model from human memory theory and to design
a hashtag recommendation algorithm based on that. To the
best of our knowledge, so far, few studies (e.g., [11]) have
investigated the way temporal effects can be exploited in the
hashtag recommendation process.

Approach and methods. We propose a cognitive-inspired
hashtag recommendation algorithm we call BLLI,S that is
based on temporal usage patterns of hashtags derived from
empirical evidence. In essence, these patterns reflect how a
person’s own hashtags as well as hashtags from the social
network are utilized and reused. In our approach, we uti-
lize the Base-Level Learning (BLL) equation from the cog-
nitive architecture ACT-R [2, 3] to model temporal usage
practices of hashtags. The BLL equation accounts for the
time-dependent decay of item exposure in human memory.
It quantifies the usefulness of a piece of information (e.g., a

1https://twitter.com/chrismessina/status/223115412
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hashtag) based on how frequently and how recently it was
used by a user in the past and models this time-dependent
decay by means of a power-law distribution. Thus, BLLI,S

takes into consideration the frequency and recency of hash-
tags used by a user and her followees in the past.

We presented the BLL equation in our previous work as
a model to recommend tags in social bookmarking systems
such as BibSonomy and CiteULike [20, 19]. In the present
work, we build upon these results by adopting the BLL equa-
tion to model the effect of time on the reuse of individual and
social hashtags to build our hashtag recommendation algo-
rithm. We demonstrate the efficacy of our approach in two
empirical social networks crawled from Twitter. The first
social network, termed CompSci dataset, is built upon the
tweets of a sample of Twitter users, who have been iden-
tified as computer scientists in previous related work [10],
and their followees. The second network, termed Random
dataset, is built upon the tweets of a set of randomly cho-
sen Twitter users and their followees. We experiment with
these datasets to investigate the performance of our hash-
tag recommendation approach in two settings: (i) tweets
of a domain-specific Twitter network, and (ii) tweets of a
random network of Twitter users.

Contributions and findings. The main contributions of
our work are two-fold. Firstly, our paper shows that time
has a large effect on individual as well as social hashtag reuse
in Twitter. Specifically, we observe a time-dependent decay
of individual and social hashtag reuse that follows a power-
law distribution. This finding paves the way for our idea to
utilize the BLL equation as a predictive model to recommend
hashtags for new tweets. Thus, our second contribution is
that we design, develop and evaluate a personalized hashtag
recommendation algorithm based on the BLL equation that
outperforms current state-of-the-art approaches.

We implement the BLL equation in two variants, where
the first one (i.e., BLLI,S) predicts the hashtags of a user
solely based on past hashtag usage, and the second one
(i.e., BLLI,S,C) combines BLLI,S with a content-based tweet
analysis to also incorporate the text of the currently pro-
posed tweet of a user. We evaluate our approach using stan-
dard evaluation protocols and metrics, and we find that both
variants of our approach provide significantly higher predic-
tion accuracy and ranking estimates than current state-of-
the-art hashtag recommendation algorithms in both scenar-
ios. We attribute this to the fact that our approach, in con-
trast to other related methods, mimics the way humans use
and adapt hashtags by building upon insights from human
memory theory (i.e., the BLL equation).

Structure of this paper. In Section 2, we continue by
describing the crawling procedure of our two Twitter data-
sets and analyzing hashtag usage types in these datasets.
Then, in Section 3, we study temporal usage patterns of in-
dividual and social hashtag reuse. In Section 4, we describe
two variants of our approach (i.e., without and with the cur-
rent tweet). This is followed in Section 5 by our evaluation
methodology and experimental results. Finally, we discuss
related work in the field in Section 6 and we give a summary
of our findings as well as our future plans in Section 7.

2. DATASETS
In this section, we describe the data collection procedure

and the two datasets we use for our study. Additionally, we

Dataset |US | |U | |T | |HT | |HTAS|
CompSci 2,551 91,776 5,649,359 1,081,403 9,161,842
Random 3,466 127,112 8,157,702 1,507,773 13,628,750

Table 1: Statistics of our CompSci and Random
Twitter datasets. In this table, |US | is the number
of seed users, |U | is the number of distinct users, |T |
is the number of tweets, |HT | is the number of dis-
tinct hashtags and |HTAS| is the number of hashtag
assignments.

investigate individual as well as social hashtag reuse patterns
in our datasets as a prerequisite for our hashtag recommen-
dation approach.

Crawling strategy and dataset statistics. In order to
address our research goals, we crawl two datasets using the
Search API of Twitter2. The final statistics of these datasets
are illustrated in Table 1.

The first one (i.e., CompSci dataset) consists of researchers
from the field of computer science and their followees, while
the second one (i.e., Random dataset) consists of random
people and their followees. Our idea is to test our hashtag
recommendation approach in two different network settings:
(i) a domain-specific one, in our case the domain of com-
puter scientists, and (ii) a more general one consisting of
random Twitter users. Our crawling strategy for both data-
sets comprises of the following four steps:

(a) Crawl seed users. We start with identifying and
crawling a list of seed users US for each dataset. In the
case of the CompSci dataset, we take the users who were
identified as computer scientists in the work of [10]. In the
case of the Random dataset, we use the Streaming API of
Twitter3 to get a stream of tweets and extracted the user-ids
to get our list of random seed users. From both user lists, we
remove all users with more than 180 followees, which results
in |US | = 2,551 seed users for the CompSci dataset and |US |
= 3,466 seed users for the Random dataset. The threshold
of using a maximum of 180 followees is chosen because the
Twitter Search API only allows 180 requests to be made
every 15 minutes, which gives us the possibility to crawl the
tweets of all followees of a seed user within this reasonable
time window.

(b) Crawl followees. Next, we use these follower rela-
tionships to crawl the followees F of the seed users in order to
create a directed user network for analyzing the social influ-
ence on hashtag reuse. Based on the number of seed users,
the average number of followees per seed user |F |/|US | =
94 in the case of the CompSci dataset and 72 in the case
of the Random dataset. Following these notations, the set
of followees of user u is denoted as Fu in the remainder of
this paper. Overall, our crawling procedure gives us |U | =
91,776 distinct users for the CompSci dataset and |U | =
127,112 distinct users for the Random dataset.

(c) Crawl tweets. In the third step, we crawl the 200
most recent tweets of all the users and remove the tweets in
which no hashtags are used. The threshold of a maximum of
200 most recent tweets is set because of another restriction
of the Twitter Search API that only allows 200 tweets to
be received per a single request. This crawling procedure
results in |T | = 5,649,359 tweets for the CompSci dataset

2https://dev.twitter.com/rest/public/search
3https://dev.twitter.com/streaming/overview
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Figure 1: Analysis of hashtag usage types in our two
datasets. For each hashtag assignment, we study
whether the corresponding hashtag has been used
by the same user before in time (“individual”), by
some of the users she follows (“social”), by both
(“individual/social”), by anyone else in the dataset
(“network”) or neither of them (“external”). We find
that between 66% and 81% of hashtag assignments
in both datasets can be explained by individual or
social hashtag usage (i.e., the sum of “individual”,
“social” and “individual/social”).

with an average number of tweets per user |T |/|U | = 61, and
|T | = 8,157,702 tweets for the Random dataset with |T |/|U |
= 64. Our crawled tweets cover a time range from 2007 to
2015 in case of both datasets.

(d) Extract hashtag assignments. In the final step of
our crawling procedure, we extract the hashtag assignments
by searching for all words that start with a “#” character.
This results in |HTAS| = 9,161,842 hashtag assignments for
|HT | = 1,081,403 distinct hashtags in the CompSci network
and |HTAS| = 13,628,750 for |HT | = 1,507,773 in the Ran-
dom network. Thus, in both datasets, each distinct hashtag
is used approximately 9 times on average and each user uses
approximately 100 hashtag assignments in her tweets on av-
erage. Examples for popular hashtags are #bigdata, #iot
and #ux in case of the CompSci dataset, and #shahbag,
#ff and #art in case of the Random dataset.

Analysis of hashtag usage types. In our datasets, we an-
alyze hashtag assignments as well as hashtag reuse practices
with the aim of identifying the different types of hashtag
usages as a prerequisite for our recommendation approach.
Specifically, for each hashtag assignment, we study whether
the corresponding hashtag has either been used by the same
user before (“individual”), by some of her followees (“social”),
by both (“individual/social”), by anyone else in the dataset
(“network”) or by neither of them (“external”).

The results of this study are shown in Figure 1. We find
that 66% of hashtag assignments in the CompSci dataset
and 81% in the Random dataset can be explained by indi-
vidual or social hashtag reuse. This finding further supports
our choice to utilize these two types of influences (i.e., indi-
vidual and social) to create our model. In contrast to these
large numbers, the 6% to 8% of hashtags in the “network”
category is relatively small. Interestingly, the amount of“ex-
ternal”hashtags is twice as high in the CompSci dataset (i.e.,
26%) as in the Random one (i.e., 13%). Thus, in our data-
sets, computer scientists tend to use more hashtags, which
have not been previously introduced in the network, than

random Twitter users. Because of this, we believe that the
recommendation accuracy results would generally be lower
in the CompSci dataset than in the Random one, which will
be evaluated in Section 5. Summing up, both individual
and social hashtags have an impact on the users’ choice of
hashtags for a new tweet.

3. TEMPORAL EFFECTS ON HASHTAG
REUSE IN TWITTER

In this section, we study to what extent temporal effects
play a role in the reuse of individual and social hashtags
in our two datasets (i.e., CompSci and Random). Specifi-
cally, we analyze the recency of hashtags assignments (i.e.,
the time since the last hashtag usage/exposure), as well as
whether this effect of time-dependent decay follows a power-
law or exponential distribution.

Temporal effects on individual hashtag reuse. The
effect of time on individual hashtag reuse is visualized in
the plots (a) and (b) of Figure 2. To put the x-scale of
these plots onto a meaningful range, we set the threshold
for the maximum hashtag reuse recency to one year (i.e.,
8,760 hours). The plots show the individual hashtag reuse
count plotted over the reuse recency of a hashtag ht by a
user u in hours. Hence, for each hashtag assignment of a
hashtag ht by user u, we take the time since the last usage
of ht by u (i.e., the reuse recency) and pool together all
hashtag assignments with the same recency value (i.e., the
same time difference in hours). The individual reuse count
for this recency value is then given by the size of the set of
these hashtag assignments.

The two plots show similar results for both datasets and
indicate that the more recently a hashtag ht was used by
a user u in the past, the higher its individual reuse count
is. Interestingly, there is a clear peak after 24 hours in both
datasets, which further indicates that users typically use the
same set of hashtags in this time span and thus, tend to tweet
about similar topics on a daily basis. Furthermore, we also
observe high R2 values of nearly .9 for the linear fits in the
log-log scaled plots, which indicates that a large amount
of our data can be explained by a power function. This
is also suggested by the power-law-based model of the BLL
equation [3, 2]. In contrast, the linear fits in log-linear scaled
plots only provide R2 values of approximately .7, where high
values would speak in favor of an exponential function.

Temporal effects on social hashtag reuse. Plots (c) and
(d) of Figure 2 show the effect of time on the social hashtag
reuse for the CompSci and Random datasets. These plots
are created similarly as plots (a) and (b) but this time, we
plot the social hashtag reuse count over the reuse recency of
a hashtag ht by the followees Fu of user u. Hence, for each
hashtag assignment of ht by u, we take the most recent usage
timestamp of ht by Fu. The difference between this times-
tamp and the timestamp of the currently analyzed hashtag
assignment indicates the time since the last social exposure
of ht to u. Again, we set the threshold for the maximum
hashtag reuse recency to one year (i.e., 8,760 hours).

In these plots, we observe similar results for the two data-
sets since, in both cases, the more recently a user was ex-
posed to a hashtag, the higher its social reuse count is. Fur-
thermore, there is again (i) a clear peak after 24 hours, and
(ii) the R2 values for the linear fits in the log-log scaled plots
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(a) Individual hashtag reuse
CompSci dataset (R2 = .883)
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(b) Individual hashtag reuse
Random dataset (R2 = .894)
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(c) Social hashtag reuse
CompSci dataset (R2 = .689)
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(d) Social hashtag reuse
Random dataset (R2 = .771)

Figure 2: The effect of time on individual and social hashtag reuse for the CompSci and Random datasets
(plots are in log-log scale). Plots (a) and (b) show that the more recently a hashtag ht was used by a user u,
the higher its individual reuse count (i.e., people tend to reuse hashtags that have been used very recently
by their own). Plots (c) and (d) show that the more recently a user u was exposed to a hashtag ht, which was
used by her followees Fu, the higher its social reuse count (i.e., people tend to reuse hashtags that have been
used recently in the social network). Additionally, we report the R2 estimates for the linear fits of the data.
We find that temporal effects play an important role in individual and social hashtag reuse in both datasets.

Dataset Parameter Individual ht reuse Social ht reuse

CompSci
xmin 141 1
α 1.699 1.242
R 188 164

Random
xmin 141 1
α 1.723 1.269
R 235 294

Table 2: Power-law vs. exponential time-dependent
decay. We see that a power function provides a
better fit than an exponential function (R > 0 with
p < .001) for explaining temporal effects on individ-
ual and social hashtag reuse in our two datasets.

(i.e., R2 = .7) are larger than in the log-linear scaled plots
(i.e., R2 = .4), which speaks in favor of a power function.
We now study if this is really the case.

Power-law vs. exponential time-dependent decay.
The question whether a power or an exponential function is
better suited to model the time-dependent decay of hashtag
reuse is of interest especially for the design of our hashtag
recommendation approach since both types of functions have
been used in the area of time-aware recommender systems.
While the BLL equation suggests the use of a power function
to model the decay of item exposure in human memory [3],
related hashtag recommender approaches, such as the one
proposed in [11], use an exponential function for this pur-
pose. As already mentioned, the visual inspection of Figure
2 and the R2 values of the linear fits favor a power func-
tion. However, [5] has shown that this least squares-based
method can lead to misinterpretations and thus, a likelihood
ratio-based test is suggested.

We use the Python implementation [1] of the method de-
scribed in [5] to validate if a power function produces a bet-
ter fit than an exponential one. The results of this test are
shown in Table 2. The main value of interest here is the
log-likelihood ratio R between the two functions. As we see,
R > 0 in all four cases with p < .001. This means that the
power function indeed provides a better fit than the expo-
nential function for explaining temporal effects on individual
and social hashtag reuse. We also provide the xmin and α
values of the fits. In this respect, the α slopes can be used to

set the d parameter of the BLL equation (i.e., d = 1.7 in the
individual case and 1.25 in the social case, see Section 4). In-
terestingly, these values are much higher than the suggested
value of BLL’s d parameter, which is .5 [2]. We believe that
this is the case because tweeting is more strongly influenced
by temporal interest drifts than other applications studied
in the ACT-R community (e.g., [3]).

Finding 1: Temporal effects have an important influence
on both individual as well as social hashtag reuse. Peo-
ple tend to reuse hashtags that were used very recently
by their own and/or by their Twitter followees. Fur-
thermore, a power function is better suited to model this
time-dependent decay than an exponential one. This sug-
gests that the BLL equation from the cognitive architec-
ture ACT-R should be a suitable model for designing our
time-dependent hashtag recommendation algorithm.

4. A COGNITIVE-INSPIRED HASHTAG
RECOMMENDATION APPROACH

In the previous section, we have shown that temporal ef-
fects are important factors when users reuse individual and
social hashtags. In this section, we use these insights as a
basis to design our hashtag recommendation approach illus-
trated in Figure 3. Thus, we distinguish between hashtag
recommendations without (Scenario 1 ) and with (Scenario
2 ) incorporating the current tweet t.

Whereas the first variant of our approach solely uses the
past hashtags of a user u and/or her followees Fu, the sec-
ond variant also utilizes the content of the current tweet t.
Hence, these two scenarios also differ in their possible use
cases since the first one aims to foresee the topics a spe-
cific user will tweet about based on the predicted hashtags,
whereas the second one aims to support a user in finding the
most descriptive hashtags for a new tweet text [9].

Source code. For reasons of reproducibility, we implement
and evaluate our approach by extending our open-source tag
recommender benchmarking framework TagRec. The source
code and framework is freely accessible for scientific purposes
via our Github repository4.
4https://github.com/learning-layers/TagRec
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Figure 3: Schematic illustration of our cognitive-
inspired approach for hashtag recommendations.
We implement our approach in two scenarios (i.e.,
without and with incorporating the content of the
current tweet). In Scenario 1 , we use the BLL equa-
tion to realize (i) the individual BLLI algorithm,
(ii) the social BLLS algorithm, and (iii) the hybrid
BLLI,S algorithm, which combines both. In Sce-
nario 2 , we use a content analysis to identify similar
tweets for a currently proposed tweet t and identify
the hashtags of the most similar ones. We combine
this content-based tweet analysis with our BLLI,S

method to provide personalized and content-aware
hashtag recommendations in the form of our hybrid
BLLI,S,C approach.

4.1 Scenario 1: Hashtag rec. w/o current tweet
For the first variant of our approach, we ignore the content

of the current tweet t and solely utilize past hashtag usages.
As already stated, we use the BLL equation coming from the
cognitive architecture ACT-R [2, 3] for this task. We go for
a cognitive-inspired approach, since we know from research
on the underlying mechanisms of social tagging that the way
users choose tags for annotating resources (e.g., Web links)
strongly corresponds to processes in human memory and its
cognitive structures [6, 36]. The BLL equation quantifies
the general usefulness of a piece of information (e.g., a word
or hashtag) by considering how frequently and recently it
was used by a user in the past. Formally, it is given by:

Bi = ln(

n∑
j=1

t−d
j ) (1)

where Bi is the base-level activation of a memory unit i
and n is the frequency of i’s occurrences in the past (i.e.,
how often i was used by u). Furthermore, tj states the
recency (i.e., the time since the jth occurrence of i) and the
exponent d accounts for the power-law of time-dependent
decay. As visualized in Scenario 1 of Figure 3, we adopt
the BLL equation for (i) modeling the reuse of individual
hashtags (BLLI), (ii) modeling the reuse of social hashtags
(BLLS), and (iii) combining the former two into a hybrid
recommendation approach (BLLI,S).

Modeling individual hashtag reuse. In order to model
the reuse of individual hashtags, we define the individual
base-level activation BI(ht, u) of a hashtag ht for a user u
as follows:

BI(ht, u) = ln(

n∑
j=1

(TSref − TSht,u,j)
−dI ) (2)

where n denotes the number of times ht was used by u in the
past (i.e., |HTASht,u|) and the term TSref −TSht,u,j states
the recency of the jth usage of ht by u. In this respect,
TSref is the reference timestamp (i.e., when recommenda-
tions should be calculated) and TSht,u,j is the timestamp
when ht was used by u for the jth time. Based on the results
of our analysis presented in Table 2, we set the individual
time-dependent decay factor dI to 1.7.

Modeling social hashtag reuse. We model the reuse of
social hashtags in a similar way but instead of analyzing how
frequently and recently a hashtag ht was used by user u, we
analyze how frequently and recently ht was used by the set
of followees Fu of u. Thus, we formulate the social base-level
activation BS(ht, u) of ht for u as follows:

BS(ht, u) = ln(

m∑
j=1

(TSref − TSht,Fu,j)
−dS ) (3)

where m is the number of times ht was used by Fu before the
reference timestamp TSref (i.e., |HTASht,Fu |). The term
TSref − TSht,Fu,j states the recency of the jth exposure of
ht to u caused by Fu, where TSht,Fu,j is the timestamp when
ht was used by Fu for the jth time. As when modeling the
individual hashtag reuse, we set the social time-dependent
decay factor dS based on the results of our analysis in Table
2 (i.e., dS = 1.25).

Combining individual and social hashtag reuse. As
we have formalized the individual as well as social hashtag
reuse, we want to mix both components in form of a hybrid
approach using a linear combination [15]. Hence, in order to
be able to add the individual and social base-level activations
BI(ht, u) and BS(ht, u), we have to map these values onto
a common range of 0 to 1 that add up to 1. Therefore, we
define the softmax functions σ(BI(ht, u)) and σ(BS(ht, u))
as proposed by [30, 20]. This is given by:

σ(BI(ht, u)) =
exp(BI(ht, u))∑

ht′∈HTu

exp(BI(ht′, u))
(4)

where HTu is the set of distinct hashtags used by u. For
BS(ht, u), the softmax function σ(BS(ht, u)) can be calcu-
lated in the same way but on the basis of HTFu (i.e., the
set of hashtags used by u’s followees Fu). Taken together,
the combined base-level activation BI,S for our BLLI,S ap-
proach is given by a linear combination:

BI,S(ht, u) = β σ(BI(ht, u))︸ ︷︷ ︸
BLLI

+(1− β)σ(BS(ht, u))︸ ︷︷ ︸
BLLS

(5)

where the β parameter can be used to give weights to the
two components. Based on experimentation, we set β to .5
to equally weigh the individual and social influence. As indi-
cated in Equation 5 and Figure 3, we can also calculate pre-
dictions either solely based on the individual hashtag reuse,
referred as BLLI , or solely based on the social hashtag reuse,
referred as BLLS .

4.2 Scenario 2: Hashtag rec. w/ current tweet
As shown in Scenario 2 of Figure 3, the second variant of

our approach aims to provide hashtag suggestions while also
incorporating the content of the currently proposed tweet
t. Thus, we build on the unpersonalized method proposed
by [42] to find hashtags of similar tweets and combine this
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method with our BLLI,S approach to generate personalized
and content-aware recommendations.

Content-based tweet analysis. We analyze the content
of tweets in order to find similar tweets for a target tweet
t and to extract the hashtags of these similar ones. There-
fore, we incorporate the term frequency-inverse document
frequency (TF-IDF) statistic, which identifies the impor-
tance of a term for a document in a collection of documents.
TF-IDF can be further used to calculate the similarity be-
tween two documents d and d by summing up the TF-IDF
scores of d’s terms in d. When applying this statistic to
Twitter, we treat tweets as documents and calculate the
similarity between the target tweet t and a candidate tweet
t as follows:

sim(t, t) =
∑
c∈Ct

nc,t × log(
|T |

|{t′ : c ∈ t′}| ) (6)

where Ct are the terms in the text of target tweet t, nc,t is

the number of times c ∈ Ct occurs in the candidate tweet t,
|T | is the number of tweets in the dataset and |{t′ : c ∈ t′}|
is the number of times c occurs in any tweet t′ ∈ T . The
first factor of this equation reflects the term frequency TF ,
whereas the second factor of this equation reflects the inverse
document frequency IDF [42].

Based on these similarity values, we identify the most sim-
ilar tweets St for t and extract the hashtags used in these
tweets (i.e., HTSt). For each hashtag ht ∈ HTSt , we assign
a content-based score CB(ht, t), which is the highest simi-
larity value within the most similar tweets St in which ht
occurs. We implement this method using the Lucene-based
full-text search engine Apache Solr 4.7.105. Based on Solr’s
software documentation and our own experimentation, we
set the minimum term frequency tf to 2 and the minimum
document frequency df to 5.

Combining personalized and content-aware hashtag
rec. We combine our personalized BLLI,S approach with
this content-based analysis (C) in order to generate person-
alized hashtag recommendations (see Figure 3). Again, we
achieve this via a linear combination of both approaches.

Taken together, the top-k recommended hashtags H̃Tu,t for
u and t are given by a linear combination:

H̃Tu,t =
k

arg max
ht∈HTu,t

(λBI,S(ht, u)︸ ︷︷ ︸
BLLI,S

+(1− λ)σ(CB(ht, t))︸ ︷︷ ︸
C

)
(7)

where HTu,t is the set of candidate hashtags for u and t
(i.e., HTu ∪ HTFu ∪ HTSt). The λ parameter is used to
give weights to the personalized and content-aware compo-
nents. To that end, we set λ to .3 based on experimentation.
Please note that the content-based score CB(ht, t) has to
be normalized using the softmax function (see Equation 4),
whereas BI,S(ht, u) is already normalized (see Equation 5).
This finally constitutes our personalized hashtag recommen-
dation algorithm termed BLLI,S,C .

5. EVALUATION
In this section, we present the evaluation of our approach.

This includes the methodology used as well as the results in
terms of recommendation accuracy and ranking for our two
scenarios (i.e., with and without the current tweet).

5http://lucene.apache.org/solr/

5.1 Methodology
The methodology of our evaluation is given by the eval-

uation protocol, evaluation metrics and baseline algorithms
used in our study.

Evaluation protocol. In order to split our datasets into
training and test sets, we use an established leave-one-out
evaluation protocol from research on information retrieval
and recommender systems [15]. Therefore, for each seed
user in our datasets (see Section 2) with at least two tweets
(i.e., 2,020 users in the CompSci dataset and 2,679 users in
the Random dataset), we determine her most recent tweet
and put it (and its hashtags) into the test set. The remain-
ing tweets are then put into the training set. This protocol
ensures not only that the hashtags of at least one tweet per
user are available for training but also that the chronological
order of the data is preserved (i.e., future hashtags are pre-
dicted based on usage patterns of past ones). We use these
sets in the following two evaluation scenarios:

(a) Hashtag rec. w/o current tweet. In the first sce-
nario, we ignore the content of the currently proposed tweet
(i.e., the one in the test set) and solely provide hashtag pre-
dictions based on the current user-id. Thus, in Scenario 1 ,
we are able to evaluate all test set tweets.

(b) Hashtag rec. w/ current tweet. In the second sce-
nario, we also incorporate the content of the current tweet.
In this setting, we only evaluate the test set entries, which do
not include retweets (i.e., 954 test set tweets in the CompSci
dataset and 1,504 test set tweets in the Random dataset).
The reason for excluding the retweets from the test set in
Scenario 2 is that searching for similar tweets in the training
set would result in identical tweets with identical hashtags,
which would heavily bias our evaluation (see also [42]).

Evaluation metrics. To finally quantify the quality of the
hashtag recommendation algorithms, for each test set entry,
we compare the top-10 hashtags an algorithm predicts for

the given user u and tweet t (i.e., H̃Tu,t) with the set of
relevant hashtags actually used by user u in tweet t.

This comparison is done using various evaluation metrics
known from the field of recommender systems. Specifically,
we report Precision (P) and Recall (R) for k = 1 to 10 pre-
dicted hashtags by means of Precision/Recall plots, and F1-
score (F1@5) for k = 5 predicted hashtags. We set k = 5 for
the F1-score since F1@5 was also used as the main evalua-
tion metric in the well-known ECML PKDD 2009 discovery
challenge6. Additionally, we report three ranking-dependent
metrics, namely (i) Mean Reciprocal Rank (MRR@10), (ii)
Mean Average Precision (MAP@10), and (iii) Normalized
Discounted Cumulative Gain (nDCG@10) for k = 10 pre-
dicted hashtags [13].

Baseline algorithms. We compare our approach to a rich
set of 9 state-of-the-art hashtag recommendation algorithms:

(a) MPI . The Most Popular Individual Hashtags algo-
rithm ranks the hashtags based on the frequency in the hash-
tag assignments of current user u. MPI is also referred to as
Most Popular Tags by User (MPu) in tag recommendation
literature [15].

(b) MRI . Most Recent Individual Hashtags is a time-
dependent variant of MPI . MRI suggests the k most re-
cently used hashtags of current user u [4]. Our BLLI ap-

6http://www.kde.cs.uni-kassel.de/ws/dc09/evaluation.
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Scenario 1 : Hashtag rec. Scenario 2 : Hashtag rec.
w/o current tweet w/ current tweet

Dataset Metric MPI MRI BLLI MPS MRS BLLS MP FR CF BLLI,S SR TCI BLLI,S,C

CompSci

F1@5 .086 .098 .101 .022 .076 .118 .006 .083 .099 .153∗∗∗ .139 .182 .200∗

MRR@10 .136 .188 .193 .032 .122 .187 .007 .130 .163 .268∗∗∗ .264 .334 .395∗∗∗

MAP@10 .143 .195 .202 .033 .128 .205 .007 .136 .169 .285∗∗∗ .283 .354 .417∗∗∗

nDCG@10 .175 .218 .225 .046 .154 .235 .012 .169 .196 .324∗∗∗ .299 .385 .446∗∗

Random

F1@5 .160 .169 .175 .072 .103 .138 .012 .159 .165 .208∗∗∗ .181 .243 .261∗

MRR@10 .261 .300 .314 .109 .159 .220 .023 .260 .278 .361∗∗∗ .341 .436 .489∗∗

MAP@10 .279 .315 .335 .116 .171 .240 .024 .279 .296 .389∗∗∗ .374 .472 .530∗∗

nDCG@10 .323 .352 .370 .144 .205 .280 .035 .324 .333 .434∗∗∗ .388 .507 .562∗∗

Table 3: Recommender accuracy results of our two evaluation scenarios. In Scenario 1 , we compare ap-
proaches that ignore the current tweet content, while in Scenario 2 , we compare algorithms that also incor-
porate the current tweet. We observe that (i) BLLI outperforms MPI and MRI , (ii) BLLS outperforms MPS

and MRS, (iii) BLLI,S outperforms MP, FR and CF, and (iv) BLLI,S,C outperforms SR and TCI. Based on
a t-test, the symbols ∗ (α = .1), ∗∗ (α = .01) and ∗∗∗ (α = .001) indicate statistically significant differences
between BLLI,S and CF in Scenario 1 , and between BLLI,S,C and TCI in Scenario 2 .

proach can be seen as an integrated combination of MPI

and MRI based on human memory theory.
(c) MPS. The Most Popular Social Hashtags algorithm

is the social correspondent to the individual MPI approach
[15]. Thus, MPS does not rank the hashtags based on the
frequency in the hashtag assignments of user u but based on
the frequency in the hashtag assignments of user u’s set of
followees Fu.
(d) MRS. Most Recent Social Hashtags is the time-

dependent equivalent to MPS . MRS sorts the hashtag as-
signments of u’s followees Fu by time and recommends the
k most recent ones. Our BLLS algorithm is a cognitive-
inspired integration of MPS and MRS .
(e) MP. The unpersonalized Most Popular Hashtags ap-

proach returns the same set of hashtags for any user. These
hashtags are ranked by their overall frequency [15].
(f) FR. FolkRank is an adaption of Google’s PageRank

approach used to rank the entities in folksonomy graphs and
has become one of the most successful tag recommender
methods. We use the standard FR implementation provided
by the University of Kassel7 with its suggested default pa-
rameters. More specifically, the weight of the preference
vector d is set to .7 and the maximum number of iterations
l is set to 10 [15].
(g) CF. User-based Collaborative Filtering is a well-known

algorithm used in many variants of modern recommender
systems and was adapted by [29] for use in tag-based set-
tings. We apply the same idea for the task of recommend-
ing hashtags and thus, first identify the k most similar users
(i.e., the nearest neighbors) for current user u by means of
the cosine similarity measure and then suggest the hashtags
used by these neighbors. For our experiments, we use a
neighborhood size k of 20 users (see also [8]).
(h) SR. SimilarityRank is an unpersonalized hashtag rec-

ommendation algorithm, which utilizes the content of the
currently proposed tweet t [42]. Similarly to our BLLI,S,C

approach, this is achieved using TF-IDF to determine content-
based similarity scores between tweets (see Section 4.2).
These scores are used to recommend the k hashtags that
occur in t’s most similar tweets.
(i) TCI. TemporalCombInt is one of the most recent ap-

proaches for personalized hashtag recommendations and also
one of the very few approaches that accounts for the effect of

7http://www.kde.cs.uni-kassel.de/code

time on hashtag usage [11] (see also Section 6). TCI builds
on a linear combination of SR and CF and incorporates tem-
poral effects by considering the time-dependent relevance of
a hashtag with respect to the recommendation date. This is
done by categorizing the hashtags into “organizational” and
“conversational”hashtags, and modeling the decay of tempo-
ral relevance using an exponential function. By fitting this
model to our crawled data, we set the two main parameters
of the algorithm, ηl and ηh, to .1 and .2, respectively.

5.2 Results and Discussion
In Section 3, we found that time is an important factor

for hashtag reuse. Because of this, we assume that our time-
dependent and cognitive-inspired approach should provide
reasonable results compared to other algorithms. The accu-
racy estimates for our two evaluation scenarios are shown in
Table 3 and Figure 4.

Scenario 1 : Hashtag rec. w/o current tweet. In
our first evaluation scenario, we validate approaches that
predict future hashtags without incorporating the content
of the currently proposed tweet. Here, we identify three
main results:

(a) BLLI > MPI , MRI . When predicting individ-
ual hashtag reuse, we compare our BLLI approach to the
frequency-based MPI and the recency-based MRI algorithms.
The results clearly reflect the importance of the time com-
ponent since MRI and BLLI provide higher prediction ac-
curacy and ranking estimates than MPI for all evaluation
metrics across both datasets. Apart from that, we observe
that BLLI outperforms MRI , which speaks in favor of the
cognitive-inspired combination of hashtag frequency and rec-
ency by means of the BLL equation.

(b) BLLS > MPS, MRS. Concerning the prediction of
social hashtag reuse, we compare our BLLS approach to the
frequency-based MPS and the recency-based MRS methods.
Similar to the case of individual hashtag reuse, MRS and
our BLL-based method provide higher accuracy estimates
than the solely frequency-based one, but interestingly, this
time the differences between these methods is much larger.
This indicates that the time information is especially impor-
tant in a social setting. We somehow expected this behavior
since typically only the most recent tweets of the followees
are shown on a user’s Twitter timeline. Again, the combina-
tion of hashtag frequency and recency by means of the BLL
equation provides the best results.
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(a) Scenario 1 : Hashtag rec.
w/o current tweet
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Random dataset
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w/ current tweet
CompSci dataset
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Figure 4: Precision / Recall plots of our two evaluation scenarios showing the accuracy of BLLI , BLLS, CF,
BLLI,S, SR, TCI and BLLI,S,C for k = 1 - 10 recommended hashtags. Again, BLLI,S provides the best results
in Scenario 1 and BLLI,S,C provides the best results in Scenario 2 .

(c) BLLI,S > MP, FR, CF. Finally, we compare our
hybrid BLLI,S approach to the unpersonalized MP algo-
rithm, the well-known FR method from tag recommender
research and classic user-based CF. The first observation
that becomes apparent is the poor performance of the un-
personalized MP baseline, which underpins the importance
of personalized methods for hashtag recommendation. Addi-
tionally, and more importantly, our hybrid BLLI,S approach
does not only improve its BLLI and BLLS components but
also provides significantly higher accuracy and ranking esti-
mates than FR and CF. This shows that BLLI,S is capable of
providing reasonable hashtag recommendations solely based
on temporal usage patterns of past hashtag assignments.

Scenario 2 : Hashtag rec. w/ current tweet. In the
second scenario, we evaluate hashtag recommendation meth-
ods that also incorporate the content of the current tweet.
This includes the unpersonalized SR approach, the time-
dependent TCI algorithm and our BLLI,S,C approach. Our
two main results are:

(a) TCI, BLLI,S,C > SR. The first main result of our
second evaluation scenario is that both time-dependent meth-
ods TCI and BLLI,S,C outperform the unpersonalized SR
approach. We somehow expected this result since both TCI
and BLLI,S,C extend the TF-IDF-based tweet content anal-
ysis of SR with personalization techniques via CF (TCI) or
the BLL equation (BLLI,S,C).

(b) BLLI,S,C > TCI. The second main result of Scenario
2 is that BLLI,S,C provides significantly higher accuracy es-
timates than TCI. This is due to three main differences be-
tween these methods: (i) instead of using hashtags of similar
users by means of CF for adding personalization, we incor-
porate not only individual hashtags of the current user but
also social hashtags of the current user’s followees, (ii) in-
stead of applying the effect of time on a global hashtag level,
we model the time-dependent decay on an individual and so-
cial level, and (iii) instead of modeling this time-dependent
decay using an exponential function, we use a power function
by means of the BLL equation.

CompSci dataset vs. Random dataset. Another in-
teresting finding we observe is that all algorithms provide
better results for the Random dataset than for the CompSci
dataset. In our case, this indicates that the task of predict-

ing hashtags in the domain-specific network of computer sci-
entists is harder than in the network of random users. If we
look back at Figure 1, this makes sense since the amount of
“external” hashtags is twice as high in the CompSci dataset
(i.e., 26%) than in the Random one (i.e., 13%).

Finding 2: The BLL equation, which accounts for tempo-
ral effects of item exposure in human memory, provides a
suitable model for personalized hashtag recommendations.
This is validated in two evaluation scenarios (i.e., without
and with incorporating the content of the current tweet),
in which our cognitive-inspired approach outperforms sev-
eral state-of-the-art hashtag recommendation algorithms
in terms of prediction accuracy and ranking.

6. RELATED WORK
Over the past years, tagging has emerged as an important

feature of the social Web, which supports users to collabo-
ratively organize and find content [17].

Two types of tags have been established: (i) social tags as
used in systems like BibSonomy and CiteUlike, and (ii) hash-
tags as used in systems like Twitter and Instagram. Whereas
social tags are mainly used to index resources for later re-
trieval, hashtags have a more conversational nature and are
used to filter and direct content to certain streams of infor-
mation [12].

Social tag recommendations. One of the most promi-
nent approaches in the field of tag recommendations is the
FolkRank algorithm [14, 15]. FolkRank is an extension of
the well-known Google PageRank approach to rank the en-
tities in folksonomies (i.e., users, resources and tags). Other
important tag recommendation methods are based on Col-
laborative Filtering [29, 8], Latent Dirichlet Allocation [22,
21] or Tensor Factorization [33, 32]. Recent observations
in the field of social tagging state the importance of the
time component for the individual tagging behavior of users.
In this respect, [43] proposes a time-dependent tag recom-
mender approach, which models the tagging variation over
time using an exponential function.

In our previous work [20, 19], we presented a more theory-
driven approach, where we use the BLL equation coming
from the cognitive architecture ACT-R [3, 2] to model the
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power-law of time-dependent decay. We evaluated our ap-
proach in detail and compared it to other state-of-the-art
methods in [18]. In the present work, we build upon our re-
sults and incorporate the BLL equation to study the effect
of time on hashtag reuse to design our hashtag recommen-
dation approach.

Hashtag recommendations. There is already a large
body of research available that focuses on the recommen-
dation of hashtags in Twitter. One illustrative example is
the work presented in [9], in which hashtag recommenda-
tions are provided by categorizing tweets into general topics
using LDA. The approach then recommends the hashtags
that best fit the topics of a new tweet. The authors evaluate
their approach using a qualitative study, in which they ask
persons if the recommended hashtags describe the topics of
a tweet and could be used to semantically enrich it. In 80%
of the cases, they are able to provide a suitable hashtag from
a selection of five possibilities.

Other similar approaches that use topic models for hash-
tag recommendations are presented in [37, 40, 7]. In [16], a
related algorithm based on a hashtag classification scheme
is proposed. The most notable work in the context of hash-
tag recommendations is probably the content-based SR ap-
proach presented in [42]. The authors use the TF-IDF statis-
tic to calculate similarities between tweets and identify suit-
able hashtags based on these similarity scores. Our BLLI,S,C

approach uses the same statistic to integrate the content of
a user’s currently proposed tweet. In [24], a personalized
extension of SR is presented, in which the authors combine
it with user-based CF. Apart from that, a content-based
hashtag recommendation algorithm for hyper-linked tweets
is proposed in [35].

Temporal effects on hashtag usage. Related research
has studied temporal effects on hashtag usage, for instance
in the context of popular hashtags in Twitter [26, 25, 39,
28, 27]. For example, in [28], the authors aim to predict if
a specific hashtag will be popular on the next day. By for-
mulating this task as a classification problem, they find that
both content and context features are effective for popular-
ity prediction. A similar approach is presented in [41], in
which the authors uncover the temporal dynamics of online
content (e.g., tweets) by formulating a time series cluster-
ing problem. One of the very few examples of a time-aware
hashtag recommendation approach is the recently proposed
algorithm described in [11]. The authors extend the content-
based SR approach [42] with a personalization technique by
means of CF and further consider the temporal relevance of
hashtags. To account for this temporal relevance, they di-
vide the hashtags into two categories: “organizational” ones,
which are used over a long period of time and “conversa-
tional” ones, which are used only during a short time span
(e.g., for a specific event).

In contrast to our proposed algorithm, which relies on the
BLL equation, their approach considers the effect of time on
a global hashtag level of the whole Twitter network and not
on an individual and social level of a specific user. Further-
more, we use a power function rather than an exponential
one to model the time-dependent decay.

7. CONCLUSION
In this paper, we presented a cognitive-inspired approach

for hashtag recommendations in Twitter. Our approach uti-

lizes the BLL equation from the cognitive architecture ACT-
R to account for temporal effects on individual hashtag reuse
(i.e., reusing own hashtags) and social hashtag reuse (i.e.,
reusing hashtags, which has been previously used by a fol-
lowee). Our analysis of hashtag usage types in two empiri-
cal networks (i.e., CompSci and Random datasets) crawled
from Twitter reveals that between 66% and 81% of hash-
tag assignments can be explained by past individual and
social hashtag usage. By analyzing the timestamps of these
hashtag assignments, we find that temporal effects play an
important role for both individual and social reuse of hash-
tags and that a power function provides a better fit to model
this time-dependent decay than an exponential function.

Thus, the more recently a hashtag was used by a user or
her followees, the higher the probability that this user will
use the same hashtag again later in time. Based on these
findings, we utilized the Base-Level Learning (BLL) equa-
tion of the cognitive architecture ACT-R, which accounts
for the time-dependent decay of item exposure in human
memory, to develop BLLI,S and BLLI,S,C , two algorithms
for recommending hashtags. Whereas BLLI,S aims to rec-
ommend hashtags without incorporating the current tweet
(i.e., Scenario 1 ), BLLI,S,C also utilizes the content of the
current tweet using the TF-IDF statistic (i.e., Scenario 2 ).
We compared both algorithms to state-of-the-art hashtag
recommendation algorithms and found that our cognitive-
inspired methods outperform these algorithms in terms of
prediction accuracy and ranking.

Limitations and future work. One limitation of our work
is that we model the reuse of social hashtags solely by ana-
lyzing how frequently and recently a hashtag was used by a
user’s followees, neglecting by whom the hashtag was used.
Thus, for future work, we plan to extend our approach with
the social status of the followee (e.g., via the reputation
of the user by means of the number of followers). In this
respect, we will also utilize the social connection strength
between a user and her followee (e.g., by the number of
mentions or retweets). Apart from that, it would be in-
teresting to combine our approach with the one presented
in [11], thus dividing the hashtags based on their temporal
characteristics (i.e., “organizational” vs “conversational”).

Regarding the hashtag assignments that cannot be ex-
plained by hashtag reuse (i.e., 26% in the CompSci dataset
and 13% in the Random dataset), we want to utilize an
external knowledge base to also account for these hashtag
assignments. We will achieve this by suggesting hashtags
of currently trending topics or events. Finally, we also plan
to verify our findings in larger Twitter data samples than
the ones used in this paper as well as in other online so-
cial networks that feature the concept of hashtags, such as
Instagram and Facebook.

In summary, our work contributes to the rich line of re-
search on improving the use of hashtags in social networks.
We hope that future work will be attracted by our insights
into how temporal effects on hashtag usage can be modeled
using models from human memory theory, such as the BLL
equation from the cognitive architecture ACT-R.
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