Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems

Dominik Kowald, Emanuel Lacic

ECIR 2022 - BIAS Workshop 10 - 14 April 2022

Motivation

- Collaborative filtering (CF) is vastly used in the field of multimedia recommender systems (MMRS) [SFHS07], e.g., movies, music, digital books, animes
- CF \rightarrow popularity bias \rightarrow underrepresentation of unpopular items in recommendation lists [BHS06]
- [AMBM19, KSL20] has shown that CF-based approaches lead to unfair treatment of users with less interest in popular items in the movie and music domains
- Four MMRS domains with common evaluation protocol \rightarrow two RQs:
 - **RQ1**: To what extent does an item's popularity affect this item's recommendation frequency in MMRS? (item level)
 - **RQ2**: To what extent does a user's inclination to popular items affect the quality of MMRS? (user level)

イロト 不得 トイラト イラト 二日

Method

MMRS Datasets

- Four datasets to represent the four domains
 - Last.fm: LFM-1b [Sch16] dataset provided by JKU Linz
 - MovieLens: Movielens 1M dataset provided by GroupLens
 - BookCrossing: provided by University Freiburg
 - MyAnimeList: provided by Kaggle
 - Remove users with $<50~{\rm or}>2,000~{\rm ratings}$
- User groups
 - 1k users with lowest (LowPop), with medium (MedPop) and with highest (HighPop) inclination to popularity
 - Available via Zenodo: https://zenodo.org/record/6123879

Dataset	U	I	R	R / U	R / I	Sparsity	R-range
Last.fm	3,000	352,805 1	,755,361	585	5	0.998	[1-1,000]
MovieLens	3,000	3,667	675,610	225	184	0.938	[1-5]
BookCrossing	3,000	223,607	577,414	192	3	0.999	[1-10]
MyAnimeList	3,000	9,450	649,814	216	69	0.977	[1-10]

イロト イボト イヨト イヨト

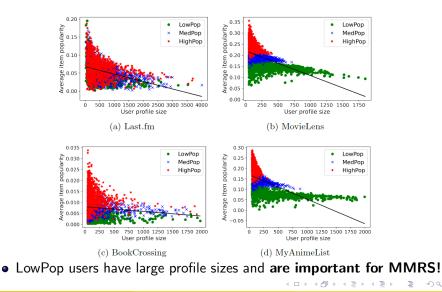
Defining Popularity

- Item level [AMBM19, KSL20]
 - Item popularity: $Pop_i = \frac{|U_i|}{|U|}$
 - U_i is the set of users who rated item i
 - Average item popularity in user profile: $Pop_{i,u} = \frac{1}{|I_u|} \sum_{i \in I_u} Pop_i$
 - I_u is the set of items in the user profile
 - **Popular item** \rightarrow it falls within the top-20% of Pop_i scores
- User level [AMBM19, KSL20]
 - $I_{u,Pop}$ is the set of popular items in the user profile
 - Ratio of popular items in user profile: $Pop_u = \frac{|I_{u,Pop}|}{|I_u|}$
 - Create LowPop, MedPop, HighPop user groups in MovieLens, BookCrossing, MyAnimeList
- Mainstreaminess (Last.fm \rightarrow repeated consumption) [BS19]
 - Compare artist-playclount (APC) dist. between \boldsymbol{u} and average user
 - $M^{global}_{R,APC}(u) = \tau(ranks(APC), ranks(APC(u)))$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Method

Relationship Between Popularity and Profile Size



Method

Recommendation Algorithms and Evaluation Protocol

- Python-based open-source framework Surprise
- Rating prediction \rightarrow predict APC in case of Last.fm
- Mean Average Error (MAE) metric \rightarrow the lower the better
- 4 CF-based recommendation algorithms
 - 2 knn-based approaches: UserKNN, UserKNNAvg [SFHS07]
 - 1 matrix factorization-based approach: NMF [LZXZ14]
 - 1 scalable co-clustering-based approach: CoClustering [GM05]
- Evaluation protocol
 - Random 80/20 train-test split
 - Five-fold cross validation
 - Pairwise t-test between LowPop and MedPop / LowPop and HighPop
- Available via Github:

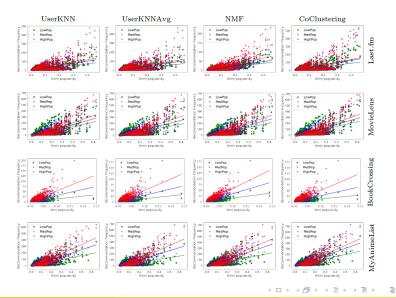
https://github.com/domkowald/FairRecSys

surpr

ヘロト 人間 ト イヨト イヨト

Results

RQ1: Popularity Bias on Item Level

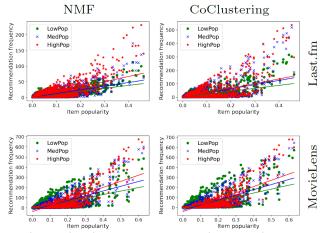


Dominik Kowald, Know-Center and TU Graz

Popularity Bias in CF-Based MMRS

Results

RQ1: Popularity Bias on Item Level (selection)



• Positive relationship between item popularity and recommendation frequency for all user groups! (but weakest one for LowPop)

э

- 一司

RQ2: Popularity Bias on User Level

Dataset	User group	UserKNN	UserKNNAvg	NMF	CoClustering
Last.fm	LowPop	49.489***	46.483***	39.641***	47.304***
	MedPop	42.899	37.940	32.405	37.918
	HighPop	45.805	43.070	38.580	42.982
MovieLens	LowPop	0.801***	0.763***	0.753***	0.738***
	MedPop	0.748	0.727	0.722	0.705
	HighPop	0.716	0.697	0.701	0.683
BookCrossing	LowPop	1.403***	1.372***	1.424***	1.392***
	MedPop	1.154	1.122	1.214	1.134
	HighPop	1.206	1.155	1.274	1.162
MyAnimeList	LowPop	1.373***	1.001***	1.010***	1.001***
	MedPop	1.341	0.952	0.968	0.956
	HighPop	1.311	0.948	0.951	0.975

• Statistically significant according to t-test with p < .005 (***) = 0.005 (***) = 0.005 (***)

Conclusion and Future Work

- **RQ1:** Popular items have higher probability of getting recommended than unpopular items
- **RQ2:** Users with interest in unpopular items (i.e., LowPop) receive the worst recommendations
- BUT LowPop users have the largest user profile sizes
- Future Work
 - **Investigate differences in results** across user groups and algorithms (e.g., why does MedPop gets the best results in Last.fm?)
 - Popularity bias mitigation strategies, e.g.,
 - In-processing, e.g., regularization [BFM21]
 - Aggregate diversity (unique recommended items) [AR17]
 - Calibration based on popularity [AMB⁺21]
 - Personalized re-ranking [ABM19]
 - Investigate further **popularity bias evaluation metrics**, e.g., GAP (group average popularity) [AMBM19]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Thank you! Questions?

Contacts: dkowald [AT] know-center [DOT] at elacic [AT] know-center [DOT] at Data: https://zenodo.org/record/6123879 Code: https://github.com/domkowald/FairRecSys Paper: https://arxiv.org/abs/2203.00376

Posters in main (Wednesday) and industry track (Thursday)

イロト イヨト イヨト

References I

- Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher, Managing popularity bias in recommender systems with personalized re-ranking, The thirty-second international flairs conference, 2019.
- Himan Abdollahpouri, Masoud Mansoury, Robin Burke, Bamshad Mobasher, and Edward Malthouse, User-centered evaluation of popularity bias in recommender systems, Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, 2021, pp. 119–129.
- Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher, *The unfairness of popularity bias in recommendation*, Workshop on Recommendation in Multi-stakeholder Environments (RMSE'19), in conjunction with the 13th ACM Conference on Recommender Systems, RecSys'19, 2019.

3

イロト 不得 トイヨト イヨト

References II

- Arda Antikacioglu and R Ravi, Post processing recommender systems for diversity, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 707–716.
- Ludovico Boratto, Gianni Fenu, and Mirko Marras, *Connecting user and item perspectives in popularity debiasing for collaborative recommendation*, Information Processing & Management **58** (2021), no. 1, 102387.
- Erik Brynjolfsson, Yu Jeffrey Hu, and Michael D Smith, From niches to riches: Anatomy of the long tail, Sloan Management Review 47 (2006), no. 4, 67–71.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References III

- Christine Bauer and Markus Schedl, Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems, PloS one 14 (2019), no. 6, e0217389.
- Thomas George and Srujana Merugu, *A scalable collaborative filtering framework based on co-clustering*, Fifth IEEE International Conference on Data Mining (ICDM'05), IEEE, 2005, pp. 4–pp.
- Dominik Kowald, Markus Schedl, and Elisabeth Lex, The unfairness of popularity bias in music recommendation: A reproducibility study, European Conference on Information Retrieval, Springer, 2020, pp. 35–42.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References IV

- Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu, An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems, IEEE Transactions on Industrial Informatics **10** (2014), no. 2, 1273–1284.
- Markus Schedl, The LFM-1B Dataset for Music Retrieval and Recommendation, Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (New York, NY, USA), ICMR '16, ACM, 2016, pp. 103–110.
- J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen, *Collaborative filtering recommender systems*, The Adaptive Web, Springer, 2007, pp. 291–324.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >