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Introduction

Motivation

Recommender systems support users in finding relevant information in
large information spaces [RRS11]

Popularity bias → underrepresentation of unpopular items in
recommendation lists [BHS06]

[AMBM19] has shown that this also leads to unfair treatment of users
with less interest in popular items

We reproduce this study from the movie domain in the music domain
→ vast amount of items [SZC+18]

Research questions [AMBM19]

RQ1: To what extent are users interested in popular items (i.e., music
artists)?
RQ2: To what extent is the recommendation quality affected by this
popularity bias?
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Method

Dataset

LFM-1b dataset [Sch16]

120k users, 3.1M artists, 1.1B listening events
Metadata, e.g., mainstreaminess score for users [BS19]

LFM-1b user groups

1k users with lowest (LowMS), with medium mainstreaminess
(MedMS) and with highest mainstreaminess (HighMS)
3k users, 352k artists, 1.7M listening events → in MovieLens dataset
only 3.9k movies
Available via Zenodo: https://zenodo.org/record/3475975
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Results

RQ1: Interest of Users in (Un)Popular Music

Definitions [AMBM19]

Popular artist → in top 20%
of artists with the highest
number of listeners
Artist popularity → ratio of
users who have listened to
this artist

1/3 of our users listen to at
least 20% of unpopular artists
→ LowMS

Users with larger profile sizes
tend to listen to more unpopular
artists
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Results

RQ2: Popularity Bias in Music Recommendations

Python-based open-source framework Surprise

Rating prediction → number of listening events of user for artist

Recommend top-10 artists with highest predicted preferences to user

Evaluation protocol [AMBM19]

Random 80/20 train-test split
3 baselines: Random, MostPopular, UserItemAvg [Kor10]
2 knn-based approaches: UserKNN, UserKNNAvg [SFHS07]
1 matrix factorization-based approach: NMF [LZXZ14]

Available via Github:
https://github.com/domkowald/LFM1b-analyses
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Results

RQ2: Artist Popularity and Recommendation Frequency
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Results

RQ2: Recommendation Accuracy

Mean Average Error (MAE) metric → the lower the better

LowMS group receives worse recommendations than MedMS and
HighMS for all algorithms

Statistically significant according to a t-test with p < .005 as
indicated by ∗∗∗

Also interesting:
NFM provides the best and fairest results
MedMS provides the best results → larger average profile size than
LowMS and HighMS

User group UserItemAvg UserKNN UserKNNAvg NMF

LowMS 42.991∗∗∗ 49.813∗∗∗ 46.631∗∗∗ 38.515∗∗∗

MedMS 33.934 42.527 37.623 30.555
HighMS 40.727 46.036 43.284 37.305
All 38.599 45.678 41.927 34.895
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Conclusion

Conclusion and Future Work

We reproduced the study of [AMBM19] on the unfairness of
popularity bias in recommender systems in the music domain

We get the same results:

RQ1: Users have interest in unpopular items and these users also have
large profile sizes
RQ2: Users with interest in unpopular items receive worst
recommendations

Future RQ

What are the special characteristics of these low-mainstream users and
how can we provide better recommendations for them?
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Conclusion

Thank you for your attention!
Questions?

Contacts:
dkowald [AT] know-center [DOT] at
markus.schedl [AT] jku [DOT] at
elisabeth.lex [AT] tugraz [DOT] at

Data:
https://zenodo.org/record/3475975

Code:
https://github.com/domkowald/LFM1b-analyses
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Conclusion

Appendix: Popularity Bias for User Groups

Group Average Precision (GAP ) metric [AMBM19]
GAP (g)p → average artist popularity in the user profiles p of group g
GAP (g)r → average artist popularity in the recommendation lists r
of group g

∆GAP =
GAP (g)r−GAP (g)p

GAP (g)p
No clear difference between the groups except for MostPopular →
large number of items (352k artists vs. 3.9k movies)
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