
Neighborhood Troubles: On the Value of User Pre-Filtering To
Speed Up and Enhance Recommendations

Emanuel Lacic
Know-Center GmbH

Graz, Austria
elacic@know-center.at

Dominik Kowald
Know-Center GmbH

Graz, Austria
dkowald@know-center.at

Elisabeth Lex
Graz University of Technology

Graz, Austria
elisabeth.lex@tugraz.at

ABSTRACT
In this paper, we present work-in-progress on applying user pre-
filtering to speed up and enhance recommendations based on Col-
laborative Filtering. We propose to pre-filter users in order to extract
a smaller set of candidate neighbors, who exhibit a high number
of overlapping entities and to compute the final user similarities
based on this set. To realize this, we exploit features of the high-
performance search engine Apache Solr and integrate them into
a scalable recommender system. We have evaluated our approach
on a dataset gathered from Foursquare and our evaluation results
suggest that our proposed user pre-filtering step can help to achieve
both a better runtime performance as well as an increase in overall
recommendation accuracy.

KEYWORDS
User Pre-Filtering; Entity Filtering; Recommender Systems; Real-
Time Recommendations; Apache Solr; Collaborative Filtering

1 INTRODUCTION
In the past decade, there has been a vast amount of research in the
field of recommender systems, mostly focusing on developing novel
recommendation algorithms [19] and improving recommender accu-
racy [14]. Thus, many well known methods are available, such as
Content-based Filtering [1], Collaborative Filtering [16] or Matrix
Factorization [7], which all have their unique strengths and weak-
nesses. With the arrival of the big data era, recommender systems
are nowadays not only expected to analyze a lot of data, but also
to handle frequent streams of new data. Traditional recommender
systems usually analyze the data offline and update the generated
model in regular time intervals. However, choices made by users
depend on factors that are susceptible to change anytime and to
re-train such models tends to be a time-consuming task (especially
when the data is sparse [15]).

As such, the attention of the recommender systems’ research com-
munity has recently shifted towards recommendation systems that
process streaming data online and recommend entities in near real-
time. For example, recent work from Huang et al. [5] presented Ten-
centRec, a real-time recommender system that is based on Apache
Storm. Specifically, they tackle item-based Collaborative Filtering
and handle the data sparsity problem by recommending most popular
entities from the user’s demographic group. Another scalable item-
based Collaborative Filtering recommender model was implemented

EYRE’18@CIKM, October 2018, Turin, Italy
© 2018 Copyright for this paper held by its authors. Copying permitted for private and
academic purposes.

by Chandramouli et al. [2]. This approach is based on a stream
processing system and focuses entirely on using explicit rating data.

In our previous work [9], we presented a scalable recommender
framework using a Microservices-based architecture to recommend
a diverse set of entities in near real-time by leveraging the Apache
Solr search engine. In this work, we focus on adapting the non-
probabilistic user-based Collaborative Filtering (UB-CF) algorithm
[18] to further improve its runtime performance by integrating a user
pre-filtering step. This approach is especially useful in settings, in
which it is not desirable to allocate additional resources but rather to
optimize the usage of the available hardware.

Bottleneck. Collaborative Filtering is usually accomplished in two
steps: (i) the k-nearest neighbors are determined using a similarity
metric (e.g., cosine similarity), and (ii) entities of these neighbors
are recommended that the target user ut has not yet consumed [18].
As shown in previous work [11], both steps can be adapted to search
the data space in a scalable way and to retrieve the relevant content
in near real-time. However, one performance bottleneck in this work-
flow is the number of neighbors that need to be processed (i.e., users
which rate the same item as ut).

While the neighborhood size k is usually picked to be between 20
and 60 [4], it is still necessary to fetch the history of all neighbors
and to calculate how similar a potential neighbor is to ut . Moreover,
the calculated similarities need to be sorted in order to pick the top-k
similar users. Common implementations of such operations have a
complexity of O (n × loд(n))1. As such, the larger the neighborhood
of ut is, the larger the impact on the runtime performance could be.

Contributions. In order to cope with such a performance bottleneck,
in this paper, we present how to extend our scalable recommender
system to save extra processing power by exploiting the Apache Solr
search engine. We demonstrate that pre-filtering of users who exhibit
a high number of overlapping entities can lead to better runtime
performance as well as recommendation accuracy.

2 APPROACH
In this section, we present our approach for speeding up and enhanc-
ing CF-based recommendations with a user pre-filtering step.

2.1 Adaptation of Collaborative Filtering with
User Pre-Filtering

In order to improve runtime, we could just decide to run the first step
of CF in parallel, e.g., by having multiple processing nodes whose
task is to fetch a user’s history and calculate the similarity to the

1For example, Java’s popular TreeMap implementation (https://docs.oracle.com/
javase/8/docs/api/java/util/TreeMap.html). This could also be improved to a complexity
of O (n + k × loд (n)) by implementing a partial sorting algorithm.

https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

EYRE’18@CIKM, October 2018, Turin, Italy Emanuel Lacic, Dominik Kowald, and Elisabeth Lex

target user ut . In this work, our aim is yet to increase the runtime
performance in cases when there is also a limitation in terms of
available processing resources.

Therefore, we propose to adapt the first step of UB-CF by pre-
filtering the candidate set of possible similar users beforehand. We
do that in a greedy way by finding the top-N candidate users with
the highest overlap with respect to the available entity interactions
(e.g., ratings). In this pre-filtering step, the similarity between ut and
a possible candidate user uc is then calculated as follows:

OV (ut ,uc) = |∆(ut) ∩ ∆(uc) | (1)

where ∆(u) corresponds to the set of entities some user u has inter-
acted with in the past. As we will show next in Section 2.2, this can
be done very efficiently by exploiting the Apache Solr search engine.
This way, we increase the probability that users with a high overlap
will in the end be picked as the top-k similar users. Also, by picking
a reasonable value for N , we aim to positively influence the runtime
performance of those users, which exhibit many neighbors.

2.2 Implementation Details
In our previous work [11], we have introduced a scalable software
architecture, which can be applied to various entity recommendation
scenarios. As seen in Figure 1, such an architecture allows us to rec-
ommend entities in an isolated environment. That is, every module
can be deployed and started multiple times either on the same or on
different machines and runtime performance can be guarantied by
scaling individual nodes horizontally. To keep track of and coordi-
nate all deployed nodes, we make use of Apache ZooKeeper 2. An
entity recommender is then set up of five modules which leverage
Apache Solr to perform user pre-filtering in an efficient way.

Service Provider is the main entry point which acts as a proxy for
the specific entity recommendation scenario (e.g., venues, movies,
songs, etc.). It provides a REST-based interface to modules that are
designated to handle the calculation of the requested entity recom-
mendations as well as to store new data (e.g., interactions with the
recommendable entities).

Recommender Evaluator aims to simulate user behaviour by split-
ting the data into training and test sets (see e.g., [13]). That is, for
each user, a given number of entities is removed from the training
set and added to the test set to be predicted. The difference between
the recommended and the real data from the test set is then used to
determine the success of the prediction. In addition to providing a
diverse set of well-established recommender evaluation metrics, the
evaluation procedure allows to simulate varying loads in order to
better grasp the impact on the runtime when an increasing number
of recommendations are requested.

Recommender Engine contains recommender algorithms that use
Apache Solr’s efficient query language. In case of UB-CF, this allows
us to immediately consider frequent data updates while providing
real-time recommendations. Here, we calculate the probability that
the target user ut will like an entity e by the following formula [18]:

pred (ut ,e) =
∑

uc ∈neiдhbors (ut ,e)

sim(ut ,uc) (2)

2http://zookeeper.apache.org/

Entity
Recommender

Recommender Customizer

Data Modification Layer

ZooKeeper

INIT A/B
TESTING

Recommender Engine

Service Provider

Recommender Engine

Data Modification Layer

Recommender Evaluator

SYSTEM
ADMINISTRATOR USERS

USER
PRE-FILTERING

u3 12

u2 17

u1 30

...

Figure 1: Architecture diagram of our scalable entity recomm-
ender framework that leverages the Apache Solr search engine
to provide recommendations in near real-time. By pre-filtering
users using Solr’s facet functionality we not only receive the
number of overlapping entites for the top-N users but also speed
up the recommendation process.

where neiдhbors (ut ,e) is the set of pre-filtered candidate neighbors
ofut that have interacted with e and sim(ut ,uc) is the final similarity
value between the users ut and uc .

Recommender Customizer allows to configure the implemented
recommender approaches in form of recommender profiles. The
sole purpose of these files is to customize a single recommender
approach and to provide a reference to it. For instance, depending
on the entity recommendation scenario that we wish to tackle, a
Collaborative Filtering approach can be configured to use different
kinds of similarity metrics (e.g., as shown in [8]), neighborhood sizes
and use either explicit (e.g., ratings) or implicit data (e.g., clicks) for
recommending entities of similar users.

Data Modification Layer acts as an agent between the recomm-
ender system and the Apache Solr search engine. By utilizing Solr,
we have the capability for horizontal scaling on the data storage side
[10] by creating either shards (i.e., splitting the data into smaller
indices to increase the performance of search queries for huge data
sets) or replicas (cloning the existing shards to another machine to
increase the fault-tolerance of the whole system).

User Pre-Filtering is performed very efficiently by exploiting Solr’s
facet3 functionality [10]. This is basically an arrangement of search

3https://lucene.apache.org/solr/guide/7_0/faceting.html

http://zookeeper.apache.org/
https://lucene.apache.org/solr/guide/7_0/faceting.html

Neighborhood Troubles EYRE’18@CIKM, October 2018, Turin, Italy

Data Type Density Mean STD Skewness Kurtosis
user - items 0.000015 2.32 54.08 227.53 62,884.43

Table 1: Statistics of our Foursquare dataset.

results into categories (e.g., user id’s) along with numerical counts
of matching documents. For example, if we perform a facet search
on the user id over the whole document corpus (i.e., dataset) we
would get for the top-N users the exact count of corresponding entity
interactions, where N is a query parameter that needs to be provided
to Solr and the resulting set is sorted in a descending order.

By defining a filter within the facet query to look only into entities
from the target user’s ut history, we not only reduce the search space
but also get exactly the desired OV (ut ,uc) values for the top-N
pre-filtered candidate users as defined in Section 2.1. Such a greedy
pre-filtering of candidate users can be computed in milliseconds
which in turns allows to speed up the generation of the final entity
recommendations.

3 EVALUATION
In this section, we describe our evaluation process, including our
dataset, experimental setup as well as preliminary results.

3.1 Dataset
Traditionally, recommender systems deal with two types of entities,
users and items. To show how user pre-filtering can speed up and
enhance recommendations, we used the Foursquare dataset provided
by the authors of [12, 17]. The dataset consists of 2,153,471 users,
1,143,092 venues (i.e., items) and 2,809,581 ratings. In order to
make our dataset comparable, we present the summary of common
statistical data measures for the user-item relationships in Table 1.
The data density shows the proportion of actually known entities
(e.g., ratings) to all possible entities that could be known by the user.
This is rather a sparse dataset as the rating density is 0.000015.

Besides the mean entity assignments and their standard deviation,
skewness and kurtosis [6] are also two important statistical measures.
The skewness is a measure of the symmetry of a distribution. A
symmetric distribution has a skewness of 0. In our case, the skewness
is greater than 0 which means that the distribution is right-tailed (i.e.,
most data is concentrated on the left side of its function). Kurtosis
is a measure of the distribution “peakness”, where a higher kurtosis
value signifies lower concentration around its mean. Especially in
the case of the user - item relationship, such a high kurtosis value
means that the distribution has a sharper peak and broader tails.

3.2 Experimental Setup
We evaluated all users, which have at least one rated item in the
training set. Thus, we extracted all users that interacted with at least
11 items (= 58,046 users in total) and split the dataset in two different
sets (training and test set) using a method similar to the one described
in [13]. In other words, for each user, we withheld 10 items from the
dataset and added them to the test set to be predicted. The rest of the
data was used for training.

Chosen Neighborhood Sizes and Recommendation Approaches.
With respect to neighborhood sizes, the distribution is right-tailed

Approach Description
MP A baseline that recommends most popular items

CFFull UB-CF which calculates similarities for all neighbors
CFOV=20 UB-CF with a greedy pick of top-20 overlapping users
CFOV=40 UB-CF with a greedy pick of top-40 overlapping users
CFOV=60 UB-CF with a greedy pick of top-60 overlapping users
CFOV=80 UB-CF with a greedy pick of top-80 overlapping users
CFOV=100 UB-CF with a greedy pick of top-100 overlapping users

Table 2: We compare five variants of our user pre-filtering tech-
nique with a Most Popular baseline and a classic Collaborative
Filtering approach.

and the average neighborhood size is 764, the median, however, is
only 4, while the maximum neighborhood size of a user is 125,046.
We determined values for N in line with the literature [4], i.e., be-
tween 20 and 60. Specifically, we hypothesize that the same interval
of values is valid for a greedy pick of candidate neighbors. We also
evaluated N = 80 and N = 100 to test the impact of a larger candi-
date set on the accuracy. As shown in Table 2, for each evaluated
user seven recommendation approaches were evaluated.

Evaluation Metrics. In our evaluation, we report the mean and stan-
dard deviation of the runtime performance as well as the recommen-
dation accuracy in terms of Precision (P), Recall (R), Normalized
Discounted Cumulative Gain (nDCG) and User Coverage (UC) [19].

3.3 Preliminary Results
Our evaluation results are summarized in Table 3. The experiments
have been executed on an IBM System x3550 server with two 2.0
GHz six-core Intel Xeon E5-2620 processors, a 1TB ServeRAID
M1115 SCSI Disk and 128 GB of RAM using one instance and
Ubuntu 14.04.1. with Apache Solr 4.10.2.

All performance metrics are reported for 10 recommended items
(k=10)4. On average, CFFull took approximately 2 seconds with a
rather high standard deviation of 9.6 seconds. With the adapted CF
approaches, where we calculated the similarity only on the top-N
overlapping users, the runtime performance drastically improves
(i.e., below 90 ms, which is more than 23 times faster than the
CFFull). Such a runtime is even comparable to the one of the simple
MostPopular (MP) baseline.

Interestingly, the accuracy also increases when we pre-filter the
candidate set of similar users, as also shown in terms of nDCG in
Figure 2 for different values of k . We achieved the best performance,
both in terms of runtime and accuracy, by utilizing the top-60 over-
lapping users. Here, the runtime performance was almost the same
as when running the MP baseline. This suggests that creating a pre-
filtered candidate set of similar users not only yields better runtime
performance but can also contributes to a higher recommendation
accuracy.

4 CONCLUSION AND FUTURE WORK
In this paper, we presented work-in-progress on adapting Collabo-
rative Filtering by integrating a user pre-filtering step to speed up

4Please note that the literature usually uses the term k for both the number of
similar users in the UB-CF approach as well as the number of items that are being
recommended. In Section 3.3 we talk about the number of recommended items.

EYRE’18@CIKM, October 2018, Turin, Italy Emanuel Lacic, Dominik Kowald, and Elisabeth Lex

Approach T (ms) σ (ms) P@10 R@10 nDCG@10 UC

Most Popular 78.59 20.00 .0285 .0285 .0232 100%
C

F

CFFull 2,053.45 9,600.63 .0611 (.0918) .0527 (.0792) .0316 (.0475) 66.56%
CFOV=20 59.56 60.08 .0586 (.0890) .0541 (.0821) .0318 (.0483) 65.87%
CFOV=40 65.47 69.61 .0689 (.1042) .0645 (.0974) .0378 (.0571) 66.21%
CFOV=60 74.62 85.83 .0724 (.1095) .0678 (.1026) .0396 (.0599) 66.10%
CFOV=80 82.40 102.75 .0707 (.1077) .0661 (.1007) .0386 (.0588) 65.62%
CFOV=100 87.38 115.17 .0693 (.1055) .0646 (.0983) .0373 (.0568) 65.70%

Table 3: For all recommendation approaches, we report the mean runtime, as well as the accuracy and user coverage (UC). The values
in brackets represent the results normalized to the UC in the row, while the ones without are calculated on a 100% UC (i.e., all 58,046
users). Our neighborhood pre-filtering approach leads to improvents with respect to runtime and accuracy.

1 2 3 4 5 6 7 8 9 10
k

0.010

0.015

0.020

0.025

0.030

0.035

0.040

nD
C

G

CFOV = 20
CFOV = 40
CFOV = 60
CFOV = 80

CFOV = 100
MP
CFFull

Figure 2: nDCG plot showing the difference in accuracy when
using top-N overlapping users as candidate similar users.

and enhance entity recommendations. Specifically, we adapt the ap-
proach by applying user pre-filtering, in which we generate a smaller
set of candidate neighbors in a greedy fashion (i.e., by focusing on
neighbors with a higher number of overlapping entities). Our results
suggest that our pre-filtering approach can not only achieve a better
runtime performance but also is able to increase the overall accuracy
compared to a classic CF algorithm without user pre-filtering.

Limitations and Future Work. One limitation of our work is that
we evaluated our approach only on one dataset. As a next step, we
want to validate our results in a more comprehensive study using
datasets with different types of entities that can be recommended.
Here, we especially aim to validate our approach in course of the
Analytics for Everyday Learning (AFEL) project5 [3] for recom-
mending learning resources. This would also allow us to evaluate
this approach in course of an online study to measure the real user
acceptance of the recommendations.

Acknowledgments. The authors would like to thank the Social Com-
puting research area of the Know-Center GmbH and the AFEL con-
sortium for their support. This work was funded by the Know-Center
GmbH Graz (Austrian FFG COMET Program) and the European-
funded H2020 project AFEL (GA: 687916).

5http://afel-project.eu/

REFERENCES
[1] M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommenda-

tion. Communication of ACM, 40(3):66–72, Mar. 1997.
[2] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Streamrec: A

real-time recommender system. In Proc. of SIGMOD’11, 2011.
[3] M. d’Aquin, D. Kowald, A. Fessl, E. Lex, and S. Thalmann. Afel-analytics for

everyday learning. In Companion of the The Web Conference 2018 on The Web
Conference 2018, 2018.

[4] J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices
in neighborhood-based collaborative filtering algorithms. Information retrieval,
5(4):287–310, 2002.

[5] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec: Real-time stream
recommendation in practice. In Proc. of SIGMOD’15, 2015.

[6] D. N. Joanes and C. A. Gill. Comparing measures of sample skewness and kurtosis.
Journal of the Royal Statistical Society. Series D, year = 1998, publisher = Wiley
for the Royal Statistical Society,.

[7] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recomm-
ender systems. Computer, 42(8):30–37, Aug. 2009.

[8] E. Lacic, D. Kowald, L. Eberhard, C. Trattner, D. Parra, and L. Marinho. Utilizing
online social network and location-based data to recommend products and cate-
gories in online marketplaces. In Mining, Modeling, and Recommending ’Things’
in Social Media, pages 96–115. Springer, 2015.

[9] E. Lacic, D. Kowald, and E. Lex. Tailoring recommendations for a multi-domain
environment. Proc. of RecSysKTL’17 co-located with ACM RecSys’17.

[10] E. Lacic, D. Kowald, D. Parra, M. Kahr, and C. Trattner. Towards a scalable
social recommender engine for online marketplaces: The case of apache solr. In
Proceedings of the 23rd International Conference on World Wide Web, pages
817–822. ACM, 2014.

[11] E. Lacic, M. Traub, D. Kowald, and E. Lex. Scar: Towards a real-time recomm-
ender framework following the microservices architecture. In Proc. of LSRS’15.

[12] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-
aware recommender system. In Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, ICDE ’12, pages 450–461. IEEE Computer
Society, 2012.

[13] D. Parra-Santander and P. Brusilovsky. Improving collaborative filtering in social
tagging systems for the recommendation of scientific articles. In Proc. WI-IAT’10.
IEEE Computer Society, 2010.

[14] C. Rana and S. K. Jain. A study of the dynamic features of recommender systems.
Artificial Intelligence Review, 43(1):141–153, 2015.

[15] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using
markov chain monte carlo. In Proc. of ICML’08. ACM, 2008.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, pages 285–295. ACM, 2001.

[17] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Lars*: An efficient
and scalable location-aware recommender system. IEEE Trans. on Knowl. and
Data Eng., 26(6):1384–1399, June 2014.

[18] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. The adaptive web. chapter
Collaborative Filtering Recommender Systems, pages 291–324. Springer, 2007.

[19] G. Shani and A. Gunawardana. Evaluating recommendation systems. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook,
pages 257–297. Springer US, 2011.

http://afel-project.eu/

	Abstract
	1 Introduction
	2 Approach
	2.1 Adaptation of Collaborative Filtering with User Pre-Filtering
	2.2 Implementation Details

	3 Evaluation
	3.1 Dataset
	3.2 Experimental Setup
	3.3 Preliminary Results

	4 Conclusion and Future Work
	References

