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ABSTRACT
Data and algorithm sharing is an imperative part of data- and AI-
driven economies. The efficient sharing of data and algorithms
relies on the active interplay between users, data providers, and
algorithm providers. Although recommender systems are known
to effectively interconnect users and items in e-commerce settings,
there is a lack of research on the applicability of recommender
systems for data and algorithm sharing. To fill this gap, we identify
six recommendation scenarios for supporting data and algorithm
sharing, where four of these scenarios substantially differ from
the traditional recommendation scenarios in e-commerce applica-
tions. We evaluate these recommendation scenarios using a novel
dataset based on interaction data of the OpenML data and algorithm
sharing platform, which we also provide for the scientific commu-
nity. Specifically, we investigate three types of recommendation
approaches, namely popularity-, collaboration-, and content-based
recommendations. We find that collaboration-based recommenda-
tions provide the most accurate recommendations in all scenarios.
Plus, the recommendation accuracy strongly depends on the specific
scenario, e.g., algorithm recommendations for users are a more diffi-
cult problem than algorithm recommendations for datasets. Finally,
the content-based approach generates the least popularity-biased
recommendations that cover the most datasets and algorithms.

CCS CONCEPTS
• Information systems → Recommender systems; Collabora-
tive filtering.
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Figure 1: Recommendation scenarios SC1-SC6 that can sup-
port data and algorithm sharing. In addition to the traditional
item-to-user scenarios SC1 and SC2, also item-to-item sce-
narios SC3-SC6 can occur.
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1 INTRODUCTION
Sharing data and algorithms is one important cornerstone in today’s
data- and AI-driven economy. To enable data and algorithm sharing,
interconnecting three key-players is essential: data providers, algo-
rithm providers, and users. Data Providers grant access to their data
collections. Algorithm Providers allow applying their algorithms
to a given piece of data. Users apply algorithms to data and, this
way, connect data and algorithms. In general, data and algorithm
providers may share their resources due to various reasons, e.g., to
monetize the data or the algorithm, or to make them available for
the research community. The powerful strength of data and algo-
rithm sharing lies in the exploitation of shared resources, e.g., data
shared by a data provider. For example, it might be advantageous
for companies to gain access to the best-suited data to enhance
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their AI pipeline. However, selecting the best-suited dataset is hard,
which stems from the fact that the number of available datasets,
publicly available over the Web or stored in private databases, has
increased rapidly over the last decade [8, 11, 20, 31].

Although the deployment of recommender systems for applica-
tions in e-commerce, e.g., Amazon or Zalando, is a natural decision
to address this choice overload, not much research is available on
the applicability of recommender systems for data and algorithm
sharing (see Section 2). This is especially true for beyond-accuracy
objectives of recommender systems, such as popularity bias, which
is currently an important topic in the research community. Recom-
mender systems exhibiting popularity bias tend to exclude many
datasets and algorithms from their recommendations and recom-
mend popular items substantially more often than non-popular
items [7, 13, 14].

To study to what extent recommender systems can support data
and algorithm sharing, we identify six recommendation scenarios
(see Figure 1). In these scenarios, we evaluate three recommen-
dation methods, i.e., Most Popular, Collaborative Filtering, and
Content-based Filtering, with respect to recommendation accuracy
and popularity bias. The three main-contributions of this paper are
as follows:

(1) We discuss six recommendation scenarios and outline how
recommender systems can be applied to support data and
algorithm sharing (see Section 3).

(2) We create and publish a novel dataset based on the OpenML
platform, which allows studying recommender systems for
data and algorithm sharing (see Section 4).

(3) We show that Collaborate Filtering yields the most accurate
recommendations and Content-based Filtering can generate
recommendations that cover the most datasets and algo-
rithms (see Section 5).

2 RELATEDWORK
Recommender systems for data and algorithms are of growing
interest to both academia and industry in the field of data and
AI-driven economies [8, 11, 25].

For example, Patra et al. [25] utilize Content-based Filtering
for dataset recommendations in the genetics domain. Also, Jess
et al. [11] design a recommender system for artificial data to help
human decision-making in the industrial domain. The task of al-
gorithm recommendations has been partially approached by Au-
tomated Machine Learning, which aims to automatically select an
appropriate machine learning pipeline (including algorithms) for
a given dataset and problem [9]. For example, Zschech et al. [37]
recommend a data mining pipeline for a given problem. Vainshtein
et al. [32] and Song et al. [30] exploit metadata and structural prop-
erties of datasets to recommend classification algorithms.

Numerous works exist that evaluate recommender systems for
popularity bias, i.e., their inclination to recommend popular items [7,
22, 36]. For example, Mansoury et al. [22] show that recommender
systems can seriously exacerbate existing biases, such as popularity
bias. Also, Zhu et al. [36] simulate a recommender system tomonitor
the evolution of popularity bias. Within this dynamic setting, the
authors studied factors that drive popularity bias.

Table 1: Profile data is used to generate recommendations,
which are then evaluated against the ground truth data. In the
item-to-user scenarios SC1 and SC2, profile and ground truth
data are available via direct user-to-item interactions (e.g.,
user utilizes a dataset). However, for our remaining scenarios,
i.e., SC3-SC6, profile and/or ground truth data is available
only via indirect item-to-item interactions, or unavailable
(✗), and needs to be constructed.

Profile Data Ground Truth

SC1: Datasets to Users direct direct
SC2: Alsorithms to Users direct direct
SC3: Datasets to Algorithms indirect indirect
SC4: Algorithms to Datasets indirect indirect
SC5: Datasets to Datasets indirect ✗

SC6: Algorithms to Algorithms indirect ✗

Data Market Austria (DMA)1 is an example of a data- and AI-
driven economy, in which a recommender system is employed to
connect users, data, and algorithms [15]. However, the authors
raise concerns regarding the dataset used in their study with re-
spect to valid connections between users, datasets, and algorithms,
and do not consider content-based recommendations. Plus, our
work includes a beyond-accuracy evaluation study with respect to
popularity bias.

3 RECOMMENDATION SCENARIOS
Recommender systems rely on (i) profile data for model training
and (ii) ground truth data for model evaluation. In a traditional item-
to-user recommendation scenario (SC1 and SC2), profile data refers
to the user profile that represents a user’s item preferences. Ground
truth data represents the user’s item preferences the recommender
system aims to predict. Typically, the direct interactions between
users and items (e.g., a user’s utilization of a certain dataset) are used
as the users’ item preferences. However, for the remaining item-to-
item recommendation scenarios (SC3-SC6) there is no direct item-to-
item interaction data that can be used to generate recommendations,
e.g., dataset to algorithm recommendations (see Table 1).

Thus, in the following, we detail our six recommendation scenar-
ios that can occur in data and algorithm sharing (see Figure 1) and
give examples how recommender systems can cope with the lack
of direct interactions for item-to-item recommendation scenarios:

SC1: Datasets to Users. In SC1, recommendations help users
(e.g., researchers) to identify datasets that are deemed to be relevant.
As Figure 1 illustrates, there exists a direct interaction between
users and datasets (e.g., a user uses a dataset to train an algorithm).
Thus, the recommender system can leverage these interactions to
generate recommendations.

SC2: Algorithms to Users. In SC2, recommendations help users
(e.g., researchers) to identify algorithms that are deemed to be
relevant. As in SC1, also in SC2, the recommender system can
leverage the direct interactions between users and algorithms to
generate recommendations.

1https://www.datamarket.at/
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In addition to traditional item-to-user recommendations, also
item-to-item recommendations can occur in data and algorithm
sharing (see Figure 1). However, items, i.e., datasets and algorithms,
do not directly interact with each other; a user has to run an al-
gorithm on a given dataset. Therefore, we rely on direct user-to-
dataset and user-to-algorithm interactions to indirectly intercon-
nect datasets and algorithms.

SC3: Datasets to Algorithms. In SC3, recommendations help
to identify suitable datasets to train a given algorithm. This scenario
can occur when, e.g., algorithm providers or researchers aim to
improve their algorithm via leveragingmore datasets for training. In
contrast to SC1 and SC2, indirect item-to-item interaction data has
to be used to generate recommendations. Since users interact with
algorithms and datasets, we can use user interactions to connect
datasets and algorithms. Specifically, the profile and ground truth
data of an algorithm consists of the datasets that users used to train
the algorithm.

SC4: Algorithms to Datasets. In SC4, recommendations help
to identify suitable algorithms that can be applied to a given dataset.
This scenario can occur when dataset providers or researchers aim
to find other algorithms that can be applied to their dataset, e.g.,
to extract a different kind of knowledge from the data. Similar to
SC3, the profile and ground truth data of a dataset consists of the
algorithms that users run on the dataset.

Finally, with SC5 and SC6, we have two additional item-to-item
recommendation scenarios, but this time, the same item types are
interlinked (e.g., datasets are recommended for a given dataset),
which leads to a different situation with respect to the available
ground truth data:

SC5: Datasets to Datasets. In SC5, data providers can find
other datasets that are utilized by the same user-community. This
is an important scenario in data economies, as this can identify
datasets of competing data providers. For SC5, we build the profile
data in the same way as in case of SC4, i.e., the profile of a dataset
consists of the algorithms that users run on the dataset. However,
for building the ground truth data, we cannot use this idea, since we
need a set of relevant datasets for a given dataset. To build this set,
we create a collaboration network, similarly as in [15]. This means
that we create a link between two datasets if they have been used
by the same user. Thus, the ground truth data of a given dataset
consists of the datasets that have the largest user overlap with this
dataset.

SC6: Algorithms to Algorithms. In this scenario, algorithm
providers can find other algorithms that are utilized by the same
user-community. Similar to SC5, this is an important scenario in
AI-driven economies, as this can identify algorithms of competing
algorithm providers. In case of SC6, we use the same idea as in case
of SC5 to create profile and ground truth data. Hence, the profile
of an algorithm consists of the datasets that users’ used to train
this algorithm and the ground truth data consists of the algorithms
with the largest user overlap.

4 METHOD
4.1 OpenML Dataset
Due to the lack of available datasets to evaluate recommender
systems for data and algorithm sharing, we gather data from the

Table 2: Descriptive statistics of our OpenML datasetD. Many
datasets and algorithms have no interactions. Thus, in con-
trast to content-based recommendationmethods, interaction-
based recommendation methods cannot recommend these
datasets and algorithms.

Users 512
Algorithms 1,307
Datasets 573
Interactions 10,945
Avg. Interactions / User 21.38
Avg. Interactions / Algorithm 8.37
Avg. Interactions / Dataset 19.10

Algorithms𝑤/𝑜 𝐼𝑛𝑡 . 11,037
Datasets𝑤/𝑜 𝐼𝑛𝑡 . 2,104

dataset and algorithm sharing platform OpenML, and share it with
the research community.

Data crawling. In OpenML, users can upload datasets, algo-
rithms, or their entire machine learning pipelines, e.g., a user 𝑢
applied an algorithm 𝑎 (e.g., a classification algorithm) to a dataset
𝑑 . This represents user interactions between datasets and algo-
rithms. Additionally, OpenML provides a powerful and convenient
Python-based API2, which makes it an ideal platform to evaluate
our recommendation scenarios. Our data crawling procedure is as
follows:

(1) We use openml.datasets.list_datasets to fetch all datasets and
openml.flows.list_flows to obtain all algorithms alongside
their textual descriptions. Herein, we ignore case sensitivity
and apply stemming.

(2) Then, we fetch triples containing the user, algorithm, and
task (e.g., classification) with openml.runs.list_runs to obtain
user interactions and retrieve the dataset to which the user
applied the algorithm by querying openml.tasks.OpenMLTask.

(3) Since users can apply the same algorithm to the same dataset
multiple times, we cope with these repeated interactions [33]
by merging all repetitions.

After these three steps, our novel dataset includes 8,637,795 interac-
tions between 544 users, 2,186 datasets, and 5,660 algorithms, as well
as 2,104 datasets and 11,037 algorithms without user interactions.

However, we notice that there exist users with an extraordi-
narily large number of interactions. Through close inspection, we
observe that these users are used to test the platform (e.g., bots).
Thus, we remove all users, whose number of interactions exceeds
the point of maximal curvature of the logarithmic-transformed
interaction-distribution [28]. Further descriptive statistics of our
OpenML dataset D can be found in Table 2. Plus, to foster the
reproducibility of our research, we provide the dataset freely via
Zenodo3.

Train- and test-set split. To evaluate the performance of our
recommendation methods for our recommendation scenarios, we
randomly split the interactions of each target entity (i.e., user,
dataset, or algorithm depending on the scenario) in our dataset

2https://docs.openml.org/Python-API/
3https://doi.org/10.5281/zenodo.6517031
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D into 80% profile data used for training and 20% ground truth data
used for testing. With this, for each target entity, our recommenda-
tion algorithms can utilize sufficient data for training and testing,
which enables a meaningful evaluation. As described in Section 3,
in SC3 and SC4, we create this profile and ground truth data using
indirect item-to-item interactions (i.e., via user interactions). In SC5
and SC6, we create ground truth data via constructing a collabora-
tion network [15]. This means that we connect two datasets (SC5)
or two algorithms (SC6) if they were used by the same user, and
put the 10 datasets or algorithms into the test set with the largest
user overlap.

4.2 Recommendation Methods
In the following, we present three recommendation methods [27]
that we evaluate in our six recommendation scenarios for data and
algorithm sharing. Furthermore, we note that all methods generate
recommendation lists of size 𝑛 = 10 and that the recommendation
lists do not contain items that the target entity already knows, i.e.,
we filter items in the recommendation lists for which the target
entity already has interactions in the profile data. We calculate all
recommendations using the Java-based recommendation frame-
work ScaR (Scalable Recommendation-as-a-service) [16, 18], and
based on three built-in recommendation methods that we adapt to
our data and algorithm sharing problem:

Most Popular (MP).This unpersonalized approach recommends
datasets or algorithms that users interact with the most, i.e., the
most popular datasets or algorithms. This way, only a small set of
available items can be recommended, even though other items may
be better suited for the target entity. However, MP is always capable
of recommending items, even in user cold-start settings [17].

Collaborative Filtering (CF). CF exploits direct or indirect
interaction data between users, data, and algorithmswithin the data-
and AI-driven economy. For example, CF recommends a dataset
𝑑 to a user 𝑢, if similar users (𝑢’s neighbors) have interacted with
𝑑 . Thus, CF provides personalized recommendations generated for
a target entity. Our CF variant is a user-based 𝑘-nearest neighbor
approach with 𝑘 = 40 neighbors, which is the default setting in the
ScaR framework [16, 18].

Content-based Filtering (CB). MP and CF rely on interaction
data to generate recommendations and, therefore, are prone to
popularity bias [1, 6]. As a remedy, CB generates personalized rec-
ommendations by leveraging content data, i.e., textual descriptions,
to identify datasets or algorithms that are deemed to be relevant
for the target entity. We implement CB by using TF-IDF represen-
tations [4, 12] of the description text of datasets and algorithms.
Here, we set the minimum term frequency to 1 and the minimum
document frequency to 2, which are the default settings in the ScaR
framework [16, 18].

4.3 Evaluation Criteria
We evaluate our three recommendation methods based on two
evaluation criteria: (i) accuracy, and (ii) popularity bias:

Accuracy. To evaluate recommendation accuracy, we use five
widely-used metrics [24]: Precision P@𝑘 , Recall R@𝑘 , Mean Recip-
rocal RankMRR@𝑘 , Mean Absolute PrecisionMAP@𝑘 , and Nor-
malized Discounted Cumulative Gain nDCG@𝑘 [10]. Here, P@𝑘

is the fraction of recommended items that are relevant, R@𝑘 is
the fraction of relevant items that are recommended, MRR@𝑘 [26]
is the average reciprocal position of the relevant items in target
entities’ recommendation lists, MAP@𝑘 measures the quality of
the ranked recommendation list by penalizing relevant items that
occur later in the ranking, and nDCG@𝑘 also takes the ranking
into account but is based on cumulative gain [34].

Popularity Bias. To evaluate popularity bias, we use two met-
rics: (i) Item Space Coverage [29] (Cov@𝑘) and (ii) Average Recom-
mendation Popularity (RecPop@𝑘). Cov@𝑘 is the fraction of the
item catalog that is recommended to at least one target entity, and
RecPop@𝑘 is the average popularity of the recommended items.
An item’s popularity is given by the number of interactions for this
item.

5 RESULTS
In this section, we present the results of our experiments, in which
we evaluate three recommendation methods in six recommendation
scenarios along our two evaluation criteria (i) accuracy, and (ii)
popularity bias.

5.1 Accuracy
Across our three recommendation methods Most Popular (MP),
Collaborative Filtering (CF), and Content-based Filtering (CB), in
Table 3, we observe that CF provides the most accurate recommen-
dations in all our six recommendation scenarios. The most accurate
recommendations across our six recommendation scenarios can
be generated by CF in SC4 (Algorithms to Datasets), while the rec-
ommendations generated in SC6 (Algorithms to Algorithms) are
the least accurate. This is interesting since SC4 is a recommenda-
tion scenario, in which profile and ground truth data can only be
constructed using indirect item-to-item interactions, as discussed
in Section 3. However, in SC4, there exists a large item catalog
(i.e., 1,307 algorithms) that CF can recommend for a few target
entities (i.e., 573 datasets). This small dataset-to-algorithm ratio can
positively impact accuracy, since selected neighbors (i.e., similar
datasets) used for generating recommendations tend to be more
reliable due to more co-interacted algorithms [5].

In SC2 (Algorithms to Users), the same item catalog can be rec-
ommended to a similarly small number of target entities - in this
case 512 users. However, recommendation accuracy is substantially
smaller than for SC4. As shown in Table 2, users and datasets have
a similar average number of interactions, but 50% of users have
more than 6 interactions, while only 28% of datasets have more
than 6 interactions. This suggests that generating recommendations
for users is more difficult than generating recommendations for
datasets, possibly due to users’ larger profile data.

In the case of SC6 (Algorithms to Algorithms), the recommender
system needs to cope with the largest item catalog across our six
recommendation scenarios. Also, recommendations need to be gen-
erated for the very same large set of items (i.e., 1,307 algorithms can
be recommended to 1,307 algorithms). Due to this sparse interac-
tion space, all our three recommendation methods seem to struggle
with providing accurate recommendations. However, the high ac-
curacy in SC5 (Datasets to Datasets) shows that our approach for
generating ground truth data in cases where the same item type
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Table 3: Our results show that CF provides the most accurate recommendations in all six recommendation scenarios. However,
as Cov@10 indicates, CF can only recommend a small fraction of the item catalog (i.e., datasets or algorithms). In contrast, CB
can recommend the largest fraction of the item catalog, and provides the least popularity-biased recommendations.

Recommendation Scenario Method P@1 R@10 MRR@10 MAP@10 nDCG@10 Cov@10 RecPop@10

SC1 (Datasets to Users)
MP 0.00 0.22 0.04 0.04 0.08 0.01 593.79
CF 0.26 0.34 0.26 0.27 0.30 0.06 181.50
CB 0.05 0.05 0.03 0.02 0.04 0.12 10.25

SC2 (Algorithms to Users)
MP 0.03 0.11 0.05 0.05 0.07 0.00 265.75
CF 0.12 0.26 0.14 0.14 0.18 0.02 90.51
CB 0.02 0.06 0.02 0.03 0.03 0.03 9.25

SC3 (Datasets to Algorithms)
MP 0.00 0.12 0.02 0.02 0.04 0.01 555.20
CF 0.33 0.39 0.28 0.32 0.35 0.06 143.36
CB 0.00 0.13 0.06 0.06 0.09 0.14 7.07

SC4 (Algorithms to Datasets)
MP 0.01 0.29 0.12 0.13 0.18 0.00 270.62
CF 0.52 0.56 0.42 0.45 0.51 0.01 97.56
CB 0.01 0.03 0.01 0.01 0.02 0.03 12.75

SC5 (Datasets to Datasets)
MP 0.00 0.02 0.01 0.01 0.01 0.00 650.23
CF 0.17 0.44 0.17 0.20 0.28 0.09 55.74
CB 0.05 0.12 0.05 0.06 0.08 0.28 14.88

SC6 (Algorithms to Algorithms)
MP 0.01 0.02 0.01 0.01 0.01 0.00 278.32
CF 0.07 0.24 0.08 0.09 0.14 0.02 55.01
CB 0.04 0.12 0.04 0.05 0.07 0.04 7.87

SC
1

SC
2

SC
3

SC
4

SC
5

SC
6

0.0

0.1

0.2

0.3

0.4

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f p

op
ul

ar
 it

em
s

MP CF CB

Figure 2: The fraction of popular items in a user’s recom-
mendation list. MP generates the most popularity-biased
recommendations, while CB recommends the least popular
items. Also, CF tends to recommend both, popular and non-
popular items.

is recommended to the same item type is suitable for evaluating
recommendations for data and algorithm sharing.

5.2 Popularity Bias
In our popularity bias experiments, Cov@10 in Table 3 suggests
that MP can only recommend a small fraction of the item catalog,
since MP always recommends the - in our case - 10 most popular
items to each target entity. This way, the exploration potential of

the item catalog, which represents the datasets and algorithms in
the data and AI-driven economy, is limited. In contrast to MP, CB
recommends the largest fraction of the item catalog in all six recom-
mendation scenarios and, therefore, allows exploring a larger part
of the data- and AI-driven economy. Plus, CB generates the least
popularity-biased recommendations, since RecPop@10 exhibits a
smaller value than in case of MP and CF. MP and CF are interaction-
based recommendation methods, and since many items have no
interactions (see Table 2), only a small part of the item catalog
can be covered. There exist approaches to make popularity bias
less serious, e.g., re-ranking schemes [2, 35], that penalize popu-
lar items and recommend more unpopular items. However, only
content-based approaches are able to recommend items without
interactions, i.e., cold-start items [19, 21].

In Figure 2, we discuss popularity bias in more detail and investi-
gate the fraction of recommendations for popular items (i.e., the 10
most popular items a target entity has not rated yet). Similar to our
results in Table 3, we can observe that in all six recommendation
scenarios, MP provides the most popularity-biased recommenda-
tions, while CB tends to recommend items with low popularity, due
to its ability to recommend cold-start items.

In general, CB mostly recommends non-popular items and MP
recommends only popular items. CF tends to recommend both,
popular and non-popular items and thus, provides more popularity-
balanced recommendations. Our finding that CF provides more
accurate and popularity-balanced recommendations than MP and
CB is in line with recent research that shows that accurate recom-
mendations should also take non-popular items into account in
addition to popular items [3, 14, 23].
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6 CONCLUSION
In this work, we evaluate the applicability of recommender systems
for supporting data and algorithm sharing.We create a novel dataset
based on the OpenML dataset and algorithm sharing platform, to
enable an offline evaluation of three standard recommendation
methods in six recommendation scenarios. Plus, we discuss our
results along two criteria: recommendation accuracy and popularity
bias. We find that Collaborative Filtering can generate more accu-
rate dataset and algorithm recommendations than Most Popular
and Content-based Filtering. Moreover, Content-based Filtering
exhibits popularity bias to the smallest extent and can recommend
many of the datasets and algorithms that are ignored by Most Pop-
ular and Collaborative Filtering. Overall, our work discusses how
recommender systems can be applied within data- and AI-driven
economies to support data and algorithm sharing.

Limitations and future work. We recognize two limitation
of this work: we do not investigate the aspect of monetization of
data and algorithm sharing in data- and AI-driven economies, and
we do not test whether the target entities are satisfied with the
utility of their recommendations. For example, for algorithm to
user recommendations, algorithms are recommended that are con-
sidered relevant or interesting for a specific user. However, it is
unclear whether the user is satisfied with the performance of the
algorithm, e.g., its performance for classification tasks. With respect
to monetization, our work focuses on data and algorithm sharing
itself, and how recommender systems can support the intercon-
nection of users, data, and algorithms. However, we acknowledge
that, e.g., a recommended dataset might be relevant for a given user,
but could exceed the user’s financial possibilities. Thus, develop-
ing recommender systems that are aware of financial constraints
remains an interesting avenue for future research. Moreover, in
this work, we focus on three broad families of recommender sys-
tems, i.e., popularity-, collaboration-, and content-based approaches.
However, our future work will also incorporate more specialized
approaches as, e.g., deep learning or matrix factorization. Also,
we will acknowledge that data and algorithm providers may have
privacy-related, legal, ethical, or economical concerns when mak-
ing resources available through recommendations. Thus, we will
work on how these concerns can be respected in a recommender
system, e.g., by incorporating privacy-preserving technologies.
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