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Introduction

Motivation

Recommender systems support users in finding relevant information in
large information spaces [RRS11]

Popularity bias — underrepresentation of unpopular items in
recommendation lists [BHS06]

[AMBM19] has shown that this also leads to unfair treatment of users
with less interest in popular items

@ We reproduce this study from the movie domain in the music domain
— vast amount of items [SZC*18]
Research questions [AMBM19]
e RQ1: To what extent are users interested in popular items (i.e., music
artists)?
e RQ2: To what extent is the recommendation quality affected by this
popularity bias?
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Dataset

Method

e LFM-1b dataset [Sch16]

e 120k users, 3.1M artists, 1.1B listening events

o Metadata, e.g., mainstreaminess score for users [BS19]
@ LFM-1b user groups

o 1k users with lowest (LowMS), with medium mainstreaminess
(MedMS) and with highest mainstreaminess (HighMS)
only 3.9k movies

e 3k users, 352k artists, 1.7M listening events — in MovielLens dataset

e Auvailable via Zenodo: https://zenodo.org/record/3475975

lost.fm
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Results

RQ1: Interest of Users in (Un)Popular Music
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e Definitions [AMBM19]

e Popular artist — in top 20%
of artists with the highest
number of listeners

e Artist popularity — ratio of
users who have listened to
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Results

RQ2: Popularity Bias in Music Recommendations

Python-based open-source framework Surprise
Rating prediction — number of listening events of user for artist
Recommend top-10 artists with highest predicted preferences to user

Evaluation protocol [AMBM19]

Random 80/20 train-test split

e 3 baselines: Random, MostPopular, UserltemAvg [Korl0]

e 2 knn-based approaches: UserKNN, UserKNNAvg [SFHS07]
e 1 matrix factorization-based approach: NMF [LZXZ14]
Available via Github:
https://github.com/domkowald/LFM1b-analyses

surprse
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RQ2: Artist Popularity and Recommendation Frequency
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Results

RQ2: Recommendation Accuracy

e Mean Average Error (MAE) metric — the lower the better

@ LowMS group receives worse recommendations than MedMS and
HighMS for all algorithms

o Statistically significant according to a t-test with p < .005 as

indicated by ***
@ Also interesting:

e NFM provides the best and fairest results
e MedMS provides the best results — larger average profile size than
LowMS and HighMS

User group | UserltemAvg  UserKNN  UserKNNAvg NMF
LowMS 42.991*** 49.813***  46.631*** 38.515***
MedMS 33.934 42 527 37.623 30.555
HighMS 40.727 46.036 43.284 37.305
All 38.599 45.678 41.927 34.895
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Conclusion

Conclusion and Future Work

e We reproduced the study of [AMBM19] on the unfairness of
popularity bias in recommender systems in the music domain
@ We get the same results:
e RQ1: Users have interest in unpopular items and these users also have

large profile sizes
e RQ2: Users with interest in unpopular items receive worst

recommendations

Future RQ
What are the special characteristics of these low-mainstream users and
how can we provide better recommendations for them?
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Conclusion

Thank you for your attention!

Questions?

Contacts:
dkowald [AT] know-center [DOT] at
markus.schedl [AT] jku [DOT] at
elisabeth.lex [AT] tugraz [DOT] at

Data:
https://zenodo.org/record/3475975

Code:
https://github.com/domkowald/LFM1b-analyses
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Conclusion

Appendix: Popularity Bias for User Groups

of group ¢

AGAP — GAP@)r—GAP(g)p

_ GAP(g)p
No clear difference between the groups except for MostPopular —

Group Average Precision (GAP) metric AMBM19]
GAP(g), — average artist popularity in the user profiles p of group g
GAP(g), — average artist popularity in the recommendation lists r

large number of items (352k artists vs. 3.9k movies)
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