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Abstract In this chapter, we discuss how to utilize human memory models for
the task of modeling music preferences for recommender systems. Therefore, we
discuss the theoretical underpinnings of using cognitive models for user modeling
and recommender systems in order to introduce a model based on the cognitive
architecture ACT-R to predict the music genre preferences of users in the Last.fm
platform. By implementing the declarative memory module of ACT-R, comprising
past usage frequency and recency, as well as the current semantic context, we model
the music relistening behavior of users. We evaluate our approach using three user
groups that we identify in Last.fm, namely (i) low-mainstream music listeners, (ii)
medium-mainstream music listeners, and (iii) high-mainstream music listeners. We
find that our approach provides significantly higher prediction accuracy than various
baseline algorithms for all three user groups, and especially for the low-mainstream
user group. Since our approach is based on awell-established humanmemorymodel,
we also discuss how this contributes to the transparency of the calculated predictions.
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1 Introduction

Computational models of user preferences are important elements of music recom-
mender systems [52] to tailor recommendations to the preferences of the user. Such
user models are typically derived from the listening behavior of the users, i.e., their
interactions with music artifacts, content features of music [64], or hybrid combi-
nations of both. Research in music psychology [38] has shown that a wide range
of factors impact music preferences [52], such as users’ emotional state [9, 16], a
user’s current context [44], or a user’s personality [44, 50]. Several aspects make
the modeling of music preferences challenging, such as that music consumption is
context-dependent [48] and serves various purposes for listeners [53]. Also, related
research [11, 21, 25] has verified that traditional music recommendation approaches
suffer from popularity bias, i.e., they are biased to the mainstream that is prevalent
in a music community. As a result, listeners of non-mainstream music receive less
relevant recommendations compared to listeners of popular, mainstream music [6,
40, 46, 47].

In our own previous research [24], we introduced a psychology-inspired approach
to model and predict the music genre preferences of users.We based our approach on
findings from music psychology that show that music liking is positively influenced
by prior exposure to the music [41, 54]. This has been attributed to themere exposure
effect or familiarity principle [63], i.e., users tend to establish positive preferences
for items to which they are frequently and consistently exposed. Our idea was to
computationally model prior exposure to music genres using the activation equation
of human memory from the cognitive architecture Adaptive Control of Thought—
Rational (ACT-R) [2, 4]. The activation equation determines the usefulness of a
memory unit (i.e., its activation) for a user in the current context, based on how
frequently and recently a user accessed it in the past as well as how important this
unit is in the current context. In particular, we utilized the activation equation of
ACT-R for music genre predictions. The equation enabled us to tune the predictions
to the current context of the user. As the current context, we utilized the set of genres
that are assigned to the most recently listened artist of a user.

On a publicly available dataset of Last.fm music listening histories, we modeled
the genre preferences of users from three different groups, which we extracted using
behavioral data in the form of music listening events: (i) LowMS, i.e., listeners of
niche music (low mainstreaminess), (ii) MedMS, i.e., the middle tier of listeners
(medium mainstreaminess), and (iii) HighMS, i.e., listeners of mainstream music
(high mainstreaminess). We introduced the ACTu,a approach that employs the acti-
vation equation to take into account the current context of the user, which we defined
as the user’s current genre preference. We compared the efficacy of ACTu,a to a vari-
ant, i.e., BLLu , that uses only a part of the activation equation (the base-level learning
(BLL) component) to model the past usage frequency (i.e., popularity) and recency
(i.e., time). Furthermore, we compared both approaches to five baselines, including
two collaborative filtering variants, mainstream-aware genre modeling, popularity-
aware genre modeling, and time-based genre modeling. Here, we found that both
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BLLu and ACTu,a outperform the five baseline methods in all three groups, with
ACTu,a achieving the significantly highest performance. Our results also showed that
with both BLLu and ACTu,a , we could specifically improve the prediction perfor-
mance for the users in the LowMS group, i.e., the music consumers whose prediction
quality typically suffers the most from popularity bias.

In this chapter, we extend our previous work [24] with the goal of discussing
how to utilize human memory models for a transparent modeling process of music
preferences for recommender systems. Therefore, in Sect. 2, we provide a general
description of the ACT-R cognitive architecture. This section provides the theoret-
ical underpinnings for using human memory theory to model music preferences of
users as presented in [24], and in Sects. 3 and 4. Furthermore, in Sect. 5, we discuss
potential extensions of our prediction model by reviewing additional components of
ACT-R. Finally, in Sect. 6, we conclude this chapter and discuss possibilities for
future research.

2 Theoretical Underpinnings

Cognitive Science evolved as a research field that combines knowledge of differ-
ent disciplines, namely Psychology, Philosophy, Linguistics, Anthropology, Neuro-
science and Computer Science, in a multi- or interdisciplinary manner. Among the
core hypotheses of this field is the belief that processes and states of the human
mind can be emulated via computer models [39]. On the basis of this fundamental
assumption, cognitive modeling describes the development of executable computer
models that approximate cognitive processes, mechanisms, and representations [57].
Cognitivemodels are divided into threemain categories: (i) computational, (ii) math-
ematical, and (iii) verbal-conceptual models [14].

In principle, the three types of models differ with respect to their detail of for-
malization: Computational models are algorithmic descriptions that use processes
to emulate tasks of human cognition. Mathematical models are considered a sub-
set of computational models. They consist of mathematical equations that formalize
relationships between entities that interact in human cognition tasks. Despite their
typical lack of process details, they can mostly be implemented as computer mod-
els. Verbal-conceptual models, on the other hand, describe such cognitive processes,
entities, and their relationships in a relatively natural language [57]. In this work,
we focus on computational models, and more precisely, the cognitive architecture
ACT-R, which stands short for “Adaptive Control of Thought—Rational” and has
been previously suggested to model human cognition in Human-Computer Interac-
tion (HCI) tasks [7].

ACT-R is a cognitive architecture developed by John Robert Anderson [2].
ACT-R defines and formalizes the basic cognitive operations of the human mind
(e.g., access to information in human memory). It is grounded on the assumption
that all components in a human mind act in concert to generate behavior. To that end,
the ACT-R theory describes how different parts of humans’ minds work together and,
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Fig. 1 Schematic illustration of ACT-R. In our work, we focus on the activation equation of the
declarative memory module

based on this, proposes an architecture built from a number of collaboratingmodules.
The so-called production system coordinates the information flow between different
modules in the center of the model. Eachmodule is provided with a buffer containing
its most important information to reduce the working load on the production system.
This is the data the production system is aware of and reacts to. Figure1 schemati-
cally illustrates the main components of ACT-R that explain a memory perspective.
In general, ACT-R differs between short-term memory modules, such as the work-
ing memory module, and long-term memory modules, such as the declarative and
proceduralmemorymodules.Using a sensory register (i.e., the ultra-short-termmem-
ory), the encoded information is passed to the short-term working memory module,
which interacts with the long-term memory modules. In the declarative memory, the
encoded information can be stored, and already stored information can be retrieved.
In procedural memory, the information can be matched against stored rules, which
may lead to actions [62]. Thus, declarative memory holds factual knowledge (e.g.,
what something is), and procedural memory consists of sequences of actions (e.g.,
how to do something).

In this work, we present a transparent music genre modeling and prediction
approach based on the declarative memory module of ACT-R. In particular, we
built on the activation equation that formulates the availability of elements in a per-
son’s declarative memory, which is described as part of the ACT-R theory [2]. The
activation equation is commonly used to model memory recall tasks [37], and has
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been proposed in the context of tag recommendations [22, 27], item recommenda-
tions [29, 43], and hybrid recommendations [31, 36], as well as for social semantic
technologies [19]. A thorough theoretical survey and derivation of the activation
equation is presented in [4].

3 Data and Approach

In this section, we describe the Last.fm dataset as well as our transparent music genre
modeling and prediction approaches. This section is mainly based on our previous
work [24].

3.1 Dataset

For our experiments, we use the publicly available LFM-1b dataset1 of music lis-
tening information shared by users of the online music platform Last.fm. LFM-1b
contains listening histories of more than 120,000 users, which sums up to over 1.1
billion listening events (LEs) collected between January 2005 and August 2014.
Each LE contains a user identifier, the artist, the album, the track name, and a time
stamp [45]. Furthermore, the LFM-1b dataset contains demographic data of the users
such as country, age, gender, and a mainstreaminess score, which is defined as the
overlap between a user’s personal listening history and the aggregated listening his-
tory of all Last.fm users in the dataset. This overlap is measured using a symmetric
variant of Kullback-Leibler divergence. Thus, the mainstreaminess score reflects a
user’s inclination to music listened to by the Last.fm mainstream listeners (i.e., the
“average” Last.fm listener) [51].

User groups. In order to study different types of users, we use this mainstreaminess
score to split the LFM-1b dataset into three equally sized user groups based on their
mainstreaminess (i.e., low,medium, and high). Specifically, we sort all users based on
their mainstreaminess score and assign the 1,000 users with the lowest scores to the
low-mainstream group (i.e., LowMS), the 1,000 users with scores around the median
mainstreaminess (= 0.379) to the medium-mainstream group (i.e.,MedMS), and the
1,000 users with the highest scores to the high-mainstream group (i.e., HighMS).

We consider only users with a minimum of 6,000 and a maximum of 12,000
LEs. We choose these thresholds based on the average number of LEs per user in
the dataset, which is 9,043, as well as the kernel density distribution of the data.
With this method, on the one hand, we exclude users with too little data available
for training the proposed models (i.e., users with less than 6,000 LEs). On the other
hand, we exclude so-called power listeners (i.e., users with more than 12,000 LEs)

1 http://www.cp.jku.at/datasets/LFM-1b/.

http://www.cp.jku.at/datasets/LFM-1b/
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Table 1 Dataset statistics for the LowMS, MedMS, and HighMS Last.fm user groups. Here, |U | is
the number of distinct users, |A| is the number of distinct artists, |G| is the number of distinct genres,
|LE | is the number of listening events, |GA| is the number of genre assignments, |GA|/|LE | is the
average number of genre assignments per LE, |G|/|U | is the average number of genres a user has
listened to, and Avg.MS is the average mainstreaminess value

User
group

|U | |A| |G| |LE | |GA| |GA|/|LE | |G|/|U | Avg.MS

LowMS 1,000 82,417 931 6,915,352 14,573,028 2.107 85.771 0.125

MedMS 1,000 86,249 933 7,900,726 20,264,870 2.565 126.439 0.379

HighMS 1,000 92,690 973 8,251,022 22,498,370 2.727 186.010 0.688

that might distort our results. Table1 summarizes the statistics and characteristics of
our three user groups. We see that, even if we only consider 1,000 users per group,
we have a sufficient amount of LEs, i.e., between 6.9 and 8.3 million, to train and
test our music genre modeling and prediction approaches. Further characteristics of
our user groups are as follows:

(i) LowMS. The LowMS group represents the |U | = 1,000 users with the small-
est mainstreaminess scores. These users have an average mainstreaminess value of
Avg.MS = 0.125. LowMS contains |A| = 82,417 distinct artists, |LE | = 6,915,352
listening events, |G| = 931 genres, and |GA| = 14,573,028 genre assignments.

(ii) MedMS. The MedMS group consists of the |U | = 1,000 users with main-
streaminess scores around the median and, thus, lying between the ones of the
LowMS and HighMS groups. This group has an average mainstreaminess value
of Avg.MS = 0.379. The majority of dataset statistics of this group lies between the
ones of the LowMS and HighMS users.

(iii) HighMS. The HighMS group represents the |U | = 1,000 users in the LFM-1b
dataset with the highest mainstreaminess scores (Avg.MS = 0.688). These users
listen to the highest number of distinct genres on average (i.e., |G|/|U | = 186.010),
indicating that music which is considered mainstream is quite diverse on Last.fm.
Also, this user group exhibits the highest number of distinct genres (|G| = 973).

Additionally, we investigate the most frequent countries of the users. Here, for
all three groups, the United States (US) is the dominating country. The share of
US users increases with the mainstreaminess, i.e., while this share is only 14% for
LowMS and 18% for MedMS, it is already 22% for HighMS. Interestingly, Russia
(RU, 13%), Poland (PL, 9%), and Japan (JP, 8%) are frequent in the LowMS group,
while the United Kingdom (UK) contributes a substantial share in the other two
groups (9% for MedMS and 14% for HighMS). Germany (DE) is among the most
frequently occurring countries in all three groups (10% for LowMS and HighMS,
8% for MedMS); Brazil (BR) can only be found among the most popular countries
in the MedMS group (8%); and the Netherlands (NL, 5%) as well as Spain (ES, 4%)
can only be found in the HighMS group.
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Genre mapping. For mapping music genres to artists, we use an extension of the
LFM-1b dataset, namely the LFM-1b UGP dataset [49], which describes the gen-
res of an artist by leveraging social tags assigned by Last.fm users. Specifically,
LFM-1b UGP contains a weighted mapping of 1,998 music genres available in the
online database Freebase2 to Last.fm artists. This database includes a fine-grained
representation of musical styles, including genres such as “Progressive Psytrance”
or “Pagan Black Metal”.

The genre weightings for any given artist correspond to the relative frequency of
tags assigned to that artist in Last.fm. For example, for the artist “Metallica”, the top
tags and their corresponding relative frequencies are “thrash metal” (1.0), “metal”
(0.91), “heavy metal” (0.74), “hard rock” (0.41), “rock” (0.34), and “seen live” (0.3).
From this list, we remove all tags that are not part of the 1,998 Freebase genres (i.e.,
“seen live” in our example) as well as all tags with a relative frequency smaller than
0.5 (i.e., “hard rock” and “rock” in our example). Thus, for “Metallica”, we end up
with three genres, i.e., “thrash metal”, “metal”, and “heavy metal”.

3.2 Approach

Our approach focuses on the declarative part of the cognitive architecture ACT-R [2],
which contains the activation equation of human memory. The activation equation
determines the usefulness, i.e., the activation level Ai , of a memory unit i (e.g., a
music genre in our case) for a user u in the current context. It is given by

Ai = Bi +
∑

j

W j · Sj,i (1)

Here, the Bi component represents the base-level activation and quantifies the general
usefulness of the unit i by considering how frequently and recently it has been used
in the past. It is given by the base-level learning (BLL) equation:

Bi = ln

⎛

⎝
n∑

j = 1

t−d
j

⎞

⎠ (2)

where n is the frequency of i’s occurrences and t j is the time since the j th occurrence
of i . The exponent d accounts for the power-law of forgetting, which means that each
unit’s activation level caused by the j th occurrence decreases in time according to a
power function [2].

The second component (right addend) of Eq.1 represents the associative acti-
vation that tunes the base-level activation of the unit i to the current context. The
context is given by any contextual element j that is relevant for the current situation.

2 https://developers.google.com/freebase/ (no longer maintained).

https://developers.google.com/freebase/
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In the case of a music recommender system, that could be a music genre that the
user prefers in the current situation. Through learned associations, the contextual ele-
ments are connected with i and can increase i’s activation depending on the weight
Wj and the strength of association Sj,i .

3.2.1 Modeling and Predicting Music Genre Preferences

For a transparent modeling and prediction approach, we investigate two algorithms:
BLLu based on the BLL equation tomodel the past usage frequency (i.e., popularity)
and recency (i.e., time), and ACTu,a based on the full activation equation to also take
the current context into account.

We start with BLLu and thus, with defining the base-level activation B(g, u) for
genre g and user u by utilizing the previously defined BLL equation:

B(g, u) = ln

⎛

⎝
n∑

j = 1

t−d
u,g, j

⎞

⎠ (3)

Here, g is a genre user u has listened to in the past, and n is the number of times u
has listened to g. Further, tu,g, j is the time in seconds since the j th LE of g by u, and
d is the power-law decay factor, which we identify using a similar method as used
in [26]. Thus, in Fig. 2, for all LEs and genres in our dataset, we plot the relistening
count of a genre g over the time since the last LE of g. Then, we set d to the slope
α of the linear regression lines of this data, which leads to 1.480 for LowMS, 1.574
for MedMS, and 1.587 for HighMS.

The resulting base-level activation values B(g, u) are then normalized using a
simple softmax function in order to map them onto a range of [0, 1] that sums up to
1 [23, 26]:

B ′(g, u) = exp(B(g, u))∑
g′∈Gu

exp(B(g′, u))
(4)

Here, Gu is the set of distinct genres listened to by u. Finally, BLLu predicts the
top-k genres G̃k

u with the highest B
′(g, u) values to u:

G̃k
u = k

argmax
g∈Gu

(B ′(u, g))

︸ ︷︷ ︸
BLLu

(5)

To investigate not only the factors of frequency and time but also the current con-
text by means of an associative activation, we implement the full activation equation
(see Eq.1) in the form of
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Fig. 2 Calculation of the BLL equation’s d parameter. On a log-log scale, we plot the relistening
count of the genres over the time since their last LEs. We set d to the slopes α of the corresponding
linear regression lines

A(g, u, a) = B ′(g, u) +
∑

c∈Ga

Wc · Sc,g (6)

where the first part represents the base-level activation bymeans of the BLL equation
and the second part represents the associative activation.

To calculate the associative activation and, thus, to model a user’s current context,
we incorporate the set of genres Ga assigned to the most recently listened to artist a
by the user u. When applying this equation in the context of recommender systems,
related literature [60] suggests using a measure of normalized co-occurrence to rep-
resent the strength of an association Sc,g . Accordingly, we define the co-occurrence
between two genres as the number of artists to which both genres are assigned. We
normalize this co-occurrence value according to the Jaccard coefficient:

Sc,g = |Ac ∩ Ag|
|Ac ∪ Ag| (7)
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where Ac is the set of artists to which any genre c of the current context (i.e., any
genre of the artist most recently listened to) is assigned, and Ag is the set of artists to
which genre g is assigned. Thus, we set the number of times two genres co-occur into
relation with the number of times in which at least one of the two genres appears. In
this work, we set the attentional weight Wc of context-genre c to 1. By doing so, we
give equal weights to all genres assigned to an artist, which avoids down-ranking of
less popular, but perhaps more specific, and hence more valuable, genres.

Finally, we normalize the A(g, u, a) values using the aforementioned softmax
function and predict the top-k genres G̃k

u with the highest A′(g, u, a) values for a
given user u and the genres of the user’s most recently listened artist a (i.e., the
current context):

G̃k
u = k

argmax
g∈Gu

(A′(u, g, a))

︸ ︷︷ ︸
ACTu,a

(8)

We further illustrate the difference between BLLu and ACTu,a in the example of
Fig. 3 by showing the additional impact of the associative activation defined by the
second component of the activation equation. As defined, this associative activation
is evoked by the current context (i.e., the genres of the last artist the target user has
listened to).

The left panel of Fig. 3 shows two genres, g1 and g2, with different base-level
activation levels (illustrated by the circle size). Thus, according to BLLu , g1 reaches
a higher base-level activation, which means a better rank, than g2. This relationship
changes in the right panel of Fig. 3, where we consider the influence of the genres in
the current context (illustrated by the black nodes). Specifically, depending on the

Fig. 3 Example based on REF illustrating the difference between BLLu (left panel) and ACTu,a
(right panel). Here, unfilled nodes represent target genres g1 and g2, and black nodes represent
genres of the last artist listened to by the target user (i.e., contextual genres). For g1 and g2, the
node sizes represent the activation levels and for the contextual genres, the node sizes represent
the attentional weights Wc. The association strength Sc,g is represented by the edge lengths. While
BLLu determines a higher activation level for g1 than for g2, ACTu,a gives a higher activation level
to g2 than to g1 by also considering the associative association based on the current context [59]
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weights Wc (represented by the size of the black nodes) and strength of association
Sc,g (represented by the length and direction of the edges), the genres in the current
context spread additional associative activation to the genres g1 and g2. Now, accord-
ing to ACTu,a , g2 receives stronger associative activation than g1, which also leads
to a better rank.

4 Experiments and Results

In this section, we describe our experimental setup, i.e., the baseline algorithms,
the evaluation protocol and metrics, as well as the results of our experiments. This
section is mainly based on our previous work [24].

4.1 Baseline Algorithms

We compare the BLLu and ACTu,a approaches to five baseline algorithms:

Mainstream-based baseline: TOP. The T OP approach models a user u’s music
genre preferences using the overall top-k genres of all users (i.e., the mainstream) in
u’s user group (i.e., LowMS, MedMS, HighMS). This is given by

G̃k
u = k

argmax
g∈G

(|GAg|) (9)

Here G̃k
u denotes the set of k predicted genres, G the set of all genres, and |GAg|

corresponds to the number of times g occurs in all genre assignments GA of u’s user
group.

User-based collaborative filtering baseline: CFu. User-based collaborative
filtering-based approaches aim to find similar users for the target user u (i.e., the
set of neighbors Nu) and predict the genres these similar users have listened to in the
past [56]. CFu is given by

G̃k
u = k

argmax
g∈G(Nu)

⎛

⎝
∑

v∈Nu

sim(Gu,Gv) · |GAg,v|
⎞

⎠ (10)

where G̃k
u denotes the set of k predicted genres for user u, G(Nu) are the genres

listened to by the set of neighbors Nu ,3 and sim(Gu,Gv) is the cosine similarity
between the genre distributions of user u and neighbor v. Finally, |GAg,v| indicates

3 We set the neighborhood size for CFu and CFi to 20.
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how often v has listened to genre g in the past. This approach is similar to the category
recommender algorithm introduced in [28].

Item-based collaborative filtering baseline: CFi. Similar to CFu , CFi is a collab-
orative filtering-based approach, but instead of finding similar users for the target
user u, it aims to find similar items, i.e., music artists SAu , for the artists Au that user
u has listened to in the past. Then, it predicts the genres that are assigned to these
similar artists as given by

G̃k
u = k

argmax
g∈G(SAu )

⎛

⎝
∑

a∈Au

∑

s∈Sa
sim(Ga,Gs)

⎞

⎠ (11)

where G(SAu ) are the genres assigned to similar artists SAu , Sa is the set of similar
artists for an artist a ∈ Au ,4 and sim(Ga,Gs) is the cosine similarity between the
genre distributions assigned to a and the genres assigned to a similar artist s ∈ Sa .

Popularity-based baseline: POPu POPu is a personalized music genre modeling
technique,which predicts the kmost frequently listened genres in the listening history
of user u. POPu is given by the following equation:

G̃k
u = k

argmax
g∈Gu

(|GAg,u |) (12)

Here, Gu is the set of genres u has listened to in the past and |GAg,u | denotes the
number of times u has listened to g. Thus, it ranks the genres u has listened to in the
past by popularity.

Time-based baseline: TIMEu. The time-based baseline T I MEu predicts the k
genres that user u has most recently listened to. It is given by

G̃k
u = k

argmin
g∈Gu

(tu,g,n) (13)

where tu,g,n is the time since the last (i.e., the nth) LE of g by u.

4.2 Evaluation Protocol and Metrics

We split the datasets into train and test sets [10]. While doing so, we ensure that
our evaluation protocol preserves the temporal order of the LEs, which simulates a
real-world scenario in which we predict genres of future LEs based on past ones and
not the other way round [26]. This also means that a classic k-fold cross-validation
evaluation protocol is not useful in our setting.

4 For Au , we consider the set of the 20 artists that u has listened to most frequently.
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Specifically, we put the most recent 1% of the LEs of each user into the test set
(i.e., LEtest ) and keep the remaining LEs for the train set (i.e., LEtrain). We do not
use a classic 80/20 split as the number of LEs per user is large (i.e., on average, 7,689
LEs per user). Although we only use the most recent 1% of listening events per user,
this process leads to three large test sets with 69,153 listening events for LowMS,
79,007 listening events for MedMS, and 82,510 listening events for HighMS. To
finally measure the prediction quality of the approaches, we use the following six
well-established performance metrics [5]:

Recall: R@k. Recall is calculated as the number of correctly predicted genres divided
by the number of relevant genres taken from the LEs in the test set LEtest . It is a
measure for the completeness of the predictions and is formally given by

R@k = 1

|LEtest |
∑

u,a∈LEtest

|G̃k
u ∩ Gu,a|
|Gu,a| (14)

where G̃k
u denotes the k predicted genres and Gu,a the set of relevant genres of an

artist a in user u’s LEs in the test set.

Precision: P@k. Precision is calculated as the number of correctly predicted genres
divided by the number of predictions k and is a measure of the accuracy of the
predictions. It is given by

P@k = 1

|LEtest |
∑

u,a∈LEtest

|G̃k
u ∩ Gu,a|

k
(15)

We report recall and precision for k = 1 . . . 10 predicted genres in the form of
recall/precision plots.

F1-score: F1@k. F1-score is the harmonic mean of recall and precision:

F1@k = 2 · P@k · R@k

P@k + R@k
(16)

We report the F1-score for k = 5, where it typically reaches its highest value if 10
genres are predicted.

Mean Reciprocal Rank: MRR@k. MRR is the average of reciprocal ranks r(g) of
all relevant genres in the list of predicted genres:

MRR@k = 1

|LEtest |
∑

u,a∈LEtest

1

|Gu,a|
∑

g∈Gu,a

1

r(g)
(17)

This means that a high MRR is achieved if relevant genres occur at the beginning of
the predicted genre list.
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Mean Average Precision: MAP@k. MAP is an extension of the precision metric
by also taking the ranking of the correctly predicted genres into account and is given
by

MAP@k = 1

|LEtest |
∑

u,a∈LEtest

1

|Gu,a|
k∑

i=1

Reli · P@i (18)

Here, Reli is 1 if the predicted genre at position i is among the relevant genres (0
otherwise) and P@i is the precision calculated at position i according to Eq.15.

Normalized Discounted Cumulative Gain: nDCG@k. nDCG is another ranking-
dependent metric. It is based on the Discounted Cumulative Gain (DCG@k) mea-
sure [15], which is defined as

DCG@k =
k∑

i=1

(
2Reli − 1

log2(1 + i)

)
(19)

where Reli is 1 if the genre predicted for the i th item is relevant (0 otherwise).
nDCG@k is given as DCG@k divided by i DCG@k, which is the highest possible
DCG value that can be achieved if all relevant genres are predicted in the correct
order:

nDCG@k = 1

|LEtest |
∑

u,a∈LEtest

(
DCG@k

i DCG@k

)
(20)

We report MRR, MAP, and nDCG for k = 10 predicted music genres, where these
metrics reach their highest values if 10 genres are predicted.

4.3 Results and Discussion

In this section, we present and discuss our evaluation results. The accuracy results
according to F1@5, MRR@10, MAP@10, and nDCG@10 are shown in Table2
for the five baseline approaches as well as the proposed BLLu and ACTu,a algo-
rithms. Furthermore, we provide recall/precision plots for k = 1 . . . 10 predicted
genres in Fig. 4.

Accuracy of baseline approaches. When analyzing the performance of the baseline
approaches T OP ,CFu ,CFi , POPu , and T I MEu , we see a clear difference between
the non-personalized and the personalized algorithms. While the non-personalized
T OP approach, which predicts the top-k genres of the mainstream, provides better
accuracy results in the HighMS setting than in the LowMS setting, the personalized
CFu , CFi , POPu , and T I MEu algorithms provide better results in the LowMS
setting than in the HighMS setting. Hence, personalized genre modeling approaches
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Table 2 Genre prediction accuracy results comparing our BLLu and ACTu,a approaches with a
mainstream-based baseline (T OP), a user-based collaborative filtering baseline (CFu), an item-
based collaborative filtering baseline (CFi ), a popularity-based baseline (POPu), and a time-
based baseline (T I MEu). For all three user groups (i.e., LowMS, MedMS, and HighMS), ACTu,a
outperforms all other approaches. According to a t-test with α = 0.001, “∗∗∗” indicates statistically
significant differences between ACTu,a and all other approaches

User
group

Evaluation
metric

T OP CFu CFi POPu T I MEu BLLu ACTu,a

LowMS F1@5 0.108 0.311 0.341 0.356 0.368 0.397 0.485∗∗∗

MRR@10 0.101 0.389 0.425 0.443 0.445 0.492 0.626∗∗∗

MAP@10 0.112 0.461 0.505 0.533 0.550 0.601 0.785∗∗∗

nDCG@10 0.180 0.541 0.590 0.618 0.625 0.679 0.824∗∗∗

MedMS F1@5 0.196 0.271 0.284 0.292 0.293 0.338 0.502∗∗∗

MRR@10 0.146 0.248 0.264 0.274 0.272 0.320 0.511∗∗∗

MAP@10 0.187 0.319 0.336 0.351 0.365 0.419 0.705∗∗∗

nDCG@10 0.277 0.419 0.441 0.460 0.452 0.523 0.753∗∗∗

HighMS F1@5 0.247 0.273 0.266 0.282 0.228 0.304 0.427∗∗∗

MRR@10 0.188 0.232 0.229 0.242 0.201 0.266 0.412∗∗∗

MAP@10 0.246 0.304 0.298 0.314 0.267 0.348 0.569∗∗∗

nDCG@10 0.354 0.413 0.402 0.429 0.357 0.462 0.642∗∗∗

provide better results, the lower the mainstreaminess of the users. Non-personalized
genre modeling approaches, however, have higher performance, the higher the main-
streaminess of the users.

Next, we compare the accuracy of the two collaborative filtering-based methods,
CFu andCFi . Here, the item-basedCFvariantCFi reaches higher accuracy estimates
in the LowMS and MedMS settings, while the user-based CF variant CFu provides
better performance in theHighMS setting. To better understand this pattern of results,
we provide the average pairwise user similarity in the formof boxplots in Fig. 5. Here,
for all three user groups, we calculate the pairwise similarity between the users via
the cosine similarity metric based on the users’ genre distribution vectors. We see
that users in the HighMS setting are very similar to each other, which explains the
good performance of an algorithm that is based on user similarities, such as CFu .

POPu and T I MEu reach the highest accuracy estimates among the five baseline
approaches. Interestingly, the popularity-based POPu algorithm provides the best
results for the HighMS user group, while the time-based T I MEu algorithm provides
the best results for the LowMS user group. For theMedMS user group, however, both
algorithms reach a comparable accuracy performance, which shows the importance
of both factors, frequency (i.e., popularity) and recency (i.e., time).

Accuracy of BLLu and ACTu,a . We discuss the results of the BLLu and ACTu,a

approaches,which utilize humanmemory processes as defined by the cognitive archi-
tecture ACT-R in order to model and predict music genre preferences. Specifically,
BLLu combines the factors of past usage frequency and recency via the BLL equa-
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Fig. 4 Recall/precision plots for k = 1 . . . 10 predicted genres of the baselines and our BLLu and
ACTu,a approaches for the three user groups LowMS, MedMS, and HighMS. ACTu,a achieves the
best results in all settings

tion (see Eq.3) and ACTu,a extends BLLu by also considering the current context
via the activation equation (see Eq.6). In this work, we define the current context by
the genres assigned to the artist that the target user u has listened to most recently.

As expected, when combining the factors of past usage frequency and recency
in the form of BLLu , we can outperform the best performing baseline approaches
POPu and T I MEu in all three settings (i.e., LowMS, MedMS, and HighMS). We
can further improve the accuracy performance when we additionally consider the
current context in the form of ACTu,a . Here, we reach a statistically significant
improvement5 over all other approaches across all evaluationmetrics and user groups.
Furthermore, in Fig. 6, we present a recall/precision plot showing the accuracy of
ACTu,a for k = 1 . . . 10 predicted genres for LowMS, MedMS, and HighMS. We
observe good results for all three user groups, but especially in the LowMS setting,
in which we are faced with users with a low interest in mainstream music.

This shows that the proposed ACTu,a algorithm can provide accurate predictions
of music genres listened to in the future for all user groups. Moreover, since our
approach utilizes humanmemory processes, it is based on psychological principles of
human intelligence rather than artificial intelligence. We believe that this theoretical

5 According to a t-test with α = 0.001.
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Fig. 5 Average pairwise user similarity for LowMS, MedMS, and HighMS. We calculate the user
similarity using the cosine similarity metric based on the users’ genre distributions. While users in
the LowMS group show a very individual listening behavior, users in the HighMS group tend to
listen to similar music genres

Fig. 6 Recall/precision plot of our ACTu,a approach for k = 1 . . . 10 predicted genres for the
three user groups LowMS, MedMS, and HighMS. We observe good prediction accuracy results for
ACTu,a in all settings, but especially for LowMS. This shows that our approach based on human
memory processes is especially useful for predicting the music genre preferences of users with low
interest in mainstream music
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underpinning contributes to the explanation effectiveness of our approach, as we
can fully understand why a specific genre was predicted for a target user in a given
context. To further illustrate this with an example, we would like to refer back to
Fig. 3.

In this figure, we have shown the differences between BLLu and ACTu,a for
two predicted genres g1 and g2. Let us assume that these are the top-2 predicted
genres for a target user u. According to BLLu , we know that these genres got
the highest activation levels because u has listened to them very frequently and
recently. When looking at the activation levels calculated by ACTu,a , we also take
the current context into account and, thus, get an indication for the similarity of g1
and g2 to the genres assigned to the most recently listened artist a of user u. In our
example, genre g2 is strongly related to the current context, while genre g1 only
has a weak relation to it. Taken together, with our ACTu,a approach, we can easily
explain genre prediction results according to three simple factors that are relevant
for human memory processes according to the cognitive architecture ACT-R: past
usage frequency, past usage recency, and similarity to current context.

5 Discussion of Model Extensions

Besides the previously discussed three main factors for modeling music genre pref-
erences, we now present potential model extensions to further enhance the trans-
parency of our approach based on related music recommendation literature [43].
We first present the individual components comprising feature similarity, associ-
ated rewards, and randomness in behavior. We then provide the adapted activation
equation and discuss further alterations of components.

Partial matching component. The partial matching component [3] is another core
component of ACT-R’s activation equation [8]. The basic idea of partial matching
revolves around retrieval based on similarity. Concerning music preferences, con-
sider the case of two genres with mostly distinct artists but similar sounds (e.g.,
symphonic vs. power metal), and a user with a strong preference to one genre but
so far almost no listening events to the other. We can reasonably hypothesize that
such a user would also show a (weaker but still noticeable) preference to the so far
unexplored genre. Hence, genres can be retrieved even when they do not fully match
the user’s historical preferences, i.e., only partially matches.We can predict the top-k
G̃k

u based on partial matching of a user’s preference by

G̃k
u = k

argmax
g∈G

∑

f ∈Fu
P · M f,g (21)

where Fu is the specification for the retrieval, i.e., a set of preferred features of the user
u. Example features are acoustics or lyrics that are associated with tracks, artists, and
genres. A user can either explicitly set Fu , or it can automatically be extracted from
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the user’s historical LEs. M f,g represents the match similarities between a particular
feature f and genre g:

M f,g = sim( f, g) (22)

where sim(·, ·) is an arbitrary similarity function. The factor P represents the match
scale and is by default set to a constant value of 1 [8]. If sim(·, ·) is also modeled as a
multiplication of values associated with f and g, then partial matching is equivalent
to the dot product between the specification f and genre g.Moreover, by dynamically
adapting P based on f and g, other well-established functions, such as the cosine
similarity, can be used.

In comparison to base-level and associative activation, partial matching can be
seen as content-based retrieval and allows unexplored genres to be retrieved (e.g.,
in a cold-start setting [30]). Herein, it could use both user-to-item and item-to-item
based recommendation.

Valuation component. Besides the core components, several extensions have been
proposed, such as aggregate retrieval [32] or hybrid approaches [61]. In the following,
we discuss one particular extension, i.e., the valuation component, that we deem
relevant for modeling music preferences [13]. We predict the top-k genres G̃k

u based
on their valuation Vu,g(n) at the nth LE of genre g by user u:

G̃k
u = k

argmax
g∈Gu

Vu,g(n) (23)

where valuations are learned according to the following equation:

Vu,g(n) = Vu,g(n − 1) + α(Ru,g(n) − Vu,g(n − 1)) (24)

The valuation Vu,g(n) is based on the valuation Vu,g(n − 1) of the previous LE (i.e.,
n − 1) and updated with the associated reward Ru,g(n) weighted by the learning
rate α. The initial valuation is determined by Vu,g(0) and can be set to Vu,g(0) = 0
to specify that users do not have prior preferences. Ru,g(n) is the reward that user
u associates with the genre g at nth LE. The reward can be, for instance, modeled
according to the listening time of LEs (either total time or ratio of track length). Thus,
longer LEs would result in greater valuations (i.e., a positive signal). Moreover, very
short LEs could even be assigned a negative reward, as such events could indicate
skipping (i.e., a negative signal). Alternatively, we could set Ru,g(n) = 1 to learn
the familiarity with a given genre. Hence, the valuation component would retrieve
equivalent genres as POPu if used exclusively (but the scoreswould differ depending
on the learning rate). Furthermore, the reward could also depend on explicit signals,
such as ratings or up- and downvotes, if such data is available.

Noise. To account for randomness in behavior, a noise value εg can be considered
for the activation, which is a (typically small) random number. Hence, the activation
level for each genre g ∈ G deviates slightly by chance, therefore, a random genre is
predicted:
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G̃k
u = k

argmax
g∈G

εg (25)

Adapted activation equation. If all components are taken together, the adapted
activation equation becomes

A(g, u, a, n) = B ′(g, u) +
∑

c∈Ga

Wc · Sc,g +
∑

f ∈Fu
P · M f,g + Vu,g(n) + εg (26)

Hence, the activation depends on several additive components, where the genres with
the highest overall activation is retrieved:

G̃k
u = k

argmax
g∈G

A(g, u, a, n) (27)

Finally, wewant to emphasize that alternative implementations of the components
are possible. For instance, the base-level component can be simplified as B(g, u) =
ln

(
n√
tu,g,0

)
[1]. Thus, the adapted equation only considers the frequency (i.e., the total

number of retrievals n), normalized by recency of initial retrieval (i.e., the time since
the first retrieval tu,g,0). Similarly, the associative component can also be modeled
regarding probabilities of certain outcomes [13], e.g., whether a particular genre
is likely listened to in a session. We, therefore, see potential for additional model
extensions in future work.

6 Conclusion and Future Work

In this chapter, we extended our previous work [24], and discussed the use of cogni-
tivemodels for context-aware prediction of users’ music genre preferences. Based on
relevant literature, we derived the theoretical underpinnings of BLLu and ACTu,a ,
twomusic genre preferencemodeling and prediction approaches based on the human
memory module of the cognitive architecture ACT-R. While BLLu utilizes the BLL
equation of ACT-R in order to model the factors of past usage frequency (i.e., popu-
larity) and recency (i.e., time), ACTu,a integrates the activation equation of ACT-R
to also incorporate the current context.We defined this context as the genres assigned
to the most recently listened artist of the target user.

Using a dataset gathered from themusic platformLast.fm,we evaluated BLLu and
ACTu,a against amainstream-based approach T OP , a user-based CF approachCFu ,
an item-based CF approach CFi , a popularity-based approach POPu as well as a
time-based approach T I MEu . We used six evaluation metrics (i.e., recall, precision,
F1-score, MRR, MAP, and nDCG) in three evaluation settings in which the evalu-
ated users differed in terms of their inclination to mainstream music (i.e., LowMS,
MedMS, and HighMS user groups). Our evaluation results show that both BLLu
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and ACTu,a outperform the five baseline methods in all three settings; ACTu,a even
does so in a statistically significant manner. Furthermore, we find that especially the
current context is critical when aiming for accurate genre predictions. Finally, in
this chapter, we also discussed potential model extensions by surveying additional
components of ACT-R.

Summed up, we have shown that human memory processes in the form of ACT-
R’s activation equation can be effectively used for context-aware genre preference
modeling and prediction. In addition, we also reviewed the literature in the field
of cognitive-inspired recommender systems, and discussed potential model exten-
sions of additional ACT-R components. By following such a psychology-inspired
approach, we also believe that we can model a user’s preferences transparently, in
contrast to, e.g., deep learning-based approaches based on latent user representations.
Therefore, our approach could be useful to producemore transparent and explainable
music recommender systems.

Future work. In addition to the ACT-R model extensions presented in Sect. 5, we
plan to utilize the procedural memory processes of ACT-R. As, for instance, done in
the SNIF-ACT model [12, 42], we will define so-called production rules in order to
transfer the user’s preferences into actual music recommendation strategies. Bymak-
ing these rules transparent to the user, we aim to contribute to research on transparent
recommender systems that create explainable recommendations based on psycho-
logical models [34].

As another research strand, we want to investigate fairness in the form of gender
bias [33], confirmation bias [18], or popularity bias [11] in the field of cognitive- and
psychology-informed recommender systems [34]. For example, we plan to study
if recommendations generated using ACT-R are less prone to biased results than
alternative, purely data-driven algorithms.

Finally, we will explore the effectiveness of other cognitive models in the domain
of music recommender systems. For example, we plan to leverage a cognitive model
of human category learning [35] to recommend music that fits a user’s current focus,
similar to [17, 55], who used that model to tailor learning resources to a learner’s
current task.

Reproducibility. To foster the reproducibility of our research, we use the publicly
available LFM-1b dataset (see Sect. 3). Furthermore, we provide the source code of
our approach as part of our TagRec framework [20, 58].
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