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Abstract
Hybrid AI, which integrates symbolic and sub-symbolic methods,
has emerged as a promising paradigm for advancing human-centric
personalization. By combining machine learning with structured
knowledge representations, hybrid AI enables interpretable and
adaptive user models that account for human factors such as biases,
mental models, and affective states. The HyPer workshop provides
a venue to discuss how hybrid AI approaches, combining neural
architectures, symbolic representations, and cognitive/behavioral
frameworks, can bridge the gap between explainability, cognitive
modeling, and automated adaptation to user preferences.

CCS Concepts
• Computing methodologies → Artificial intelligence; • In-
formation systems→ Decision support systems.
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1 Introduction and Workshop Goals
As AI-driven personalization becomes increasingly pervasive, there
is a growing demand for interpretable, trustworthy, and human-
centered user modeling techniques. Traditional AI-based person-
alization systems rely heavily on data-driven, black-box machine
learning models, which often lack transparency and do not ad-
equately capture complex human behaviors and cognitive pro-
cesses [30]. Hybrid AI models integrate symbolic reasoning with
sub-symbolic, data-driven learning [4], and have emerged as a
promising solution for advancing human-centric personalization
by combining structured knowledge representations with adaptive,
data-driven models [34]. Corresponding hybrid AI systems can
integrate the interpretability of symbolic AI with the learning capa-
bilities of sub-symbolic models, and thus, enable more transparent
and explainable user modeling while maintaining the flexibility and
adaptability of machine learning-based approaches.

Despite these advantages, hybrid AI-based personalization faces
several challenges. Integrating symbolic and sub-symbolic AI re-
quires designing architectures that efficiently combine discrete,
logic-based representations with continuous, high-dimensional fea-
ture spaces [20]. Ensuring fairness, mitigating biases, and aligning
hybrid models with human cognitive processes poses another chal-
lenge [19]. Additionally, dynamic user preferences and real-time
decision-making introduce the need for adaptive hybrid models
that can continuously update their symbolic reasoning frameworks
while maintaining computational efficiency. Addressing these chal-
lenges is essential to making hybrid AI viable for real-world per-
sonalization systems across various domains.

The HyPerworkshop aims to bridge the gap between sub-symbolic
learning (e.g., neural networks) and symbolic knowledge represen-
tations (e.g., knowledge graphs) to develop hybrid user models
that better reflect human cognitive processes, social behaviors, and
decision-making patterns. Additionally, HyPer addresses challenges
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in designing AI-driven personalization systems that align with hu-
man cognitive processes while maintaining the algorithmic perfor-
mance of machine learning-based approaches. It complements the
main UMAP conference by offering a dedicated space to explore hy-
brid AI models for personalization, fostering discussions on novel
hybrid AI methods, knowledge graphs, and cognitive frameworks,
thereby advancing human-centric personalization. Summed up, this
workshop includes eight papers that contribute to the following
research topics:

• Methods for integrating symbolic knowledge and sub-symbolic
learning in user modeling

• Applications of cognitive theories and behavioral insights in
hybrid AI models for personalization

• Techniques for interpretability, explainability, and trust in
hybrid AI systems

• Methods for detecting and mitigating biases and unfairness
in hybrid AI, e.g., by using symbolic approaches such as
counterfactual fairness

• Behavioral data analysis and user studies of cognitively-
inspired modeling approaches

• Domain-specific implementations of hybrid AI models

2 Workshop Summary and Accepted
Contributions

We accepted eight papers and grouped them into three themes.

2.1 Cognitive Architectures and
Neuro-Symbolic Approaches for
Transparent Hybrid AI

Four papers in this workshop emphasize the need for hybrid AI
systems that reflect human cognitive processes and offer greater
transparency. One contribution critiques the procedural limita-
tions of current large language models and proposes augmenting
them with semantic memory and associative learning to better han-
dle complex, dynamic environments [42]. Another paper presents
fuzzy neural networks as a neuro-symbolic approach for recom-
mender systems, enabling human-readable logic rules and explain-
able decision-making [1]. A vision paper builds on cognitive science
by integrating declarative and procedural memory from the ACT-R
architecture to simulate human-like decision-making and person-
alization [7]. Finally, a position paper advocates for cognitively
aligned human-AI decision-making, proposing interactive AI assis-
tance that supports domain experts in co-constructing decisions by
combining symbolic reasoning with sub-symbolic learning [27].

2.2 Enhancing Personalization and
Recommendation through Automation and
Cognition in Hybrid AI

Two contributions explore the intersection of automation and cogni-
tive alignment in recommender systems and user modeling within
hybrid AI. One study benchmarks a wide range of AutoML and Au-
toRecSys libraries on multiple datasets, revealing that AutoML ap-
proaches often outperform traditional recommender systems,especially
for non-expert users [40]. Another study investigates exploratory

search behavior in e-commerce, identifying distinct user orienta-
tions and linking them to specific search stages [9].

2.3 Trust, Interaction, and Interpretability in
Human-Hybrid AI Collaboration

Two papers address how users interact with hybrid AI systems and
how transparency can influence trust and effectiveness. One study
introduces a confidence rating interface for chatbot interactions,
suggesting that visualizing model certainty and offering prompt
improvement suggestions can improve trust and performance in
verification and reasoning tasks [41]. Another paper proposes a
symbolic motion representation system based on Labanotation and
Laban Movement Analysis, aimed at improving human-robot inter-
action and preserving expressive, interpretable movement data [26].

3 Biographies of Organizers
Elisabeth Lex is a full professor at Graz University of Technology,
Austria. Besides, she is the head of the AI for Society Lab at the Insti-
tute of Human-Centred Computing. Her research interests include
user modeling, recommender systems, information retrieval, and
data science, with a focus on psychology-informed recommender
systems [3, 10, 11, 13, 18, 19, 28, 31], responsible recommender
systems [14, 16, 23, 24] or music [12, 25]. She regularly organizes
workshops, research tracks, and gives tutorials at the core venues
in her field.
Kevin Innerebner is a PhD student at Graz University of Technol-
ogy and a member of the AI for Society Lab. His research combines
symbolic and sub-symbolic AI techniques to design information
retrieval and recommender systems [2, 8].
Marko Tkalcic is a full professor at the University of Primorska,
Slovenia, specializing in affective computing, user modeling, psy-
chology -informed user modeling, and hybrid AI methods. He has
published extensively on the intersection of emotion recognition,
personality, and personalization [5, 6, 35, 37–39], as well as on
the intersection of psychological models and recommender sys-
tems [28, 36]. He also regularly organizes workshops on theory-
guided personalization and user modeling. Additionally, he has
served as program chair at UMAP 2021 as well as other chair roles
in conferences (UMAP, IUI, RecSys).
Dominik Kowald is a research area manager at Know Center
Research GmbH for the FAIR-AI research area. He is also a senior
researcher and lecturer at Graz University of Technology, Austria.
His research focuses on establishing trustworthy and reproducible
AI [15, 32, 33], privacy, bias, and fairness in recommender sys-
tems [12, 14, 23, 24], and cognitive user models [10, 11, 13, 18, 19, 31].
He has organized several interdisciplinary workshops on person-
alization and AI. Additionally, he regularly serves on the program
committees of related conferences and workshops and is a topic
editor for journals in the field.
Markus Schedl is a full professor at Johannes Kepler University
Linz (JKU), leading the Multimedia Mining and Search group. He
also heads the Human-centered AI group at the Linz Institute of
Technology (LIT) AI Lab. His research interests include recom-
mender systems, user modeling, information retrieval, machine
learning, natural language processing, multimedia, and trustwor-
thy AI, with a focus on detecting and mitigating bias in retrieval and
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recommendation algorithms [17, 21, 22, 29] and on psychological
models for recommendation [18, 19, 28]. Markus is general co-chair
of the ACM Conference on Recommender Systems (RecSys) 2025.

4 Conclusion
The eight contributions to the HyPer workshop demonstrate how
hybrid AI, combining symbolic reasoning, sub-symbolic learning,
and cognitivemodeling, can advance explainable and human-centered
personalization. They highlight promising directions for building
adaptive systems that align with human reasoning in a cognitive-
plausible and transparent way.
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