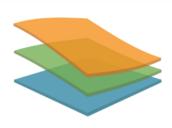


Scaling up Technologies for Informal Learning in SME Clusters

Long Time No See

The Probability of Reusing Tags as a Function of Frequency and Recency

Dominik Kowald, Paul Seitlinger, Christoph Trattner, Tobias Ley



Many Thanks To

Paul Seitlinger

paul.seitlinger@tugraz.at

Graz University of Technology

Austria

Christoph Trattner

ctrattner@know-center.at

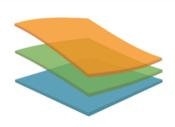
Know-Center Graz

Austria

Tobias Ley

tley@tlu.ee

Tallinn University
Estonia

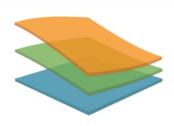


What will this talk be about?

Social tags

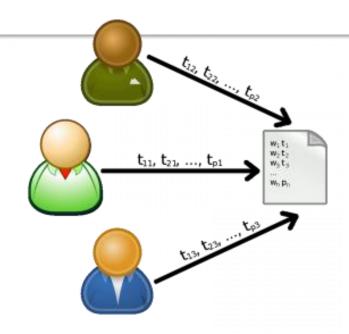
Prediction/recommendation of social tags

 Using an equation derived from human memory theory to implement a novel tag recommender

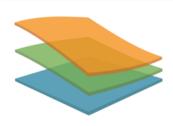


Why are we doing this?

- Social tagging is the process of collaboratively annotating content
- Essential instrument of Web 2.0

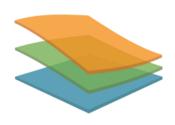


- Helps users to
 - classify and structure Web content [Zubiaga et al., 2012]
 - navigate large knowledge repositories [Helic et al., 2012]
 - search and find information [Trattner et al., 2012]



Problem:

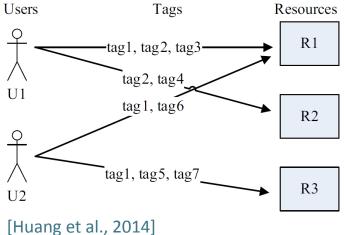
People are typically lazy in applying social tags (!)



Solution: Tag Recommenders

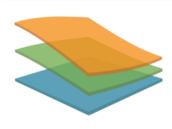
 Tag recommendation algorithms support the users in applying appropriate tags for resources and can be based on:

- Tag Frequencies (MP)
- Collaborative Filtering (CF)
- Graph Structures (APR, FR)
- Factorization Models (FM, PITF)
- Hybrid approaches



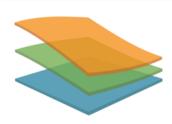
Issues

- Usually users change their tagging behavior over time
- BUT all of these approaches ignore the time component

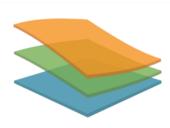


What's about the time component?

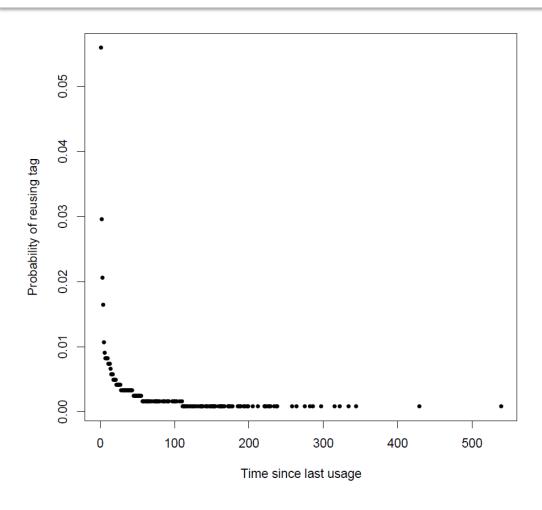
- Only a few time-based approaches available
- The Temporal Tag Usage Pattern approach (GIRPTM) of Zhang et al. (2012) shows that the time component is important for tag recommenders
 - Models the time component using an <u>exponential function</u>
- Empirical research on human memory (Anderson & Schooler, 1991) showed that the reuse-probability of a word depends on its usage-frequency and recency in the past
 - Models the time component using a <u>power function</u>



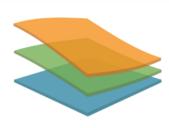
Which function fits better to model the drift of interests in social tagging systems?



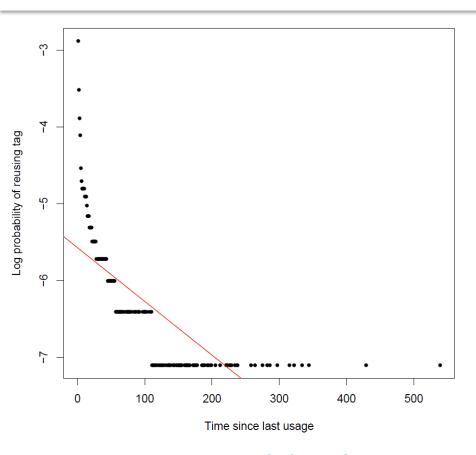
Empirical Analysis: BibSonomy (1)

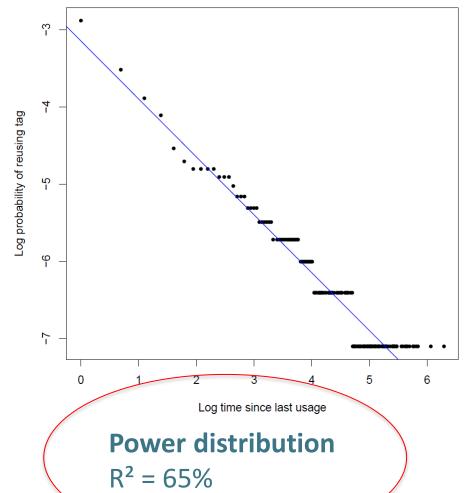


- Linear distribution with logscale on Y-axis →
 exponential function
- Linear distribution with logscale on X- and Y-axes →
 power function



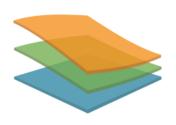
Empirical Analysis: BibSonomy (2)





Exponential distribution

$$R^2 = 35\%$$



Our Approach

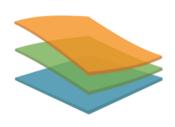
 Base-Level learning (BLL) equation - part of ACT-R model [Anderson et al., 2004]:

$$BLA(t, u) = ln(\sum_{i=1}^{n} (timestam p_{ref} - timestam p_i)^{-d})$$

- Also the context (resource) is important
 - Modeled with the most frequent tags of the resource (MP_r)

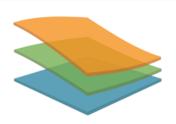
$$\widetilde{T}(u,r) = \underset{t \in T}{\operatorname{arg max}} \left(\beta \underbrace{\|BLA(t,u)\|}_{BLL} + (1-\beta)\||Y_{t,r}|\| \right)$$

- Linear runtime: O(|Y_{t,u}| + |Y_{t,r}|)
- Code: https://github.com/learning-layers/TagRec/

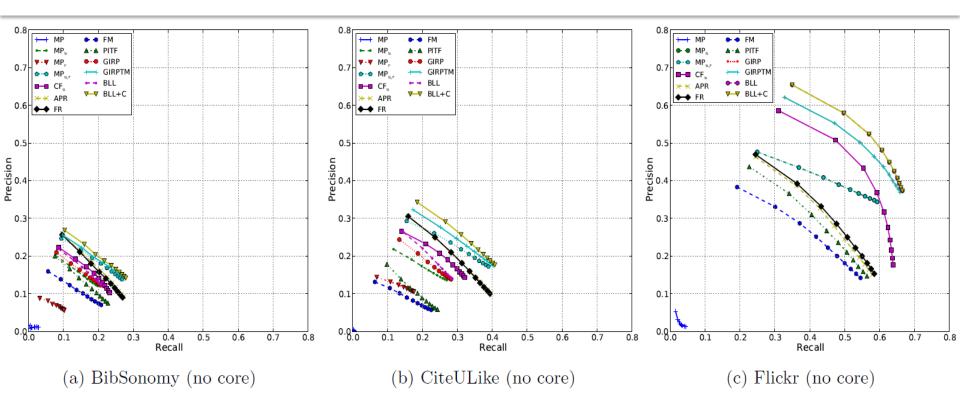


How does it perform?

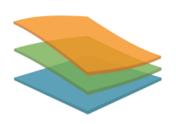
- 3 freely-available folksonomy datasets
 - BibSonomy (1.5 Million tag assignments)
 - CiteULike (16.7 million tag assignments)
 - Flickr (3.5 million tag assignments)
- Original datasets and p-core pruned datasets (core 3)
- Leave-one-out evaluation (for each user latest bookmark/post in test-set, rest in training-set)
- IR metrics: Precision, Recall, F1-score, MRR, MAP



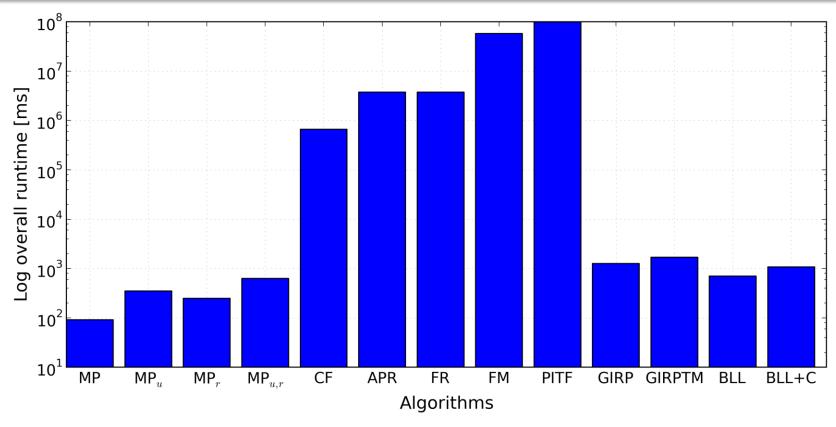
Results: Precision-Recall plots



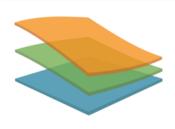
- The time-depended approaches outperform the state-of-the-art
- BLL+C reaches the highest level of accuracy



Runtime: BibSonomy



• **BLL+C** needs only around 1 second to provide accurate tagrecommendations for 5,500 user-resource pairs in the test set

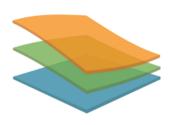


What we have shown

- 1) The **time component** is an important factor for tagrecommendations
- The BLL-equation can be used to implement an effective tag recommender
 - Models the time component with a power function rather than an exponential function
 - Outperforms current state-of-the art algorithms despite its simplicity
 - Computationally efficient: linear runtime
- Effective principles of recommenders in social tagging can be implemented if human memory processes are taken into account

What are we currently doing?

- In previous work we presented a tag recommender based on human categorization (3Layers) [Seitlinger et al., 2013]
 - Combine this recommender with BLL to model the time component on a lexical and semantic layer
- Better modelling of the (resource) context (MP_r)
 - Spreading activation
 - Content-based approaches
- Adapt BLL+C also for the recommendation of resources
- Conduct online evaluation (BibSonomy)



Thank you for your attention!

Code and framework:

https://github.com/learning-layers/TagRec/

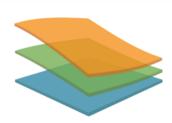
Questions?

Dominik Kowald

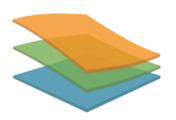
dkowald@know-center.at

Know-Center

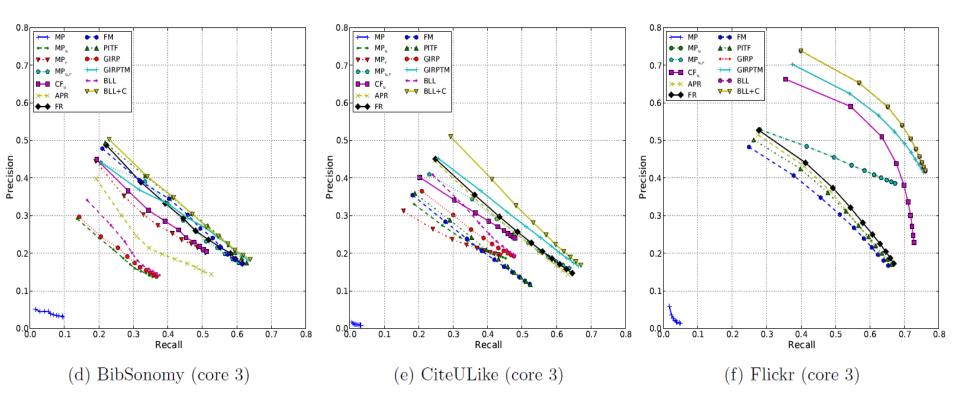
Graz University of Technology (Austria)

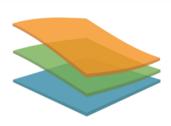


Backup



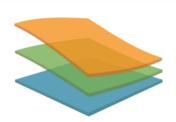
Results: Core 3





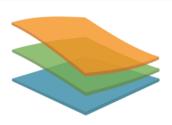
Results: F1@5, MRR, MAP

Dataset	Core	Measure	MP	MP_r	$MP_{u,r}$	CF	APR	FR	FM	PITF	GIRPTM	BLL+C
BibSonomy	-	$F_{1}@5$.013	.074	.192	.166	.175	.171	.122	.139	.197	.201
		MRR	.008	.054	.148	.133	.149	.148	.097	.120	.152	.158
		MAP	.009	.070	.194	.173	.193	.194	.120	.150	.200	.207
	3	$F_{1}@5$.047	.313	.335	.325	.260	.337	.345	.356	.350	.353
		MRR	.035	.283	.327	.289	.279	.333	.329	.341	.334	.349
		MAP	.038	.345	.403	.356	.329	.414	.408	.421	.416	.435
CiteULike	-	$F_{1}@5$.002	.131	.253	.218	.195	.194	.111	.122	.263	.270
		MRR	.001	.104	.229	.201	.233	.233	.110	.141	.246	.258
		MAP	.001	.134	.280	.247	.284	.284	.125	.158	.301	.315
	3	$F_1@5$.013	.270	.316	.332	.313	.318	.254	.258	.336	.346
		MRR	.012	.243	.353	.295	.361	.366	.282	.290	.380	.409
		MAP	.012	.294	.420	.363	.429	.436	.326	.334	.455	.489
Flickr	-	$F_{1}@5$.023	-	.435	.417	.328	.334	.297	.316	.509	.523
		MRR	.023	-	.360	.436	.352	.355	.300	.333	.445	.466
		MAP	.023	-	.468	.581	.453	.459	.384	.426	.590	.619
	3	$F_{1}@5$.026	-	.488	.493	.368	.378	.361	.369	.577	.592
		MRR	.026	-	.407	.498	.398	.404	.375	.390	.511	.533
		MAP	.026	-	.527	.663	.513	.523	.481	.502	.676	.707



Runtime Complexities

Algorithm	Complexity	Authors
MP	$\mathcal{O}(Y_t)$	Jäschke
MP_u	$\mathcal{O}(Y_{t,u})$	et al. [21] Jäschke et al. [21]
GIRP	$\mathcal{O}(Y_{t,u})$	Zhang
BLL	$\mathcal{O}(Y_{t,u})$	et al. [54] Kowald
MP_r	$\mathcal{O}(Y_{t,r})$	et al. [23] Jäschke
$MP_{u,r}$	$\mathcal{O}(Y_{t,u} + Y_{t,r})$	et al. [21] Jäschke
GIRPTM	$\mathcal{O}(Y_{t,u} + Y_{t,r})$	et al. [21] Zhang
BLL+C	$\mathcal{O}(Y_{t,u} + Y_{t,r})$	et al. [54] Kowald
$_{\mathrm{CF}}$	$\mathcal{O}(V_r Y_{t,u})$	et al. [23] Marinho
APR	$\mathcal{O}(l \cdot (Y_t + s))$	et al. [32] Hotho
FR	$\mathcal{O}(l \cdot (Y_t + s))$	et al. [19] Hotho
FM	$\mathcal{O}(l \cdot B_s \cdot (k_T \cdot T ^2 + k_U \cdot k_R \cdot k_T))$	et al. [19] Rendle
PITF	$\mathcal{O}(l \cdot B_s \cdot (k_T \cdot T ^2 + k_U \cdot k_R \cdot k_T))$	et al. [43] Rendle
		et al. [43]



Runtimes for BibSonomy

Core	Type	MP	MP_u	MP_r	$MP_{u,r}$	CF	APR/FR	FM	PITF	GIRP	GIRPTM	BLL	BLL+C
-	Train $[t]$.091	.177	.217	.520	.164	.919	58,182	99,753	.955	1409	.502	.943
	Test $[\overline{t}]$.000	.001	.001	.001	.120	.683	.000	.000	.001	.001	.001	.001
	All $[t]$.091	.349	.250	.631	662.724	3,751	58,182	99,753	1.270	1.685	.705	1.082
3	Train $[t]$.028	.052	.059	.059	.037	.165	4,318	7,437	.127	.170	.095	.122
	Test $[t]$.000	.001	.001	.001	.002	.062	.000	.000	.001	.001	.001	.001
	All $[t]$.028	.111	.080	.119	2.006	49.354	4,318	7,437	.183	.232	.151	.168

