
Analyzing Item Popularity Bias of Music Recommender Systems:
Are Different Genders Equally Affected?

Oleg Lesota
oleg.lesota@jku.at

Johannes Kepler University Linz and
Linz Institute of Technology

Austria

Alessandro B. Melchiorre
alessandro.melchiorre@jku.at
Linz Institute of Technology

Austria

Navid Rekabsaz
navid.rekabsaz@jku.at

Johannes Kepler University Linz and
Linz Institute of Technology

Austria

Stefan Brandl
stefan.brandl@jku.at

Johannes Kepler University Linz
Austria

Dominik Kowald
dkowald@know-center.at

Know-Center GmbH
Austria

Elisabeth Lex
elisabeth.lex@tugraz.at

Graz University of Technology
Austria

Markus Schedl∗
markus.schedl@jku.at

Johannes Kepler University Linz and
Linz Institute of Technology

Austria

ABSTRACT
Several studies have identified discrepancies between the popular-
ity of items in user profiles and the corresponding recommendation
lists. Such behavior, which concerns a variety of recommendation
algorithms, is referred to as popularity bias. Existing work predom-
inantly adopts simple statistical measures, such as the difference of
mean or median popularity, to quantify popularity bias. Moreover,
it does so irrespective of user characteristics other than the incli-
nation to popular content. In this work, in contrast, we propose
to investigate popularity differences (between the user profile and
recommendation list) in terms of median, a variety of statistical
moments, as well as similarity measures that consider the entire
popularity distributions (Kullback-Leibler divergence and Kendall’s
τ rank-order correlation). This results in a more detailed picture of
the characteristics of popularity bias. Furthermore, we investigate
whether such algorithmic popularity bias affects users of different
genders in the same way. We focus on music recommendation and
conduct experiments on the recently released standardized LFM-2b
dataset, containing listening profiles of Last.fm users. We investi-
gate the algorithmic popularity bias of seven common recommen-
dation algorithms (five collaborative filtering and two baselines).
Our experiments show that (1) the studied metrics provide novel
insights into popularity bias in comparison with only using av-
erage differences, (2) algorithms less inclined towards popularity
bias amplification do not necessarily perform worse in terms of
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utility (NDCG), (3) the majority of the investigated recommenders
intensify the popularity bias of the female users.
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1 INTRODUCTION
Popularity bias in recommender systems refers to a disparity of
item popularities in the recommendation lists. Most commonly, this
means that a disproportionally higher number of popular items
than less popular ones are recommended [8]. The existence of such
a popularity bias has been evidenced in different domains already,
e.g., movies [3], music [12], or product reviews [1]. Collaborative
filtering recommenders are particularly prone to popularity biases
because the data they are trained on already exhibit an imbalance to-
wards popular items, i.e., more user–item interactions are available
for popular items than less popular ones [2].

The distribution of item popularities in most domains, in partic-
ular in the music domain, which we target in this work, shows a
long-tail characteristic [5]. A recommendation algorithm introduces
no further algorithmic bias when the distribution of popularity val-
ues of recommended items (tracks) exactly matches the distribution
of popularity values of already consumed items (listening history)
for each user.
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We identify two shortcomings of existing studies of popularity
bias: First, popularity bias is commonly quantified using simple
statistical aggregation metrics, predominantly comparing arith-
metic means computed on some count of the user–item interac-
tions [3, 12]. These are not robust against outliers often present in
music listening data. Second, popularity bias is typically studied
irrespective of user characteristics. Therefore, the extent to which
users of different groups (e.g., age, gender, or cultural background)
are affected remains unclear. We set out to approach these short-
comings in the music domain by posing the following research
questions:

• RQ1: Which novel insights into popularity bias can be obtained
by quantifying algorithmic popularity bias based on the me-
dian, a variety of statistical moments, and similarity measures
between popularity distributions?

• RQ2: Do algorithmic popularity biases affect users of different
genders in the same way?

We find that users of different genders are affected by algorithm-
inflected bias differently, such that the majority of the models ex-
pose female users to more biased results. Also, algorithms less
inclined towards popularity bias amplification do not necessarily
perform worse in terms of utility (NDCG). Finally, the studied met-
rics provide novel insights into popularity bias in comparison with
only using average differences.

2 RELATEDWORK
We focuse on popularity bias, a well-studied form of bias in recom-
mender systems research. This form of bias refers to the underrep-
resentation of less popular items in the produced recommendations
and can lead to a significantly worse recommendation quality for
consumers of long tail or niche items [3, 10, 12, 13]. Abdollahpouri
et al. [3] show that state-of-the-art movie recommendation algo-
rithms suffer from popularity bias, and introduce the delta-GAP
metric to quantify the level of underrepresentation. As shown in
Kowald et al. [12], in particular users interested in niche, unpopular
items suffer from a worse recommendation quality. The authors use
the delta-GAPmetric in the domain of music recommendations, and
find that the delta-GAP metric does not show a difference between
“niche” and “mainstream” users. The reason for this could be that a
group-basedmetric is not suitable for the complexity of music styles,
as user groups can be quite diverse within themselves [11]. Zhu
et al. [20] address a related problem of item under-recommendation
bias, expressing it with ranking-based statistical parity and ranking-
based equal opportunity metrics. Boratto et al. [4] propose metrics
quantifying the degree to which a recommender equally treats
items along the popularity tail.

In contrast to these works, we study differences between popu-
larity distributions of consumed and recommended items for each
user. We express them in terms of the median as well as several
statistical moments and similarity measures. In addition, we com-
bine research strands on popularity bias and gender bias by ana-
lyzing how female and male listeners are affected by popularity
bias.

3 MEASURING POPULARITY BIAS
We introduce ways to express popularity bias as quantified dis-
similarity between popularity distributions of recommended and
consumed items for each user.

3.1 Track Popularity Distributions
We define P(t) popularity of a track t as the sum of its play counts
over all users ui ∈ U in the dataset, namely P(t) =

∑
ui ∈U PC(t ,ui ).

We then use these popularity estimates to derive the popularity
distribution over each user’s listening history and recommenda-
tion list. In order to make the popularity distribution Hui (t) over
a user’s listening history Thist (ui ) comparable to the respective
distribution Rui (t) over the recommendation lists, we consider only
the top of the recommendation list Ttop_r ec (ui ) so that its length
(number of tracks) matches the length of the user’s listening history
|Ttop_r ec (ui )| = |Thist (ui )|. Therefore, we define the popularity dis-
tribution over the listening history and the recommendation list of
user ui as follows:

Hui (t) =

{
P(t)|t ∈ Thist (ui )

0|t < Thist (ui )
Rui (t) =

{
P(t)|t ∈ Ttop_r ec (ui )

0|t < Ttop_r ec (ui )
(1)

To gain a better understanding of these distributions, Figure 1a
shows an example of popularity distributions over a user’s listen-
ing history Thist (ui ) and the corresponding recommendation list
Ttop_r ec (ui ) produced by the SLIM recommender algorithm.

3.2 Metrics
3.2.1 Delta Metrics of Popularity Bias. In order to measure the
differences between these distributions, we first introduce a series
of delta metrics to calculate the discrepancies between the listening
history and recommendation list popularity distributions of each
user, and then aggregate them to achieve per-system results. We
study five %∆M (percent delta) metrics where the metric M is
one of the following:Mean, Median, Variance , Skew , Kurtosis . If
M(Hui (t)) andM(Rui (t)) are the results of application of the same
metric M to the two respective distributions, the respective %∆M
for the userui is calculated as: %∆Mui =

M(Rui (t ))−M(Hui (t ))
M(Hui (t ))

·100
Positive %∆Mean and %∆Median indicate that overall more pop-

ular tracks are recommended to the user. SinceMean is sensitive
to outliers, the interplay between these metrics provides additional
information about the changes in popularity. Positive %∆Variance
means that the list of recommended items is more diverse in terms
of different popularity values than the user’s history. This can also
mean an increase in bias towards more popular items, as the most
popular items are sparsely distributed across the popularity range.
Positive %∆Skew denotes that the right tail of the recommendation
list distribution is heavier (with respect to the left tails) than the one
belonging to the user-history distribution. A positive value there-
fore means that more items tend to have lower popularity from the
range of the distribution. Finally, positive %∆Kurtosis shows that
the tails of the recommended tracks’ popularity distribution are
heavier than of its counterpart, and the distribution itself is in a
way closer to uniform distribution.
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Figure 1: (a) shows equally binned (for visualization purposes only) distributions of popularity over the listening history (left)
and the recommendation list (right) for the same user. On x-axis evenly binned popularity, on y-axis number of tracks in the
distribution, falling into each bin. (b) demonstrates the same distributions binned with respect to the popularity distribution
in the whole collection. This binning is employed for KL and Kendall’s τ calculations.

Finally, the discussed metrics describe the difference between the
distributions for a particular user. In order to represent the change
across all users, we take the median of the per-user values.

3.2.2 Kullback–Leibler Divergence and Kendall’s τ as Measures for
Popularity Bias. In order to compare the entire popularity distribu-
tions, we utilize Kullback–Leibler Divergence (KL) and Kendall’s
τ (KT ). For each user, we apply these metrics to the correspond-
ing Hui (t) and Rui (t) decile-binned with respect to the popularity
distribution over the whole collection (P(t)). The bins are chosen
in such a way that the cumulative popularity of all tracks of the
collection belonging into one bin constitutes approximately 10%
of the total popularity of all tracks of the whole collection. Fig-
ure 1b shows the distributions from Figure 1a binned this way. In
our dataset, the bin corresponding to the most popular tracks is
constituted by only 161 items whose popularity ranges from about
7k to 47k total play counts. Each bin covers items that are roughly
half as popular as the next decile bin and two times as popular as
the previous decile bin. Such binning allows the two metrics to be
less sensitive to minor differences between the distributions and
concentrate on the shifts between different popularity categories.

KL estimates the dissimilarity of two distributions, in our case,
between the user’s listening history and recommendation list pop-
ularity distributions. It is defined as

KLui (Ĥui (b)|R̂ui (b)) =
∑
bj ∈B

Ĥui (bj ) log
Ĥui (bj )

R̂ui (bj )
(2)

where Ĥui (b) and R̂ui (b) are decile-binned and normalized ver-
sions of the distributions and bj ∈ B represent the ten bins. KL
compares the two distributions and increases with every mismatch
in the item counts. It is particularly sensitive to the case when for
a bin the user gets recommended fewer tracks than they have in
their listening history.

While KL Divergence is sensitive to actual count changes,
Kendall’s τ metric reflects whether the order of bins is the same
for the two distributions when ranked according to the respective
counts. Kendall’s τ is calculated as KTui (Ĥui (b), R̂ui (b)) =

C−D
C+D ,

where C represents the number of pairs of bins that have the same
respective ranking in both distributions (concordant pairs) and D
the number of pairs of bins that have the different respective rank-
ing in the two distribution (discordant pairs). For example, looking
at Figure 1b, the first two bins are concordant (∈ C) as in both cases,
more items fall into the second bin. While the first and the last bins

are discordant (∈ D) as in the listening history distribution, the
first bin has more items. However, the recommended distribution
shows the opposite. This way, KT shows whether there are com-
mon patterns (correlations) in the two distributions, and it reaches
its maximum value of 1 when the two distributions are identical
from the bin-ranking point of view. Similar to %∆M metrics, we
use the median of the per-user values to measure the differences
across all users for KL and KT .

4 EXPERIMENT SETUP
4.1 Recommendation Algorithms
To study algorithmic popularity biases, we examine different com-
monly used collaborative filtering algorithms (i.e., heuristic, neigh-
borhood based, matrix factorization, and autoencoders) [6, 16]:

• Random Item (RAND): A baseline algorithm that recommends
for each user random items. It avoids recommending already
consumed items.

• Most Popular Items (POP): A baseline that implements a
heuristic-based algorithm that recommends the same set
of overall most popular items to each user.

• Item k-Nearest Neighbors (ItemKNN) [7]: A neighborhood-
based algorithm that recommends items based on item-to-
item similarity. Specifically, an item is recommended to a
user if the item is similar to the items previously selected by
the user. ItemKNN uses statistical measures to compute the
item-to-item similarities.

• Sparse Linear Method (SLIM) [17]: Also a neighborhood-
based algorithm, but instead of using predefined similarity
metrics, the item-to-item similarity is learned directly from
the data with a regression model.

• Alternating Least Squares (ALS) [9]: A matrix factorization
approach that learns user and item embeddings such that the
dot product of these two approximates the original user-item
interaction matrix.

• Matrix factorization with Bayesian Personalized Ranking
(BPR) [18]: Learns user and item embeddings, however, with
an optimization function that aims to rank the items con-
sumed by the users according to their preferences (hence,
personalized ranking) instead of predicting the rating for a
specific pair of user and item.

• Variational Autoencoder (VAE) [14]: An autoencoder-based
algorithm that, given the user’s interaction vector, estimates
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Table 1: Statistics of the dataset. Number of Users, Tracks and listening events (LEs) are reported across F(emale) and M(ale)
separately and also together (All). Mean and standard deviation (indicated after ±) of the interactions of users with tracks and
LEs are indicated in the last three columns, respectively.

Gender Users Tracks LEs Tracks/User LEs/User

All 19, 972 99, 831 19, 906, 272 142 ± 172 997 ± 1, 571
F 4, 415 70, 980 3, 397, 310 101 ± 121 769 ± 1, 158
M 15, 557 99, 810 16, 508, 962 153 ± 182 1, 061 ± 1, 664

a probability distribution over all the items using a varia-
tional autoencoder architecture.

For training the models, we use the same hyperparameter set-
tings as provided by Melchiorre et al. [16].

4.2 Dataset and Evaluation Protocol
We perform experiments on LFM-2b-DemoBias [16], a subset of the
LFM-2b dataset1. As in [16], we only consider user-track interac-
tions with a playcount (PC) > 1, possibly avoiding using spurious
interactions likely introduced by noise. Furthermore, we only con-
sider tracks listened to by at least 5 different users and, likewise,
only users who listened to at least 5 different tracks. Moreover, we
only consider listening events within the last 5 years, letting us
focus more on possible popularity biases in the recent years. Lastly,
we consider binary user-track interactions, i.e., 1 if the user has
listened to the track at least once, 0 otherwise.

The procedure described above results in a subset of 23k users
over 1.6 million items. We finalize data preparation by sampling
100k tracks uniformly-at-random, which ensures that tracks of
different popularity levels are equally likely to be included in the
final dataset. The statistics of the final dataset are reported in Table 1.
We find that males represent the majority group in the dataset and
that they create ∼ 80% of all listening events.

As evaluation protocol, we employ a user-based split strategy
[14, 15], i.e., we split the 19,972 users in the dataset into train,
validation, and test user groups via a 60-20-20 ratio split. We carry
out 5-fold cross validation and change these user groups in a round-
robin fashion. The users in the training set and all their interactions
are used to train the recommendation algorithms. For testing and
validation, we follow standard setups [14, 19] and randomly sample
80% of the users’ items as input for the recommendation models
and use the remaining 20% to calculate the evaluation metric.

5 RESULTS AND DISCUSSION
The results are shown in Table 2. Each value in the All rows, re-
garding the popularity bias metrics, shows the median value of the
distribution of a given metric over all users. For instance, %∆Var .
of 72.6% for ALS denotes that the median increase in popularity
variance is 72.6 percent between user’s listening history and items
recommended to each user across all users. SLIM KL 1.66 expresses
that the median difference between user history popularity dis-
tributions and the corresponding recommended tracks popularity
distributions is 1.66 in terms ofKL Divergence. The reported results

1http://www.cp.jku.at/datasets/LFM-2b

regarding the genders indicate the changes in values in respect to
the All values.

Both baseline algorithms (RAND and POP) show poor results on
accuracy metrics. Notably, on the %∆ popularity bias metrics, they
show divergent behavior. Decreasing of %∆metrics ofMean,Median,
Variance and increasing of Skew and Kurtosis indicate that RAND
provides a list of tracks whose popularity distribution is closer to
uniform than those from users’ listening histories. POP has an op-
posite trend, as the recommended tracks’ popularity distribution
has a more pronounced peak, is skewed, and shifted towards more
popular items. It also shows a substantial median increase of vari-
ance in popularity, which can be explained by the fact that in our
dataset, the most popular tracks are sparsely distributed across a
wide range of popularity values (161 track in the popularity range
between 7k and 47k of total play counts). Thus, recommending
tracks from this category leads to a high variance. High values
for KL for both baselines also indicate that the overall popularity
distributions of the recommended items are highly different from
those of the users’ listening histories. The random recommender
demonstrates a higher median Kendall’s τ , which means that its
output better correlates with users’ histories in terms of popularity
distribution. Both neighborhood-based models (i.e., ItemKNN and
SLIM) show a high performance in terms of NDCG and a moder-
ate popularity bias in their recommendations according to the %∆
metrics, which is lower compared to VAE and ALS. In particular,
SLIM shows higher value in %∆ Mean and Median compared to
ItemKNN, suggesting that the item-to-item similarities learned by
SLIM favors more popular items in the recommendations. ItemKNN
displays lower KL and higher Kendall’s τ than SLIM, which means
that its results better approximate users’ listening histories (we
attribute this to ItemKNN being less sensitive to bias in the data
as it does not require trainable parameters). These observations
regarding the performance of the models indicate that a decrease
in popularity bias does not necessarily lead to a significant perfor-
mance drop. Comparing ALS with BPR, we can observe an opposite
behavior. While providing less biased results, BPR shows the poor-
est performance among all non-baseline algorithms. While VAE is
similarly biased in terms of all metrics as POP, it achieves a higher
performance according to NDCG.

Comparing metrics between the two gender groups, we note
that %∆ Mean andMedian is higher for female users. That means
that their recommendations contain more popular items and/or
items of higher popularity than the ones they usually listen to,
and for this user group, that effect is more pronounced (hence
larger values). Considering that %∆Variance is lower for the female
users, we conclude that their recommendations are less diverse in
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Table 2: Results of algorithm-inflected popularity bias evaluation in terms of the seven introduced metrics and NDCG@10.
Each model is represented by three rows. The row All gives the results on the whole dataset. The rows ∆Female and ∆Male de-
scribe the difference in the result between the user group and thewhole population in the dataset. For example, the %∆Variance
for algorithm SLIM for All of 56.0 denotes a median increase in popularity variance (between listening history and recom-
mended list) of 56% over all users. The corresponding ∆Female value of −17.4 means that the variance increase for this group
is 56.0 − 17.4 = 38.6%.

Alg. Users %∆Mean %∆Median %∆Var . %∆Skew %∆Kurtosis KL Kendall’s τ NDCG@10

All −91.8 −87.2 −99.5 11.5 15.3 3.904 0.165 0.000
RAND ∆Female −1.8 −3.5 −0.2 +0.0 −3.5 +0.976 −0.189 −0.000

∆Male +0.5 +1.1 +0.1 −0.0 +1.3 −0.281 +0.053 +0.000
All 432.5 975.2 487.0 −58.0 −87.0 6.023 0.057 0.045

POP ∆Female +11.0 +282.1 −172.2 −2.1 −1.9 +1.626 −0.033 +0.003
∆Male −2.8 −115.8 +55.9 +0.5 +0.5 −0.380 +0.016 −0.001
All 121.8 316.6 72.6 −25.2 −43.9 4.368 0.046 0.184

ALS ∆Female +9.9 +27.4 −7.1 −3.2 −5.4 +0.467 +0.110 −0.017
∆Male −2.7 −6.6 +1.6 +0.8 +1.5 −0.121 −0.023 +0.005
All −49.0 −3.7 −87.4 −14.8 −29.4 1.202 0.268 0.129

BPR ∆Female +5.2 +7.7 +2.1 −1.4 −3.9 +0.476 −0.043 −0.011
∆Male −1.1 −1.9 −0.6 +0.4 +1.1 −0.110 +0.010 +0.003
All 9.6 4.6 5.7 −14.3 −29.0 0.175 0.423 0.301

ItemKNN ∆Female +2.0 +5.8 −2.6 −2.1 −3.2 +0.128 −0.037 −0.042
∆Male −0.5 −1.3 +0.9 +0.8 +0.9 −0.020 +0.008 +0.012
All 49.8 99.8 56.0 −12.5 −26.0 0.424 0.189 0.365

SLIM ∆Female −6.4 −13.1 −17.4 −1.7 −4.6 +0.217 +0.052 −0.048
∆Male +1.9 +3.9 +5.6 +0.6 +1.1 −0.029 −0.012 +0.014
All 303.9 736.3 351.0 −45.2 −70.1 4.823 −0.028 0.191

VAE ∆Female +10.1 +56.4 −69.3 −6.2 −6.6 +0.633 +0.146 −0.020
∆Male −2.3 −20.4 +17.3 +1.8 +2.1 −0.161 −0.042 +0.006

terms of track popularity while consisting of more popular items.
Judging by %∆ Skew ,Kurtosis as well as Kendall’s τ , we can suggest
that most recommender algorithms provide recommendations with
comparable popularity distributions to both male and female users.
At the same time, a slightly larger KL may mean a larger shift
towards popular items for female users. ItemKNN is the least biased
algorithm in our study. It features low absolute values of %∆ Mean,
Median and Variance , meaning that its recommendations consist
of tracks comparable to the user’s listening history in terms of
average popularity and variety. High Kendall’s τ means that the
shape of the popularity distribution of the recommendations best
matches the user’s history among all tested algorithms. Still, it is
slightly biased towards more popular items, as shown by negative
%∆ Skew and KL (which combined with high Kendall’s τ signalizes
about a shift of the distribution).

6 CONCLUSIONS AND FUTURE DIRECTION
In this paper, we examine to what extent various music recom-
mender systems amplify item popularity bias. We study seven met-
rics of popularity bias deviation and analyze the results of seven
recommender algorithms for users of different genders and for
the overall population in the dataset. Addressing RQ1, we observe
that the studied metrics capture considerably different aspects of
difference between popularity distributions of consumed and rec-
ommended items. While %∆Mean and %∆Median tell us about

overall trends (are recommended tracks more or less popular than
consumed ones), %∆Variance expresses the change in the diversity
between listening histories and recommendation lists, and %∆Skew
and %∆Kurtosis hint on the difference of shapes between the two
distributions. Finally, KL Divergence and Kendall’s τ allow insight
into how well the distributions match on a more granular level.
With regard to RQ2, we found that while the investigated algo-
rithms display various levels of popularity bias, the majority of
them (VAE, ItemKNN, BPR, ALS) expose the female users to more
popularity biased results. In the future, we will approach mitigating
model-imposed popularity bias, e.g., through adversarial training
or incorporating bias into the loss function of the recommenders,
as well as finding more expressive metrics describing differences in
the popularity distributions. Additionally, we plan to split our users
into groups according to mainstreaminess as in [12] to compare
our metrics with the group-based delta-GAP metric used in that
work.
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