
Uptrendz: API-Centric Real-Time
Recommendations in Multi-domain

Settings

Emanuel Lacic1, Tomislav Duricic1,2, Leon Fadljevic1, Dieter Theiler1,
and Dominik Kowald1,2(B)

1 Know-Center GmbH, Graz, Austria
{elacic,tduricic,lfadljevic,dtheiler,dkowald}@know-center.at

2 Graz University of Technology, Graz, Austria

Abstract. In this work, we tackle the problem of adapting a real-time
recommender system to multiple application domains, and their underly-
ing data models and customization requirements. To do that, we present
Uptrendz, a multi-domain recommendation platform that can be cus-
tomized to provide real-time recommendations in an API-centric way.
We demonstrate (i) how to set up a real-time movie recommender using
the popular MovieLens-100 k dataset, and (ii) how to simultaneously
support multiple application domains based on the use-case of recom-
mendations in entrepreneurial start-up founding. For that, we differenti-
ate between domains on the item- and system-level. We believe that our
demonstration shows a convenient way to adapt, deploy and evaluate a
recommender system in an API-centric way. The source-code and doc-
umentation that demonstrates how to utilize the configured Uptrendz
API is available on GitHub.

Keywords: Uptrendz · API-centric recommendations · Multi-domain
recommendations · Real-time recommendations

1 Introduction

Utilizing recommender systems is nowadays recognized as a necessary feature to
help users discover relevant content [14,15]. Most industry practitioners [3], when
they build a recommender system, adapt existing algorithms to the underlying
data and customization requirements of the respective application domain (e.g.,
movies, music, news, etc.). However, the focus of the research community has
recently shifted towards building recommendation systems that simultaneously
support multiple application domains [4,7,16] in an API-centric way.

In this work, we demonstrate Uptrendz1, an API-centric recommendation
platform, which can be configured to simultaneously provide real-time recom-
mendations in an API-centric way to multiple domains. Uptrendz supports pop-
ular recommendation algorithms, e.g., Collaborative Filtering (CF), Content-
based Filtering (CBF, or Most Popular (MP), that are applied across different
1 https://uptrendz.ai/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13982, pp. 255–261, 2023.
https://doi.org/10.1007/978-3-031-28241-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28241-6_23&domain=pdf
https://uptrendz.ai/
https://doi.org/10.1007/978-3-031-28241-6_23


256 E. Lacic et al.

Fig. 1. Aspects that need to be addressed when building a recommender system for a
multi-domain environment [10].

application domains. The focus of this demonstration is to show how domain-
specific data-upload APIs can be created to support the customization of the
respective recommendation algorithms. Using the MovieLens-100k dataset [6]
and a real-world use-case of entrepreneurial start-up founding2, we show how
such an approach allows for a highly customized recommendation system that
can be used in an API-centric way. The source-code and documentation for this
demonstration is available via GitHub3.

2 The Uptrendz Platform

The Uptrendz platform is built on top of the ScaR recommendation framework
[11]. As shown in [10] and Fig. 1, the microservice-based system architecture
addresses four distinctive requirements of a multi-domain recommender system,
i.e., (i) service isolation, (ii) data heterogeneity, (iii) recommender customization,
and (iv) fault tolerance. Uptrendz provides a layer on top of the framework to
dynamically configure an application domain and to instantly provide an API
to (i) upload item, user and interaction data, and (ii) request recommendations.

Domain-Specific Data Model. As discussed by [1], different domains may
employ the same recommender algorithm but can differ with respect to what
kind of data is utilized to build the model (e.g., interaction types, context, etc.).
Given an API-centric approach, we show that in order to support the customiza-
tion of recommender algorithms with domain-specific parameters, the underly-
ing platform needs to unambiguously know which source of information should
be used to calculate the recommendations. To do that, the Uptrendz platform
first allows generating customized data upload APIs for multiple item and user
entities (see Table 1). Second, with respect to interaction data, both user-item
and user-user interactions can be configured. The interaction API is further
customized in accordance to what kind of interactions the respective applica-
tion domain actually supports, i.e., (i) registered users, anonymous sessions or
2 https://cogsteps.com/.
3 https://github.com/lacic/ECIR2023Demo.

https://cogsteps.com/
https://github.com/lacic/ECIR2023Demo


API-Centric Real-Time Recommendations in Multi-domain Settings 257

Table 1. Supported attributes to configure the data upload API for items and users.

Type Sub-Type Description

Categorical Text Single Value String value, which usually represents a
category. Used for post-filtering
recommendation results.

Multiple Values List of string values, which usually represent
an array of categories. Used for post-filtering
recommendation results.

Free Text English English text, which is processed and utilized
for content-based recommendations.

German German text, which is processed and utilized
for content-based recommendations.

Numeric Integer Used for post-filtering recommendations
(e.g., user age).

Real Used for post-filtering recommendations
(e.g., price).

Date – Date information for the respective entity (e.g.,
creation date)

both, (ii) interaction timestamp tracking, and (iii) type of interaction (explicit
or implicit).

Recommender Customization. The Uptrendz platform fosters the notion
of defining personalization scenarios (i.e., use-cases) when creating recommen-
dation APIs. The available selection of real-time recommendation models [11]
for a given scenario depends on (i) what should be recommended (e.g., item or
user entities), (ii) for whom the recommendations are targeted (e.g., registered
or anonymous users) and, (iii) what kind of context is given [2] (e.g., item ID
to recommend relevant content for). As we adopt a non-restricted configuration
with respect to the number of freely defined user interaction types, algorithms
that use this kind of data (e.g., Collaborative Filtering) can be customized to
utilize any subset of the list of available interactions as well as to define how
much weight a particular interaction type should have. With respect to post-
filtering recommendation results, each model can use categorical (e.g., tags [12]
or other semantic representations [8]) or numerical data attributes to ensure that
the resulting recommendations either contain or exclude a particular value (see
Table 1 for complete list of attributes).

3 Multi-domain Support

In order to provide a multi-domain recommender platform, we support the
notions of a system-level and item-level domain in accordance with [5]. For the
former, items and users belong to distinct systems (e.g., Netflix and Amazon).



258 E. Lacic et al.

Fig. 2. Example of supporting multiple domains on the item-level (up) and configuring
a hybrid recommendation algorithm (below) with previously created APIs.

For the latter, individual domains have different types of items and users which
may share some common attributes (e.g., movies and books).

Demo Walkthrough: System-level Domain. When a domain is created on
a system level, the underlying data is physically stored in a different location
than the data of other domains. Hence, domains do not share any data between
themselves and the underlying services are isolated so that the performance of
one domain does not impact the performance of another domain (e.g., during
request load peaks). We demonstrate how to create a movie recommender on a
system level. To utilize the MovieLens-100k dataset [6], we first need to configure
the respective data services to upload (i) movie, (ii) user, and (iii) interaction
data. Each entity needs to be separately created in the Uptrendz platform in
order to generate an API that can be used to upload the MovieLens-specific
data attributes. This allows creating recommendation scenarios for (i) similar



API-Centric Real-Time Recommendations in Multi-domain Settings 259

Fig. 3. Uptrendz requires the specification of (i) the item types that should be recom-
mended (e.g., products or users, depending on the domain - left figure), and (ii) the
user types for which recommendations should be generated (e.g., registered users or
session users - right figure).

movies (CBF), (ii) popular horror movies (MP with post-filtering), (iii) movies
based on ratings (CF), (iv) their weighted hybrid combination (e.g., for cold-start
settings [13], and (v) a user recommender for a given movie.

Demo Walkthrough: Item-level Domain. To showcase how to configure
Uptrendz to support multiple-domains on an item-level, we present the use-
case of entrepreneurial start-up founding. Here, we recommend experts that
can provide feedback to an innovation idea, support co-founder matching, help
incubators, innovation hubs and accelerators to discover innovations but also
provide relevant educational materials until the innovation idea matures enough
to form a start-up. In this case, each recommendable entity has a separate data
model and can be viewed as part of a standalone application domain. Figure 2
depicts how adding multiple item entities in the data catalog allows customizing
data attributes for the respective domain. While configuring a recommendation
algorithm, the respective item-level domain can be selected to be recommended.
Here, via the example of a hybrid algorithm, only pre-configured algorithms can
be utilized that belong to the same domain (i.e., innovation recommendations).

Finally, in Fig. 3, we show how Uptrendz allows the specification of (i) differ-
ent item types that can be recommended, and (ii) different user types for which
recommendations should be generated. Our demo application includes different
specification examples.

4 Conclusion

In this paper, we present Uptrendz, an API-centric recommendation platform
that can be customized to provide real-time recommendations for multiple
domains. To do that, we support the notions of a system-level and item-level
domain. We demonstrate Uptrendz using the popular MovieLens-100k dataset
and the use-case of entrepreneurial start-up founding.

In future work, we plan to support even more use cases from other domains,
e.g., music recommendations [9]. Here, we also want to integrate fairness-aware
recommendation algorithms for mitigating e.g., popularity bias effects.

Acknowledgements. This research was funded by CogSteps and the “DDAI”
COMET Module within the COMET - Competence Centers for Excellent Technologies



260 E. Lacic et al.

Programme, funded by the Austrian Federal Ministry for Transport, Innovation and
Technology (bmvit), the Austrian Federal Ministry for Digital and Economic Affairs
(bmdw), the Austrian Research Promotion Agency (FFG), the province of Styria (SFG)
and partners from industry and academia.

References

1. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceed-
ings of the 2008 ACM Conference on Recommender Systems, pp. 335–336. RecSys
’08, ACM (2008). https://doi.org/10.1145/1454008.1454068, http://doi.acm.org/
10.1145/1454008.1454068

2. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F.,
Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp.
217–253. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-
3 7

3. Amatriain, X., Basilico, J.: Past, present, and future of recommender systems:
An industry perspective. In: Proceedings of the 10th ACM Conference on Recom-
mender Systems, pp. 211–214 (2016)

4. Bonab, H., Aliannejadi, M., Vardasbi, A., Kanoulas, E., Allan, J.: Cross-market
product recommendation. In: Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management, pp. 110–119 (2021)

5. Cantador, I., Fernández-Tob́ıas, I., Berkovsky, S., Cremonesi, P.: Cross-domain
recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender
Systems Handbook, pp. 919–959. Springer, Boston, MA (2015). https://doi.org/
10.1007/978-1-4899-7637-6 27

6. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. Acm
Trans. Interact. Intell. Syst. (tiis) 5(4), 1–19 (2015)

7. Im, I., Hars, A.: Does a one-size recommendation system fit all? the effectiveness
of collaborative filtering based recommendation systems across different domains
and search modes. ACM Trans. Inform. Syst. (TOIS) 26(1), 4-es (2007)

8. Kowald, D., Dennerlein, S.M., Theiler, D., Walk, S., Trattner, C.: The social seman-
tic server a framework to provide services on social semantic network data. In:
Proceedings of I-SEMANTICS 2013), pp. 50–54 (2013)

9. Kowald, D., Muellner, P., Zangerle, E., Bauer, C., Schedl, M., Lex, E.: Support
the underground: characteristics of beyond-mainstream music listeners. EPJ Data
Sci. 10(1), 1–26 (2021). https://doi.org/10.1140/epjds/s13688-021-00268-9

10. Lacic, E., Kowald, D., Lex, E.: Tailoring recommendations for a multi-domain
environment. In: Workshop on Intelligent Recommender Systems by Knowledge
Transfer & Learning (RecSysKTL’2017) co-located with the 11th ACM Conference
on Recommender Systems (RecSys’2017) (2017)

11. Lacic, E., Kowald, D., Parra, D., Kahr, M., Trattner, C.: Towards a scalable social
recommender engine for online marketplaces: The case of apache solr. In: Workshop
Proceedings of WWW’2014, pp. 817–822 (2014)

12. Lacic, E., Kowald, D., Seitlinger, P., Trattner, C., Parra, D.: Recommending items
in social tagging systems using tag and time information. In: Proceedings of the
1st International Workshop on Social Personalisation (SP’2014) co-located with
Hypertext’2014 (2014)

https://doi.org/10.1145/1454008.1454068
http://doi.acm.org/10.1145/1454008.1454068
http://doi.acm.org/10.1145/1454008.1454068
https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1007/978-0-387-85820-3_7
https://doi.org/10.1007/978-1-4899-7637-6_27
https://doi.org/10.1007/978-1-4899-7637-6_27
https://doi.org/10.1140/epjds/s13688-021-00268-9


API-Centric Real-Time Recommendations in Multi-domain Settings 261

13. Lacic, E., Kowald, D., Traub, M., Luzhnica, G., Simon, J.P., Lex, E.: Tackling cold-
start users in recommender systems with indoor positioning systems. In: Poster
Proceedings of the 9th {ACM} Conference on Recommender Systems. Association
of Computing Machinery (2015)

14. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy
metrics have hurt recommender systems. In: CHI’06 Extended Abstracts on Human
Factors in Computing Systems, pp. 1097–1101. ACM (2006)

15. Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58
(1997)

16. Roitero, K., Carterette, B., Mehrotra, R., Lalmas, M.: Leveraging behavioral het-
erogeneity across markets for cross-market training of recommender systems. In:
Companion Proceedings of the Web Conference 2020, pp. 694–702 (2020)


	Uptrendz: API-Centric Real-Time Recommendations in Multi-domain Settings
	1 Introduction
	2 The Uptrendz Platform
	3 Multi-domain Support
	4 Conclusion
	References




