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Introduction

Motivation

e Collaborative filtering (CF) is vastly used in the field of multimedia
recommender systems (MMRS) [SFHS07], e.g., movies, music,
digital books, animes

o CF — popularity bias — underrepresentation of unpopular items
in recommendation lists [BHS06]

e [AMBM19, KSL20] has shown that CF-based approaches lead to
unfair treatment of users with less interest in popular items in
the movie and music domains

@ Four MMRS domains with common evaluation protocol — two RQs:

e RQ1: To what extent does an item's popularity affect this item’s
recommendation frequency in MMRS? (item level)

o RQ2: To what extent does a user's inclination to popular items affect
the quality of MMRS? (user level)
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MMRS Datasets

Method

@ Four datasets to represent the four domains
o Last.fm: LFM-1b [Sch16] dataset provided by JKU Linz

e MovielLens: Movielens 1M dataset provided by Grouplens

e BookCrossing: provided by University Freiburg
o MyAnimelist: provided by Kaggle
e Remove users with < 50 or > 2,000 ratings

@ User groups

o 1k users with lowest (LowPop), with medium (MedPop) and with
highest (HighPop) inclination to popularity
o Available via Zenodo: https://zenodo.org/record/6123879

Dataset |U| | 1] |R|||R|/|U||R|/|I|Sparsity| R-range
Last.fm 3,000 352,805 1,755,361| 585 5 0.998 |[1-1,000]
MovieLens 3,000 3,667 675,610[ 225 184 0.938 [1-5]
BookCrossing|3,000 223,607 577,414 192 3 0.999 [1-10]
MyAnimeList|3,000 9,450 649,814| 216 69 0977 [1-10]
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Defining Popularity

@ Item level [AMBM19, KSL20]

e ltem popularity: Pop; = ‘Ilfj‘

e U; is the set of users who rated item 14
o Average item popularity in user profile: Pop; ,, = lTlul Ziel“ Pop;
o [, is the set of items in the user profile
e Popular item — it falls within the top-20% of Pop; scores
@ User level [AMBM19, KSL20]
o I, pop is the set of popular items in the user profile
_ u.popl

o Ratio of popular items in user profile: Pop, = I

@ Create LowPop, MedPop, HighPop user groups in MovielLens,
BookCrossing, MyAnimeList

e Mainstreaminess (Last.fm — repeated consumption) [BS19]

e Compare artist-playclount (APC) dist. between u and average user
° I%{f;lc(u) = 7(ranks(APC),ranks(APC(u)))
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Method

Relationship Between Popularity and Profile Size

Average item popularity

Average item popularity
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@ LowPop users have large profile sizes and are important for MMRS!
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Method

Recommendation Algorithms and Evaluation Protocol

Python-based open-source framework Surprise
Rating prediction — predict APC in case of Last.fm

Mean Average Error (MAE) metric — the lower the better
4 CF-based recommendation algorithms

e 2 knn-based approaches: UserKNN, UserKNNAvg [SFHSO07]

e 1 matrix factorization-based approach: NMF [LZXZ14]

e 1 scalable co-clustering-based approach: CoClustering [GMO05]
Evaluation protocol

e Random 80/20 train-test split

e Five-fold cross validation

o Pairwise t-test between LowPop and MedPop / LowPop and HighPop
Available via Github:
https://github.com/domkowald/FairRecSys

surprse
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Results

RQ1: Popularity Bias on Item Level (selection)

NMF CoClustering
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@ Positive relationship between item popularity and recommendation
frequency for all user groups! (but weakest one for LowPop)

[m] = = =
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Results

RQ2: Popularity Bias on User Level

Dataset User group|UserKNN UserKNNAvg NMF CoClustering
LowPop  [49.489*** 46.483*** 39.641** 47.304***
Last.fm MedPop |42.899  37.940 32.405 37.918
HighPop [45.805 43.070 38.580 42.982
LowPop |0.801*** 0.763*** 0.753*** 0.738***
MovieLens |MedPop |0.748 0.727 0.722 0.705
HighPop (0.716 0.697 0.701 0.683
LowPop [1.403*** 1.372*** 1.424%**% 1,392
BookCrossing|MedPop  |1.154 1.122 1.214 1.134
HighPop [1.206 1.155 1.274 1.162
LowPop [1.373*** 1.001*** 1.010*** 1.001***
MyAnimeList MedPop |1.341 0.952 0.968 0.956
HighPop |1.311 0.948 0.951 0.975

e Statistically significant according to t-test with p < .005 (***)
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Conclusion

Conclusion and Future Work

@ RQ1: Popular items have higher probability of getting recommended
than unpopular items

@ RQ2: Users with interest in unpopular items (i.e., LowPop) receive
the worst recommendations

@ BUT LowPop users have the largest user profile sizes
o Future Work

o Investigate differences in results across user groups and algorithms
(e.g., why does MedPop gets the best results in Last.fm?)
o Popularity bias mitigation strategies, e.g.,
e In-processing, e.g., regularization [BFM21]
o Aggregate diversity (unique recommended items) [AR17]
o Calibration based on popularity [AMB™21]
o Personalized re-ranking [ABM19]
e Investigate further popularity bias evaluation metrics, e.g., GAP
(group average popularity) [AMBM19]
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Conclusion

Thank you! Questions?

Contacts:
dkowald [AT] know-center [DOT] at
elacic [AT] know-center [DOT] at

Data:
https://zenodo.org/record/6123879

Code:
https://github.com/domkowald/FairRecSys

Paper:
https://arxiv.org/abs/2203.00376

Posters in main (Wednesday) and industry track (Thursday)
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