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Introduction

Motivational Example: Music Recommender Systems

Niche user

Thrash Metal
Groove Metal
Heavy Metal
Black Metal
'oom Metal
Falk Metal
Grindcore
Metalcore
Industrial Metal
Progressive Metal
Speed Metal
Stoner Metal
Post Metal
Power Metal
Deathcore
Death Metal
Glam Metal
Gothic Metal
Extreme Metal
Crust punk
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Introduction

Motivation (more formal)

@ Popularity bias — underrepresentation of unpopular items in
recommendation lists

@ The group of Prof. Robin Burke [AMBM19] has shown that this also
leads to unfair treatment of users with less interest in popular items

@ We reproduced this study (small Movie dataset) in a larger setting
(large Music dataset) — ECIR'2020 reproducibility track [KSL20]

@ Investigated research questions

e RQ1: To what extent are recommendation algorithms biased towards
popular items?

e RQ2: Is recommendation quality correlated with a user's inclination to
popular items?
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Dataset

Method

e LFM-1b dataset [Sch16]

e 120k users, 3.1M artists, 1.1B listening events
e Metadata, e.g., mainstreaminess scores, for users [BS19]
@ LFM-1b user groups

o 1k users with lowest (LowMS), with medium (MedMS) and with
highest mainstreaminess (HighMS) — M_global_R_APC measure

@ Available via Zenodo: https://zenodo.org/record/3475975

lost.fm
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Method

Experimental Setup

Python-based open-source framework Surprise
Rating prediction — number of listening events of user for artist

Recommend top-10 artists with highest predicted preferences to user
Evaluation protocol [AMBM19]

Random 80/20 train-test split

@ 3 baselines: Random, MostPopular, UserltemAvg

e 2 knn-based approaches: UserKNN, UserKNNAvg (k = 40)
e 1 matrix factorization-based approach: NMF (dim = 15)

Available via Github:
https://github.com/domkowald/LFM1b-analyses

surprse
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Results

RQ1: Artist Popularity and Recommendation Frequency
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Results

RQ2: Recommendation Accuracy for User Groups

Mean Average Error (MAE) metric — the lower the better

LowMS group receives worse recommendations than MedMS and
HighMS for all algorithms

Statistically significant according to t-test with p < .005 as indicated
by kkk

@ Best results across user groups by MedMS (in italic)

User group | UserltemAvg  UserKNN  UserKNNAvg NMF
LowMS 42.991*** 49.813**  46.631*** 38.515***
MedMS 33.934 42.527 37.623 30.555
HighMS 40.727 46.036 43.284 37.305
All 38.599 45.678 41.927 34.895

Dominik Kowald, SC, Know-Center Fairness and PopBias in RecSys 7/10



Conclusion

Next steps: Why does accuracy differ?

@ Popularity bias
o If popularity bias is the only reason: HighMS
— best results, but MedMS — best results
o Calibration

o Are recommendations
miscalibrated [LSMB20] for LowMS?

o If yes, why are they miscalibrated, and how
can we ensure calibrated recommendations?

@ Diversity

e Diversity correlated with accuracy?

o [KMZ*21] — across-group diversity
(“openness”) leads to higher accuracy - CF
gets “‘distracted” by other users for LowMS?

@ Other ideas / interested in collaborations?

o Please contact dkowald@know-center.at -
thank you!
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