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Introduction

Motivation

Collaborative filtering (CF) is vastly used in the field of multimedia
recommender systems (MMRS) [SFHS07], e.g., movies, music,
digital books, animes

CF → popularity bias → underrepresentation of unpopular items
in recommendation lists [BHS06]

[AMBM19, KSL20] has shown that CF-based approaches lead to
unfair treatment of users with less interest in popular items in
the movie and music domains

Four MMRS domains with common evaluation protocol → two RQs:
RQ1: To what extent does an item’s popularity affect this item’s
recommendation frequency in MMRS? (item level)
RQ2: To what extent does a user’s inclination to popular items affect
the quality of MMRS? (user level)
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Method

MMRS Datasets

Four datasets to represent the four domains
Last.fm: LFM-1b [Sch16] dataset provided by JKU Linz
MovieLens: Movielens 1M dataset provided by GroupLens
BookCrossing: provided by University Freiburg
MyAnimeList: provided by Kaggle
Remove users with < 50 or > 2, 000 ratings

User groups
1k users with lowest (LowPop), with medium (MedPop) and with
highest (HighPop) inclination to popularity
Available via Zenodo: https://zenodo.org/record/6123879

Dataset |U | |I| |R| |R|/|U | |R|/|I| Sparsity R-range

Last.fm 3,000 352,805 1,755,361 585 5 0.998 [1-1,000]
MovieLens 3,000 3,667 675,610 225 184 0.938 [1-5]
BookCrossing 3,000 223,607 577,414 192 3 0.999 [1-10]
MyAnimeList 3,000 9,450 649,814 216 69 0.977 [1-10]
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Method

Defining Popularity

Item level [AMBM19, KSL20]

Item popularity: Popi =
|Ui|
|U |

Ui is the set of users who rated item i

Average item popularity in user profile: Popi,u = 1
|Iu|

∑
i∈Iu

Popi

Iu is the set of items in the user profile

Popular item → it falls within the top-20% of Popi scores

User level [AMBM19, KSL20]

Iu,Pop is the set of popular items in the user profile

Ratio of popular items in user profile: Popu =
|Iu,Pop|

|Iu|
Create LowPop, MedPop, HighPop user groups in MovieLens,
BookCrossing, MyAnimeList

Mainstreaminess (Last.fm → repeated consumption) [BS19]

Compare artist-playclount (APC) dist. between u and average user

Mglobal
R,APC(u) = τ(ranks(APC), ranks(APC(u)))
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Method

Relationship Between Popularity and Profile Size

LowPop users have large profile sizes and are important for MMRS!

Dominik Kowald, Know-Center and TU Graz Popularity Bias in CF-Based MMRS 5 / 11



Method

Recommendation Algorithms and Evaluation Protocol

Python-based open-source framework Surprise

Rating prediction → predict APC in case of Last.fm

Mean Average Error (MAE) metric → the lower the better
4 CF-based recommendation algorithms

2 knn-based approaches: UserKNN, UserKNNAvg [SFHS07]
1 matrix factorization-based approach: NMF [LZXZ14]
1 scalable co-clustering-based approach: CoClustering [GM05]

Evaluation protocol
Random 80/20 train-test split
Five-fold cross validation
Pairwise t-test between LowPop and MedPop / LowPop and HighPop

Available via Github:
https://github.com/domkowald/FairRecSys
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Results

RQ1: Popularity Bias on Item Level
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Results

RQ1: Popularity Bias on Item Level (selection)

Positive relationship between item popularity and recommendation
frequency for all user groups! (but weakest one for LowPop)
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Results

RQ2: Popularity Bias on User Level

Dataset User group UserKNNUserKNNAvgNMF CoClustering

Last.fm
LowPop 49.489∗∗∗ 46.483∗∗∗ 39.641∗∗∗ 47.304∗∗∗

MedPop 42.899 37.940 32.405 37.918
HighPop 45.805 43.070 38.580 42.982

MovieLens
LowPop 0.801∗∗∗ 0.763∗∗∗ 0.753∗∗∗ 0.738∗∗∗

MedPop 0.748 0.727 0.722 0.705
HighPop 0.716 0.697 0.701 0.683

BookCrossing
LowPop 1.403∗∗∗ 1.372∗∗∗ 1.424∗∗∗ 1.392∗∗∗

MedPop 1.154 1.122 1.214 1.134
HighPop 1.206 1.155 1.274 1.162

MyAnimeList
LowPop 1.373∗∗∗ 1.001∗∗∗ 1.010∗∗∗ 1.001∗∗∗

MedPop 1.341 0.952 0.968 0.956
HighPop 1.311 0.948 0.951 0.975

Statistically significant according to t-test with p < .005 (∗∗∗)
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Conclusion

Conclusion and Future Work

RQ1: Popular items have higher probability of getting recommended
than unpopular items

RQ2: Users with interest in unpopular items (i.e., LowPop) receive
the worst recommendations

BUT LowPop users have the largest user profile sizes

Future Work
Investigate differences in results across user groups and algorithms
(e.g., why does MedPop gets the best results in Last.fm?)
Popularity bias mitigation strategies, e.g.,

In-processing, e.g., regularization [BFM21]
Aggregate diversity (unique recommended items) [AR17]
Calibration based on popularity [AMB+21]
Personalized re-ranking [ABM19]

Investigate further popularity bias evaluation metrics, e.g., GAP
(group average popularity) [AMBM19]
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Conclusion

Thank you! Questions?

Contacts:
dkowald [AT] know-center [DOT] at
elacic [AT] know-center [DOT] at

Data:
https://zenodo.org/record/6123879

Code:
https://github.com/domkowald/FairRecSys

Paper:
https://arxiv.org/abs/2203.00376

Posters in main (Wednesday) and industry track (Thursday)
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