Fairness and Popularity Bias in Recommender Systems

Dominik Kowald, Social Computing, Know-Center Graz

Know-Center and TUG-ISDS Phd retreat

[towardsdatascience.com]

Dominik Kowald, SC, Know-Center

Motivational Example: Music Recommender Systems

[knowyourmeme.com]

э

イロト イヨト イヨト

Motivation (more formal)

- \bullet Popularity bias \rightarrow underrepresentation of unpopular items in recommendation lists
- The group of Prof. Robin Burke [AMBM19] has shown that this also leads to unfair treatment of users with less interest in popular items
- We reproduced this study (small Movie dataset) in a larger setting (large Music dataset) → ECIR'2020 reproducibility track [KSL20]
- Investigated research questions
 - **RQ1**: To what extent are recommendation algorithms biased towards popular items?
 - **RQ2**: Is recommendation quality correlated with a user's inclination to popular items?

3

イロト イポト イヨト イヨト

Method

Dataset

- LFM-1b dataset [Sch16]
 - 120k users, 3.1M artists, 1.1B listening events
 - Metadata, e.g., mainstreaminess scores, for users [BS19]
- LFM-1b user groups
 - 1k users with lowest (LowMS), with medium (MedMS) and with highest mainstreaminess (HighMS) \rightarrow M_global_R_APC measure
- Available via Zenodo: https://zenodo.org/record/3475975

(日) (同) (三) (三)

Experimental Setup

- Python-based open-source framework Surprise
- $\bullet~\mbox{Rating prediction} \rightarrow \mbox{number of listening events of user for artist}$
- Recommend top-10 artists with highest predicted preferences to user
- Evaluation protocol [AMBM19]
 - Random 80/20 train-test split
 - 3 baselines: Random, MostPopular, UserItemAvg
 - 2 knn-based approaches: UserKNN, UserKNNAvg (k = 40)
 - 1 matrix factorization-based approach: NMF (dim = 15)
- Available via Github:

https://github.com/domkowald/LFM1b-analyses

surpr

イロト イ押ト イヨト イヨト

Results

RQ1: Artist Popularity and Recommendation Frequency

Dominik Kowald, SC, Know-Center

RQ2: Recommendation Accuracy for User Groups

- $\bullet\,$ Mean Average Error (MAE) metric \rightarrow the lower the better
- LowMS group receives worse recommendations than MedMS and HighMS for all algorithms
- \bullet Statistically significant according to t-test with p < .005 as indicated by ***
- Best results across user groups by MedMS (in *italic*)

User group	UserItemAvg	UserKNN	UserKNNAvg	NMF
LowMS	42.991***	49.813***	46.631***	38.515***
MedMS	33.934	42.527	37.623	30.555
HighMS	40.727	46.036	43.284	37.305
All	38.599	45.678	41.927	34.895

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Next steps: Why does accuracy differ?

- Popularity bias
 - If popularity bias is the only reason: HighMS
 - \rightarrow best results, but MedMS \rightarrow best results
- Calibration
 - Are recommendations miscalibrated [LSMB20] for LowMS?
 - If yes, why are they miscalibrated, and how can we ensure calibrated recommendations?
- Diversity
 - Diversity correlated with accuracy?
 - [KMZ⁺21] → across-group diversity ("openness") leads to higher accuracy - CF gets "'distracted" by other users for LowMS?
- Other ideas / interested in collaborations?
 - Please contact dkowald@know-center.at thank you!

[me.me]

イロト イヨト イヨト -

References I

- Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher, *The unfairness of popularity bias in recommendation*, Workshop on Recommendation in Multi-stakeholder Environments (RMSE'19), in conjunction with the 13th ACM Conference on Recommender Systems, RecSys'19, 2019.
- Christine Bauer and Markus Schedl, Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems, PloS one 14 (2019), no. 6, e0217389.
- Dominik Kowald, Peter Muellner, Eva Zangerle, Christine Bauer, Markus Schedl, and Elisabeth Lex, Support the underground: characteristics of beyond-mainstream music listeners, EPJ Data Science 10 (2021), no. 1, 1–26.

イロト イボト イヨト イヨト

References II

- Dominik Kowald, Markus Schedl, and Elisabeth Lex, The unfairness of popularity bias in music recommendation: A reproducibility study, 42nd European Conference on IR Research, ECIR 2020, Springer, 2020, pp. 35–42.
- Kun Lin, Nasim Sonboli, Bamshad Mobasher, and Robin Burke, *Calibration in collaborative filtering recommender systems: a user-centered analysis*, Proceedings of the 31st ACM Conference on Hypertext and Social Media, 2020, pp. 197–206.
- Markus Schedl, The LFM-1B Dataset for Music Retrieval and Recommendation, Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (New York, NY, USA), ICMR '16, ACM, 2016, pp. 103–110.

э

イロト 不得 トイヨト イヨト