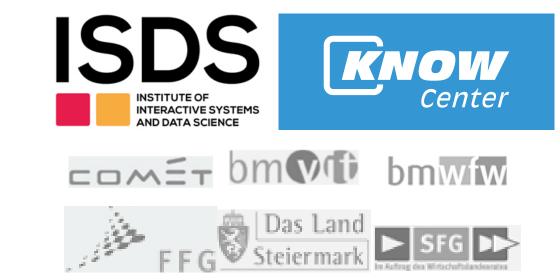
TRUST-BASED COLLABORATIVE FILTERING

TACKLING THE COLD START PROBLEM USING REGULAR EQUIVALENCE

TOMISLAV DURICIC, EMANUEL LACIC

DOMINIK KOWALD AND ELISABETH LEX

{TDURICIC, ELACIC, DKOWALD}@KNOW-CENTER.AT AND ELISABETH.LEX@TUGRAZ.AT



PROBLEM

Neighbor selection in Collaborative Filtering suffers from data sparsity and the coldstart problem.

Trust networks can be used to alleviate the problem, but are often also sparse.

EXPERIMENTAL SETUP

Dataset:

Gathered from *epinions.com* with 49,290 users, 139,738 items, 664,824 ratings, and 487,181 trust connections.

Trust-graph density = 0.0002.

Baselines:

Most Popular (MP)

Naive trust-based CF ($Trust_{exp}$) Jaccard trust-based CF ($Trust_{jac}$).

Adapted Katz ($KS_{a,b,c,d}$) approaches:

- (a) Use Trust Propagation wit l_{max} or Not
- (b) Use <u>C</u>ombined, <u>I</u>n-Degree or <u>N</u>o Degree Normalization
- (c) Use $\underline{L_1}$, $\underline{L_2}$, $\underline{\mathbf{M}}$ ax or $\underline{\mathbf{N}}$ o Row Normalization
- (d) **B**osting of propagated trust values or **N**ot

Setting:

Simulating the cold-start problem by recommending n=[1,10] items for all users which have rated at least 10 items (= 25,393 users)

CONTRIBUTION

Explore the application of the Katz similarity (KS) measure for cold-start users in a trust-based CF approach.

Evaluate the resulting similarity matrix with different **normalization techniques** for a better recommendation accuracy.

Introduce an **adapted KS** measure that gives higher similarity values to node pairs with path lengths of 2.

FUTURE WORK

Investigate the impact of trust-based networks on **beyond accuracy** metrics such as novelty, diversity and coverage.

Explore the recently popularized **node embedding techniques** (e.g., *Node2Vec* or *GraphSAGE*) for trust networks.

REFERENCES

- [1] T. Duricic, E. Lacic, D. Kowald and E. Lex. Trust-Based Collaborative Filtering: Tackling the Cold Start Problem Using Regular Equivalence. In *Proc.* of the 12th ACM Conference on Recommender Systems (RecSys'18).
- [2] E. Lacic, D. Kowald and E. Lex. Tailoring Recommendations for a Multi-Domain Environment. In *Proc.* of the Intelligent Recommender Systems by Knowledge Transfer & Learning (RecSysKTL) Workshop at RecSys '17.

APPROACH

Step 1: Calculating Katz Similarity with a chosen l_{max} . By using the iterative approach:

$$\boldsymbol{\sigma}^{(l_{max}+1)} = \sum_{l=0}^{l_{max}} (\alpha \mathbf{A})^l, \text{ where } \boldsymbol{\sigma}^{(0)} = 0 \text{ and } \boldsymbol{\sigma}^{(1)} = \mathbf{I}$$
 (1)

In the conducted experiments, we used values 1 and 2 for l_{max} , which means that we either have not propagated similarities through the network at all or that we propagated them through the network using a maximum path length of 2.

Step 2: Degree normalization. KS as defined in Eq. (1), tends to give high similarity to nodes that have a high degree. In some cases this might be desirable but if we want to get rid of this bias, we can apply a degree normalization on σ :

$$\boldsymbol{\sigma}_{Dnorm}^{(l_{max}+1)} = \mathbf{D}^{-1} \left(\sum_{l=0}^{l_{max}} (\alpha \mathbf{A})^l \right) \mathbf{D}^{-1}$$
(2)

Step 3: Row normalization. We introduced an additional step where we individually scale rows of the final resulting matrix using one of the three vector norms: L_1 , L_2 or max.

Step 4: Boosting propagated similarities. One of the contributions of this paper was to increase the impact of propagated trust values generated with KS for $l_{max} = 2$. Our proposed approach for doing this consists of the following four steps: (i) calculate $\sigma^{(3)}$ as described above using the trust network as \mathbf{A} , (ii) create a new similarity matrix $\hat{\boldsymbol{\sigma}}$ such that:

$$\hat{\sigma}_{i,j} = \begin{cases} \sigma_{i,j}^{(3)}, & \text{if } A_{i,j} = 0\\ 0, & \text{otherwise} \end{cases}$$
 (3)

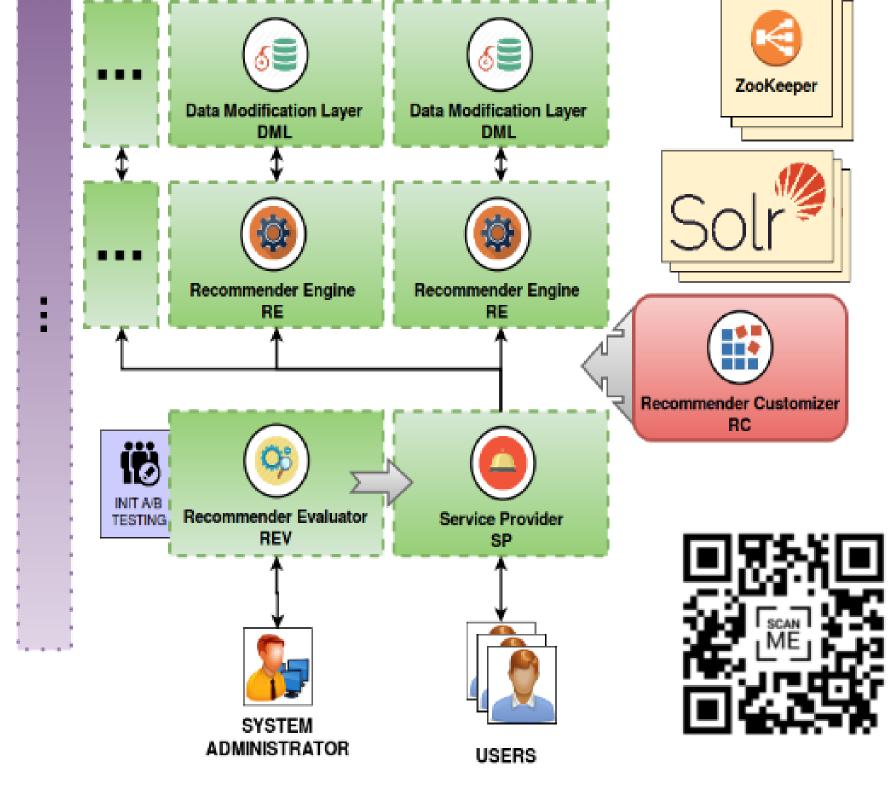
(iii) create $\hat{\sigma}_{norm}$ matrix by individually scaling rows of $\hat{\sigma}$ using L_1 , L_2 or max vector norm and lastly, (iv) create a similarity matrix σ_{boost} such that:

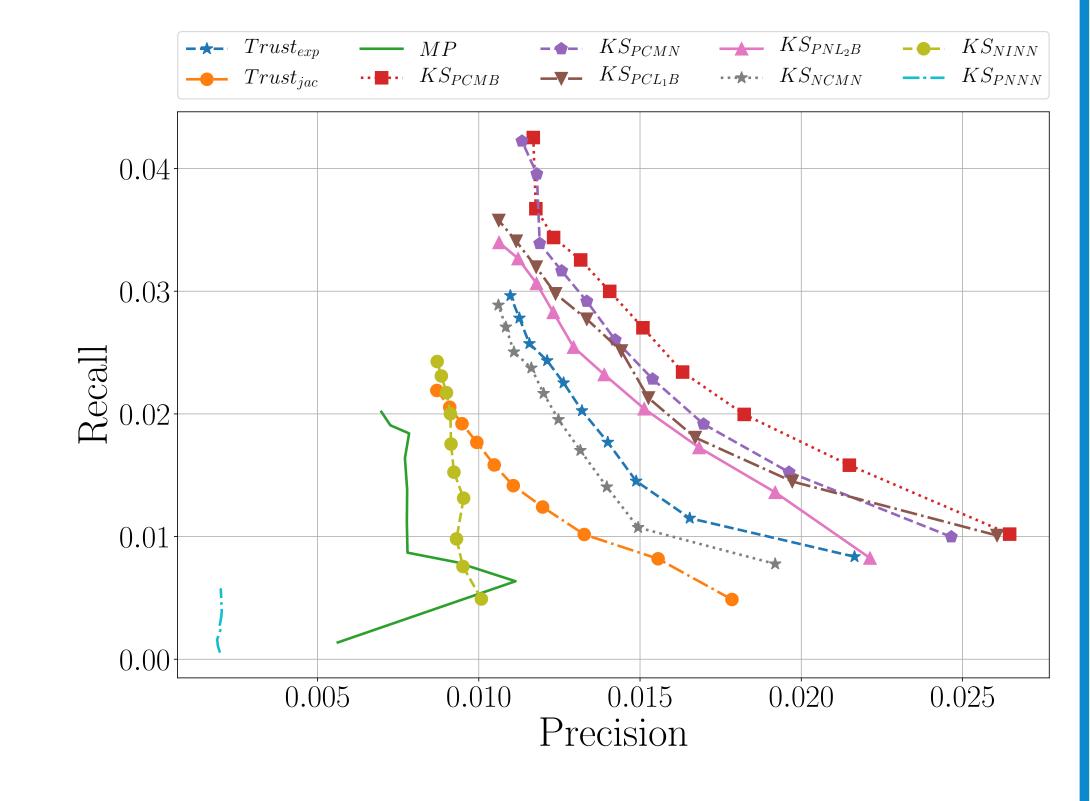
$$\sigma_{boost} = \mathbf{A} + \hat{\sigma}_{norm}$$
 (4)

EVALUATION

Evaluation results for n=10. The reported subset of the 33 evaluated KS-based approaches are additionally labeled for an easier result comparison between different step combinations (i.e., columns 2 to 5).

Approach	$igg l_{max}$	Degree normalization	Row normalization	Boost	nDCG	Recall	Precision
$Trust_{exp}$.0224	.0296	.0110
$Trust_{jac}$.0176	.0219	.0087
MP					.0134	.0202	.0070
KS_{PCMB}	2	Combined	Max	Yes	.0303	.0425	.0117
KS_{PCMN}	2	Combined	Max	No	.0295	.0422	.0113
KS_{PCL_1B}	2	Combined	L1	Yes	.0273	.0358	.0106
KS_{PNL_2B}	2	No degree	L2	Yes	.0257	.0340	.0106
KS_{NCMN}	1	Combined	Max	No	.0213	.0289	.0106
KS_{NINN}	1	In degree	N/A	No	.0161	.0243	.0087
KS_{PNNN}	2	No degree	N/A	No	.0036	.0057	.0020





We implemented and evaluated our approach using ScaR [2], a scalable recommendation framework which is easily adaptable for a multi-domain environment.