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Overview of Chapters

Chapter 1 - Introduction

This chapter starts with the motivation and the scientific positioning of this ha-
bilitation within the broad research field of recommender systems. It also lists
and briefly outlines the 17 main publications of this habilitation.

Chapter 2 - Related Work and Background

Chapter 2 briefly discusses the related work and background relevant to this ha-
bilitation, namely (i) main concepts of recommender systems, (ii) transparency
and cognitive models in recommender systems, (iii) privacy and limited prefer-
ence information in recommender systems, and (iv) fairness and popularity bias in
recommender systems. Additionally, this chapter briefly summarizes the author’s
own research efforts in relation to the related work.

Chapter 3 - Scientific Contributions

This chapter describes the 7 scientific contributions of this habilitation, which are
(i) using cognitive models for a transparent design and implementation process
of recommender systems, (ii) illustrating to what extent components of the cog-
nitive model ACT-R contribute to recommendations, (iii) addressing limited user
preference information in cold-start and session-based recommendation settings,
(iv) addressing users’ privacy constraints and the trade-off between accuracy and
privacy in recommendations, (v) measuring popularity bias for user groups differ-
ing in mainstreaminess and gender, (vi) understanding popularity bias mitigation
and amplification, and (vii) studying long-term dynamics of fairness in algorith-
mic decision support. Additionally, this chapter discusses reproducibility aspects
of the presented research results and findings.

Chapter 4 - Outlook and Future Research

Chapter 4 gives an outlook into future research directions based on the results,
scientific contributions, and findings of this habilitation.

Appendix A and B

The appendices describe the author’s own contributions to the publications pre-
sented in this habilitation, as well as include the full texts of these publications.
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Abstract

Recommender systems have become a pervasive part of our daily online experience
by analyzing past usage behavior to suggest potential relevant content, e.g., music,
movies, or books. Today, recommender systems are one of the most widely used
applications of artificial intelligence and machine learning. Therefore, regulations
and requirements for trustworthy artificial intelligence, for example, the European
AI Act, which includes notions such as transparency, privacy, and fairness are also
highly relevant for the design, development, evaluation, and deployment of rec-
ommender systems in practice. This habilitation elaborates on aspects related
to these three notions in the light of recommender systems, namely: (i) trans-
parency and cognitive models, (ii) privacy and limited preference information,
and (iii) fairness and popularity bias in recommender systems.

Specifically, with respect to aspect (i), we highlight the usefulness of incor-
porating psychological theories for a transparent design process of recommender
systems. We term this type of systems psychology-informed recommender sys-
tems. We also use models of human memory theory to develop cognitive-inspired
algorithms for tag and music recommendations, and find that these algorithms
are capable of outperforming related methods in terms of recommendation ac-
curacy. Additionally, we show that cognitive models can further contribute to
transparency aspects of recommender systems by illustrating how the models’
components have contributed to generate the recommendation lists.

In aspect (ii), we study and address the trade-off between accuracy and pri-
vacy in differentially-private recommendations. We design a novel recommenda-
tion approach for collaborative filtering based on an efficient neighborhood reuse
concept, which reduces the number of users that need to be protected with differ-
ential privacy. Furthermore, we address the related issue of limited availability of
user preference information, e.g., click data, in the settings of session-based and
cold-start recommendations, by using, e.g., variational autoencoders.

With respect to aspect (iii), we analyze popularity bias in collaborative filtering-
based recommender systems. We find that the recommendation frequency of an
item is positively correlated with this item’s popularity. This also leads to the
unfair treatment of users with little interest in popular content, since these users
receive worse recommendation accuracy results than users with high interest in
popular content. We also find that female users are more strongly affected by
the algorithms’ amplification of popularity bias. Besides, we present results of an
online study on popularity bias mitigation in the field of news article recommen-
dations. Finally, we study long-term fairness dynamics in algorithmic decision
support in the labor market using agent-based modeling techniques.
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Kurzfassung

Empfehlungssysteme sind zu einem allgegenwärtigen Teil unserer täglichen Online-
Erfahrung geworden, indem sie das vergangene Nutzerverhalten analysieren, um
relevante Inhalte vorzuschlagen, beispielsweise Musik, Filme oder Bücher. Mit-
tlerweile gehören Empfehlungssysteme zu den am weitesten verbreiteten Anwen-
dungen der künstlichen Intelligenz und des maschinellen Lernens. Daher sind
Vorschriften für vertrauenswürdige künstliche Intelligenz, welche Anforderungen
wie Transparenz, Datenschutz und Fairness umfassen, für die Entwicklung von
Empfehlungssystemen relevant. Diese Habilitation untersucht Empfehlungssys-
teme in Hinblick auf Aspekte, die mit diesen Anforderungen verknüpft sind,
nämlich: (i) Transparenz und kognitive Modelle, (ii) Datenschutz und limitierte
Präferenz-Informationen, sowie (iii) Fairness und Popularitätsverzerrungen.

Bezüglich Aspekt (i) zeigen wir den Nutzen von psychologischen Theorien
für einen transparenten Designprozess von Empfehlungssystemen. Wir bezeich-
nen diese als Psychologie-inspirierte Empfehlungssysteme. Zusätzlich verwen-
den wir Modelle der menschlichen Gedächtnistheorie für die Entwicklung von
Empfehlungssystemen und zeigen, dass diese Algorithmen verwandte Methoden,
in Bezug auf die Vorhersagegenauigkeit, übertreffen. Darüber hinaus zeigen wir,
dass die kognitiven Modelle dazu verwendet werden können, um zu illustrieren,
welche Komponenten für die Empfehlungsgenerierung wichtig gewesen sind.

In Hinblick auf Aspekt (ii) untersuchen wir die Beziehung zwischen Genauigkeit
und Datenschutz in Empfehlungssystemen, die Differential Privacy verwenden.
Wir entwickeln einen neuartigen Empfehlungsalgorithmus, der auf einem effizien-
ten Konzept zur Wiederverwendung von Nachbarschaften im kollaborativen Fil-
tern basiert. Dadurch kann der notwendige Einsatz von Differential Privacy min-
imiert werden. Darüber hinaus adressieren wir ein damit verwandtes Problem,
nämlich das der limitierten Nutzerpräferenz-Informationen, z.B., Klick-Daten,
durch die Verwendung von z.B., Variational Autoencodern.

Bezüglich Aspekt (iii) analysieren wir den Einfluss der Popularitätsverzerrung
auf die Genauigkeit von Empfehlungssystemen. Wir zeigen, dass Popularität
und Empfehlungshäufigkeit positiv korreliert sind, welches auch zur unfairen Be-
handlung von Nutzern führt, die wenig Interesse an populären Inhalten haben.
Diese Nutzer erhalten eine geringere Empfehlungsgenauigkeit als Nutzer, die an
populären Inhalten interessiert sind. Darüber hinaus zeigen wir, dass weibliche
Benutzer stärker von Popularitätsverzerrungen betroffen sind. Wir präsentieren
außerdem Ergebnisse einer Online-Studie zur Minderung des Einflusses von Pop-
ularitätsverzerrungen. Abschließend untersuchen wir Langzeiteffekte von Fairness
in algorithmischen Entscheidungen mittels agentenbasierter Modellierung.
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Chapter 1

Introduction

The present postdoctoral thesis is a cumulative habilitation submitted to Graz
University of Technology for the scientific subject Applied Computer Science.
This habilitation summarizes and discusses scientific publications that have been
published between 2018 and 2023, i.e., during the habilitation’s author’s postdoc-
toral research. This chapter describes the scientific positioning of this habilita-
tion (Section 1.1), and introduces the 17 main publications that constitute this
work (Section 1.2). All publications are peer-reviewed, are already published, and
contain a digital object identifier (DOI ). The publications consist of 7 journal
articles, 7 conference proceedings contributions, two workshop post-proceedings
book chapters, and one workshop paper. The latter was published via the aca-
demic distribution service arXiv in accordance with the publishing guidelines of
the Workshop on Transparency and Explainability in Adaptive Systems through
User Modeling Grounded in Psychological Theory co-located with ACM IUI 2020.

1.1 Scientific Positioning of this Habilitation

This habilitation investigates the research field of recommender systems in general,
and aspects of transparency and cognitive models, privacy and limited preference
information, and fairness and popularity bias in recommender systems in partic-
ular. The research field of recommender systems makes use of multiple aspects of
Applied Computer Science, including (but not limited to) data science, user mod-
eling, personalization, machine learning, information retrieval, human computer
interaction, computational social science, and trustworthy artificial intelligence.

More concretely, recommender systems can be seen as one of the most widely
used instantiations of machine learning and artificial intelligence, and accompany
us in our daily online experience. Thus, recommender systems have become an
integral part of our digital life for supporting humans in finding relevant infor-
mation in information spaces that are too big or complex for manual filtering
(e.g., [47, 125, 225]). Since the early implementations of recommendation algo-
rithms (e.g., [223, 224]), these systems analyze past usage behavior in order to
build user models, and to suggest items (e.g., movies), or even people in social
networks [76], to individual users or to groups of users (e.g., [184,185]). To build
these user models, different techniques have been employed, including traditional
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approaches such as collaborative filtering [80], content-based filtering [176], and
hybrid recommendations [45], and more recent approaches based on latent repre-
sentations (or embeddings) and deep learning [57, 265, 278]. Thus, also different
types of data sources are utilized for generating recommendations, e.g., preference
information such as ratings, and content features of items (see Section 2.1 for more
details on recommender systems in general). Apart from that, recent research has
illustrated the multi-stakeholder nature of recommender systems [1,3]. Thus, not
only users are affected by recommendations, but also other stakeholders [120],
such as platform operators or item providers (e.g., music artists). Balancing the
goals of multiple stakeholders is an active research topic, and further illustrates
the far-reaching impact of recommender systems on society [48].

The uptake of recommender systems both in academia and industry [52, 119,
126], as well as their human-centric nature, emphasizes that current regulations
and requirements for trustworthy artificial intelligence (AI) are also of high impor-
tance for the deployment of recommender systems [69]. Trustworthiness entails
multiple notions that have been defined and categorized by the European Com-
mission and institutions in other countries. This has led to different regulations
and requirements, for example, the EU Artificial Intelligence Act [59], or the
United States Regulatory Development Relating to AI [259]. Although there are
differences between these regulations and requirements, all of them include no-
tions related to transparency, privacy, and fairness in AI. These aspects are also
highly relevant under the lens of recommender systems, as indicated by recent
related research investigating trustworthy recommender systems [83,84,96]. This
habilitation contributes to this line of research in the following fields:

Transparency and Cognitive Models in Recommender Systems

One issue of modern recommender systems algorithms based on deep learning
techniques (e.g., [265,278]) is that these approaches are mostly based on principles
of artificial intelligence rather than human intelligence. This could lead to non-
transparent algorithmic decisions that are hard to understand by the system’s
users [244]. Apart from methods coming from the fields of explainable AI [193]
and explainable recommender systems [255], one way to address this issue is to use
theories from psychology to enhance the transparency of recommendation models.

This habilitation uses cognitive models of human memory for a transparent
design of recommendation approaches [150, 154, 156, 168, 240]. Specifically, we
show that models of human episodic memory and activation processes in human
memory can help to create transparent and accurate recommendation models.
In this respect, we also illustrate to what extent the components of these mod-
els contribute to the generation of the recommendation lists [196]. Finally, we
survey and categorize research at the intersection of recommender systems and
psychology, which we term psychology-informed recommender systems [169].

Privacy and Limited Preference Information in Recommender Systems

Recommender systems need to analyze user preference information to calculate
personalized recommendations, which could lead to multiple privacy threats to
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users [90]. This includes the inference of users’ sensitive information (e.g., gen-
der), or the disclosure of users’ preference information (e.g., who bought what)
via the analysis of generated recommendation lists by untrusted third parties
(e.g., [33, 49, 277]). Thus, privacy has become a key requirement for personalized
recommender systems, especially in the light of current data protection initiatives
such as the European General Data Protection Regulation (GDPR). Therefore,
privacy is related to the issue of limited availability of user preference information
(e.g., clicks or ratings) due to the restricted utilization of users’ preference infor-
mation as a result of data protection initiatives [40,62], and due to the increased
privacy concerns of users (e.g., users are not willing to share preference information
or to sign in to the system) [137, 164, 189]. This could lead to the user cold-start
problem [235] and session-based recommendation settings, since long-term user
preferences (including past preferences of the target user) are unavailable [124].

This habilitation investigates issues of limited preference information by ad-
dressing the user cold-start problem using recommendations based on users’ trust
connections [72], and by studying the usefulness of variational autoencoders for
session-based job recommendations [162]. Additionally, we study varying privacy
constraints of users in a matrix factorization-based recommender system using
meta learning [197]. We also address the privacy-accuracy trade-off in differen-
tially private recommender systems by utilizing an efficient neighborhood reuse
concept [201]. Finally, we survey and categorize the literature on employing dif-
ferential privacy for collaborative filtering recommender systems [200].

Fairness and Popularity Bias in Recommender Systems

Although bias and fairness in algorithmic decision support and machine learning is
a research topic that has gained a lot of attraction in recent years [37,158,190], the
reflection and replication of biases is still an open research problem in the field of
interactive systems in general [91,163], and recommender systems in particular [55,
179, 192]. Here, especially popularity bias is a common issue in recommender
systems based on collaborative filtering, and leads to the underrepresentation of
unpopular content in personalized recommendation lists [9, 20,82].

The research presented in this habilitation shows that this popularity bias
unfairly affects users with little interest in popular content, since this user group
receives lower recommendation accuracy than users interested in popular con-
tent [145,151,152,155]. We also find that recommendation algorithms could am-
plify popularity bias for female users [166], and that content-based recommenda-
tions can help to mitigate popularity bias [159]. Additionally, we study long-term
fairness in algorithmic decision support in the labor market, and find that there
is a trade-off between individual and group fairness in this setting [237].

Reproducibility Aspects of this Habilitation

The reproducibility of recommender systems research results is of utmost impor-
tance to be able to track the scientific progress in the field (e.g., [32, 86]). This
habilitation provides code and data resources that should foster the reproducibil-
ity of the presented research contributions (see Section 3.4 for a full list).
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1.2 Main Publications

Table 1.1 lists the 17 main publications of this habilitation. I have selected 5
publications for each of the first two research topics described beforehand. For
the third research topic, fairness and popularity bias in recommender systems, I
have selected 7 publications, since this is the research topic I have investigated
most recently (here, my first paper was published in 2020). Within these three
research fields, the publications are sorted by publication year in ascending order.
Overall, each publication is assigned a unique ID, i.e., Pi , where i = 1 . . . 17.

In the first field, transparency and cognitive models in recommender systems,
the list of publications contains three studies, in which cognitive models are em-
ployed for a transparent design process of recommender systems, i.e., one rec-
ommendation approach based on a model of human episodic memory P1 , and
two approaches based on models formalizing activation processes in human mem-
ory P2 P3 . Furthermore, it lists a survey on psychology-informed recommender

systems P4 . Another publication illustrates to what extent components of cog-

nitive models contribute to the generation of the recommendation lists P5 .
The second research field contains two studies on addressing the issue of lim-

ited availability of user preference information: one addresses the user cold-start
problem using trust-based collaborative filtering P6 , and one employs variational

autoencoders for session-based job recommendations P7 . Table 1.1 also contains
three publications on privacy-aware recommender systems, one addressing varying
privacy constraints of users P8 , one addressing the accuracy-privacy trade-off

of differentially private recommender systems P9 , and one surveying the use of

differential privacy in collaborative filtering recommender systems P10 .
In the third field, Table 1.1 contains two publications that study popularity

bias and characteristics of “niche” users in music recommendations P11 P12 .
One paper further studies if users of different genders are equally affected by
popularity bias in music recommendations P13 , and another paper studies pop-

ularity bias in multimedia recommendation domains P14 . Furthermore, this list
contains an online study on popularity bias mitigation in news article recommen-
dations P15 . Another paper analyzes miscalibration and popularity bias ampli-

fication in recommendations P16 . Finally, one journal article studies long-term

dynamics of fairness in algorithmic decision support in the labor market P17 .

Table 1.1: List of main publications selected by the author of this habilitation.

No. Publication

Transparency and Cognitive Models in Recommender Systems

P1 Seitlinger, P., Ley, T., Kowald, D., Theiler, D., Hasani-Mavriqi, I.,
Dennerlein, S., Lex, E., Albert, D. (2018). Balancing the Fluency-
Consistency Tradeoff in Collaborative Information Search with a Rec-
ommender Approach. International Journal of Human–Computer Inter-
action, 34:6, pp. 557-575. DOI: https://doi.org/10.1080/10447318.
2017.1379240
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P2 Lex, E.*, Kowald, D.*, Schedl, M. (2020). Modeling Popularity and
Temporal Drift of Music Genre Preferences. Transactions of the Interna-
tional Society for Music Information Retrieval, 3:1, pp. 17-30. (*equal
contribution) DOI: https://doi.org/10.5334/tismir.39

P3 Kowald, D.*, Lex, E.*, Schedl, M. (2020). Utilizing Human Mem-
ory Processes to Model Genre Preferences for Personalized Music Rec-
ommendations. In 4th Workshop on Transparency and Explainability
in Adaptive Systems through User Modeling Grounded in Psychological
Theory (HUMANIZE @ ACM IUI’2020). (*equal contribution) DOI:
https://doi.org/10.48550/arXiv.2003.10699

P4 Lex, E., Kowald, D., Seitlinger, P., Tran, T., Felfernig, A., Schedl,
M. (2021). Psychology-informed Recommender Systems. Foundations
and Trends in Information Retrieval, 15:2, pp. 134–242. DOI: https:
//doi.org/10.1561/1500000090

P5 Moscati, M., Wallmann, C., Reiter-Haas, M., Kowald, D., Lex, E.,
Schedl, M. (2023). Integrating the ACT-R Framework and Collaborative
Filtering for Explainable Sequential Music Recommendation. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems (Rec-
Sys’2023), pp. 840–847. DOI: https://doi.org/10.1145/3604915.
3608838

Privacy and Limited Preference Information in Recommender
Systems

P6 Duricic, T., Lacic, E., Kowald, D., Lex, E. (2018). Trust-Based Col-
laborative Filtering: Tackling the Cold Start Problem Using Regular
Equivalence. In Proceedings of the 12th ACM Conference on Recom-
mender Systems (RecSys’2018), pp. 446–450. DOI: https://doi.org/
10.1145/3240323.3240404

P7 Lacic, E., Reiter-Haas, M., Kowald, D., Dareddy, M., Cho, J., Lex, E.
(2020). Using Autoencoders for Session-based Job Recommendations.
User Modeling and User-Adapted Interaction, 30, pp. 617–658. DOI:
https://doi.org/10.1007/s11257-020-09269-1

P8 Muellner, P., Kowald, D., Lex, E. (2021). Robustness of Meta Matrix
Factorization Against Strict Privacy Constraints. In Proceedings of the
43rd European Conference on Information Retrieval (ECIR’2021), pp.
107-119. DOI: https://doi.org/10.1007/978-3-030-72240-1_8

P9 Muellner P., Lex, E., Schedl, M., Kowald, D. (2023). ReuseKNN:
Neighborhood Reuse for Differentially-Private KNN-Based Recommen-
dations. ACM Transactions on Intelligent Systems and Technology,
14:5, pp. 1-29. DOI: https://doi.org/10.1145/3608481

P10 Muellner P., Lex, E., Schedl, M., Kowald, D. (2023). Differential
Privacy in Collaborative Filtering Recommender Systems: A Review.
Frontiers in Big Data, 6:1249997, pp. 1-7. DOI: https://doi.org/10.
3389/fdata.2023.1249997
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Chapter 2

Related Work and Background

This chapter describes relevant research and background related to the scientific
contributions of this habilitation. First, the main concepts of recommender sys-
tems are briefly outlined in Section 2.1, followed by relevant background with
respect to transparency and cognitive models in recommender systems in Sec-
tion 2.2. Next, the topic of privacy and limited preference information in recom-
mender systems is briefly discussed in Section 2.3. Finally, Section 2.4 gives a
compact overview of fairness and popularity bias in recommender systems. This
chapter also summarizes our own research related to these topics, which is then
outlined in relation to the main publications of this habilitation in Chapter 3.

2.1 Main Concepts of Recommender Systems

This section gives a compact overview of recommender systems (i) algorithms, (ii)
applications, and (iii) evaluation methods relevant to this habilitation.

Recommender Systems Algorithms

In general, there are three main categories of recommendation algorithms [18,225]:
(i) collaborative filtering (CF), (ii) content-based filtering (CBF), and (iii) hybrid
approaches. This habilitation focuses on CF, but also investigates CBF.

Typically, a user-based CF recommender system Rk generates an estimated
rating score for a target user u and a target item i by utilizing the ratings rn,i of
k other users that have rated i, i.e., the k nearest neighbors Nk

u,i [68]. Therefore,
this variant of CF is often referred to as UserKNN, i.e., user-based k nearest
neighbors. Formally, the estimated rating score Rk(u, i) for u and i is given by:

Rk(u, i) =

∑
n∈Nk

u,i
sim(u, n) · rn,i

∑
n∈Nk

u,i
sim(u, n)

(2.1)

where sim(u, n) is the similarity between target user u and neighbor n. For
UserKNN, the neighborhood Nk

u,i used for generating recommendations for u and
i comprises the k most similar neighbors. More formally:

Nk
u,i =

k
argmax

c∈Ui

sim(u, c) (2.2)
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where Ui are all users that have rated i and sim is the similarity metric (e.g.,
Cosine or Pearson [35]). There also exist variations of this algorithm suitable for
item relevance prediction and for implicit user preferences (e.g., clicks) [122].

It is also possible to calculate similarities between items based on users’ prefer-
ences of these items. This variant of CF is termed item-based CF (or ItemKNN )
and has advantages in cases when user profiles change quickly [228]. ItemKNN
was introduced as the main recommendation algorithm by Amazon.com [174] in
2003. For a comprehensive review of KNN-based CF methods, please see [204],
and for a survey on CF with side information, please see [243]. Another possibility
to incorporate side and context information (e.g., time or location) is by utilizing
context-aware recommender systems, as discussed in these works [14,17,19].

Another variant of CF ismatrix factorization (MF), which follows the idea that
a user’s preferences can be efficiently represented in low-dimensional space [139,
242]. The items are represented in the same low-dimensional space, which enables
to generate recommendations by calculating the dot-product between the user
and the item vectors. These vectors are often termed embeddings, and can be
calculated with techniques such as graph neural networks [250], recurrent neural
networks [112], neural CF [108], or autoencoders [274]. As described in Section 2.3,
in this habilitation, autoencoders are used to address the issue of limited prefer-
ence information in session-based recommendations [123, 170]. Furthermore, a
neural CF approach [108] is used to study differentially-private recommendations.
For a comparison of neural network and KNN-based methods, please see [87].

The next type of algorithms, content-based filtering (CBF) [176], utilizes con-
tent features of items (e.g., genres, title) to build item profiles to overcome the
item cold-start problem (i.e., items with no user preference information). These
item profiles are then matched with user profiles that also consist of content fea-
tures of the consumed items [63]. For representing content features, techniques
such as LDA (Latent Dirichlet Allocation) [43] can be used. CBF could suffer
from a lack of novelty and diversity, since typically items are recommended that
are similar to the items the user has consumed in the past. To overcome this issue,
hybrid recommendation approaches [45,46,140,213] combine CBF and CF to get
the benefits of both worlds. There exist several ways to combine recommendation
algorithms [127], including (i) monolithic, where collaborative and content infor-
mation is combined in a single recommendation model, (ii) parallelized, where the
results of different algorithms are combined using, e.g., a weighted approach, and
(iii) pipelined, where one algorithm uses the results of another algorithm as input.

Recommender Systems Applications

This habilitation focuses on four application areas for recommender systems,
namely (i) tag recommendations, (ii) music recommendations, (iii) job recom-
mendations, and (iv) news article recommendations. The following paragraphs
briefly describe the particularities of these application areas. Tag recommenda-
tion systems aim to support users in finding descriptive tags (or keywords) for
annotating Web resources [128,180] (e.g., music tracks or tweets in Twitter). Pre-
vious research of this habilitation’s author has shown that a user’s choice of tags is
affected by activation processes in human memory [147,148], which can be utilized
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for a transparent design of tag recommendation models [153] (see Section 2.2).
Similar to recommendations in other multimedia domains [66] (e.g., movies or

television items [182]), music recommender systems help users to navigate large
content databases, and to find content that suit their taste [234]. However, in
contrast to movies or books, music has some distinguished properties that also
affect the design of music recommendation algorithms [233]: (i) music may be
consumed repeatedly, while movies or books are typically consumed only once or
a few times at maximum, (ii) music recommendations can be addressed on dif-
ferent abstraction levels including tracks, albums, artists and genres, (iii) rating
data is relatively rare in the music domain, and thus implicit user preferences
(e.g., listening events) are an important information source for recommender sys-
tems [70], and (iv) domain knowledge (e.g., musical sophistication) may have a
high impact on how recommendations are perceived by the music listeners [130].

Next, job recommender systems address a particular recommendation prob-
lem, in which open job positions should be matched with job candidates [10, 11].
This differs to other recommendation application domains, since typically every
open job position (i.e., the item) can be assigned to only one job candidate (i.e.,
the user), and vice versa [133]. Additionally, job portals (especially those that
offer jobs to students and young talents) often provide the possibility to browse
jobs anonymously [160, 221], which then turns the job recommendation problem
into a session-based recommendation problem [123,217]. Limited preference infor-
mation and anonymous user sessions are also issues of news article recommender
systems [64,116,194]. Via providing recommendations of currently relevant news
articles that match session information (e.g., clicks) of the user, news portals aim
to increase user engagement, and to turn anonymous readers into paying sub-
scribers [5]. Finally, another particularity of news recommendations is the short
lifetime of items, since many articles are only relevant for one day [209].

Recommender Systems Evaluation Methods

This habilitation considers both online and offline evaluation procedures of recom-
mender systems. Both methods aim to compare the performance of two or more
recommendation algorithms, but while online evaluation is performed in a live
system, e.g., using A/B tests [94], offline evaluation is performed using collected
preferences, typically in the form of training and test sets [53]. Another difference
lies in the time when the user preference information is collected: whereas online
evaluation collects user preferences after the recommendations are shown to the
users, offline evaluation gathers user preferences (i.e., the ground truth data in the
test set) before the recommendations are calculated [52, 273]. Online evaluation
procedures then measure the actual performance using impact- or value-oriented
measurements such as Click-Through-Rate (CTR) [121]. In contrast, offline eval-
uation procedures make use of relevance or performance metrics, which are often
borrowed from the information retrieval research field [28,227].

With respect to offline evaluation metrics, this habitation investigates both
accuracy and beyond-accuracy metrics. To measure accuracy [61], error-based
metrics for rating prediction such as the Mean Absolute Error (MAE) [269], and
metrics for ranking quality such as Precision (P), Recall (R), F1-score (F1), Mean
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Reciprocal Rank (MRR), and Normalized Discounted Cumulative Gain (nDCG),
have been proposed in the literature (e.g., [111]).

After decades of accuracy-driven recommender systems evaluation procedures,
the research community has argued that being accurate is not the only important
objective for a recommender system, and has proposed a set of beyond-accuracy
metrics [16, 95, 187]. Here, especially, the concepts of novelty and diversity are
important [51]. Novelty describes the difference between the recommended items
and a specific context, which could be the target user’s item history or all users’
item histories in the system [262]. The former, which is also referred to as person-
alized or user-based novelty, or unexpectedness [13], describes how different the
recommendation list is from the items the target user has consumed in the past
(i.e., the user item history). This concept is also related to serendipity, which, in
addition, takes the relevance of the recommended items into account [56]. The
latter, which is also referred to as long-tail novelty or system-based novelty [262],
measures the rarity or inverse popularity of the recommended items [54]. This
concept is also related to evaluating fairness and popularity bias of recommenda-
tions, which is described in more detail in Section 2.4.

All methods and metrics discussed so far solely evaluate the recommender
system from a user’s, or consumer’s, perspective. However, in recent years, the
multi-stakeholder nature of recommender systems has been highlighted, which not
only takes the users, but also the item providers (and maybe even other stake-
holders like the system operators) into account [1, 3]. Here, especially integrat-
ing and evaluating item provider constraints is becoming an important research
topic [251], and is also related to multi-sided fairness aspects of recommender
systems [48,246]. Finally, the reproducibility of recommender systems evaluation
procedures is another important and timely topic [60]. Here, the adequate docu-
mentation and sharing of source-code and dataset samples used in the evaluation
process is a key aspect of reproducibility [32]. Please see Section 3.4, for a discus-
sion of reproducibility aspects related to the contributions of this habilitation.

Summary of own research (1): This habilitation studies a wide range
of recommendation algorithms and applications such as tag, music, job, and
news article recommendations. Additionally, we investigate both accuracy and
beyond-accuracy metrics, and both offline and online evaluation settings. Fi-
nally, we discuss reproducibility aspects of the scientific contributions of this
habilitation, and provide code and data resources to foster reproducibility.

2.2 Transparency and Cognitive Models in Recom-
mender Systems

This habilitation investigates transparency aspects of recommender systems by
following principles of psychology and human cognition for a transparent design
process of recommendation algorithms. Another possibility to enhance trans-
parency in recommender systems is by providing explanations for recommenda-
tions, which is not investigated in this habilitation. For the field of explainability
in recommender systems, please see [207,253,254,255].
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2.2.1 The Role of Psychology in Recommender Systems

Already, early research in the field of recommender systems was influenced by
the fact that humans’ decision-making processes are impacted by their social
surroundings, which also motivated the implementation of the first collaborative
filtering-based recommendation algorithms [223, 224]. In order to create more
human-centric recommendations, additional psychological characteristics of users
were incorporated in the design and implementation process of recommender sys-
tems [27, 257]. For example, insights from decision psychology [165] were used
to study serial position and anchoring effects in recommendations [15, 85, 248],
and to show that users are more likely to remember items at the beginning (i.e,
primacy effect) and the end (i.e., recency effect) of a list [249]. Related research
also investigated how to incorporate aspects such as personality [256], and affect,
e.g., emotion [99] or satisfaction [183,186], into the recommendation process.

Based on these lines of research, we survey and categorize related work at the
intersection of psychology and recommender systems. We term this type of recom-
mender systems psychology-informed recommender systems [169], and we identify
three main areas: (i) cognitive (or cognition)-inspired, (ii) personality-aware, and
(iii) affect-aware recommender systems. Additionally, we connect these areas to
aspects of human decision-making, and to aspects of human-centric evaluation de-
sign of recommender systems. This habilitation focuses on the first area, namely
cognitive-inspired recommendations based on human memory theory, which is
described in more detail in the following section.

Summary of own research (2): We highlight the usefulness of incorporating
the underlying psychological constructs and theories into a transparent design
process of recommender systems. We term this type of recommender system
psychology-informed recommender system, and categorize it into three types.

2.2.2 Cognitive-inspired Recommendations

This habilitation investigates two cognitive-inspired recommendation approaches:
one based on human episodic memory, and another one based on activation pro-
cesses in human memory. Other types of cognition-aware recommendation ap-
proaches, such as stereotype-based recommendations [226], categorization-based
recommendations [239], or attention-based user models [238], are discussed in [169].

Recommendations based on Human Episodic Memory

Human episodic memory is the memory of personally experienced events that
occurred in a specific context (e.g., a particular day or place, or a given cat-
egorization) [258]. The contextual information is essential for retrieving these
events. MINERVA2 [113] is a model that accounts for episodic memory-based
human behavior such as categorization [114], and recognition [115]. MINERVA2
distinguishes between a long-term or secondary memory that holds the episodic
memory traces (i.e., the events along with the context information), and a working
or primary memory that communicates with the secondary memory by sending
retrieval cues (e.g., current context information), and receiving matching events.
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In our own research [156,240], we employ MINERVA2 to implement a tag rec-
ommendation algorithm called Search of Memory (SoMe). SoMe mimics a user’s
search of memory when assigning tags to bookmark a Web resource. Therefore, we
encode episodic memory traces using the categories assigned to previously book-
marked Web resources of this user. Specifically, SoMe implements MINERVA2’s
distinction between the primary and secondary memory in a way that the pri-
mary memory represents the Web resource to be tagged in terms of the resource’s
categories, and to search the secondary memory for tags that are assigned to
Web resources with similar categories. These tags are then recommended to the
user. Via user studies, we find that SoMe provides higher tag recommendation
acceptance than a popularity-based baseline approach [156,240] (see Section 3.1).

Recommendations based on Activation Processes in Human Memory

Human memory is very efficient in making memory units quickly available when
they are needed [39, 211]. More formally, human memory tunes the activation of
its units to statistical regularities of the current context and environment [24].
These so-called activation processes in human memory are formalized in the cog-
nitive architecture ACT-R [23]. ACT-R is short for “Adaptive Control of Thought
– Rational”, and differs between two long-term memory modules: (i) declarative
memory, which holds factual knowledge (i.e., what something is), and (ii) proce-
dural memory, which consists of action sequences (i.e., how to do something) [22].

This habilitation focuses on the declarative memory module, which contains
the activation equation of human memory. The activation equation determines
the usefulness, i.e., the activation level Ai, of a memory unit i (e.g., a specific
item or item category the user has interacted with in the past) for a user u in the
current context. It combines a base-level activation with an associative activation,
which depends on the weight Wj , and the strength of association Sj,i [22]:

Ai = Bi +
∑

j

Wj · Sj,i (2.3)

where Bi represents the base-level activation of i, which quantifies its general
usefulness by considering how frequently and recently it has been used in the
past. It is defined by the base-level learning (BLL) equation [24]:

Bi = ln




n∑

j = 1

t−d
j


 (2.4)

where n is the frequency of i’s occurrences in the past (i.e., how often u has inter-
acted with i), and tj is the time since the jth occurrence of i (i.e., the recency of i).
The exponent d accounts for the time-dependent decay of item exposure, which
means that each unit’s activation level decreases in time according to a power
function. The second part of Equation 2.3 represents the associative activation
that tunes Bi to the current context. The current context can be defined by any
contextual element j that is relevant to the current situation, and via learned
associations, the contextual elements can increase i’s activation.
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Figure 2.1: An example illustrating the difference between the BLL equation (left
panel) and the activation equation (right panel). Here, unfilled nodes represent
target genres g1 and g2, and black nodes represent contextual genres. For g1 and
g2, the node sizes represent the activation levels, and for the contextual genres, the
node sizes represent the weights Wc. The association strength Sc,g is represented
by the length of each edge. We see a different ranking of the genres in the two
settings, which illustrates the importance of the associative activation [150].

Figure 2.1 illustrates the difference between the base-level activation and the
associative activation in the case of a music recommendation system that aims
to rank relevant music genres for a given user. The left panel shows the ranking
of two genres g1 and g2 according to the BLL equation. Here, g1 would have
a higher activation level than g2 based on past usage frequency and recency.
The right panel shows the ranking of these genres according to the activation
equation, which also takes associations with contextual genres into account (e.g.,
music genres that are relevant in the current situation). Using the combined base-
level and associate activation, the ranking changes, and g2 would have a higher
activation level than g1 [150]. The declarative memory module also contains some
additional components. One example is the valuation component [131], which
determines the value attributed by u to i (e.g., interaction time or frequency [220]).

In our research, we use the BLL equation and activation equation for a trans-
parent design, implementation, and evaluation process of two music recommen-
dation algorithms [150, 168]. We show that these cognitive-inspired approaches
outperform related baselines in terms of recommendation accuracy. Additionally,
we illustrate to what extent the components of ACT-R contribute to the genera-
tion of the music recommendation lists [196]. In a recently accepted paper [154],
we discuss transparency aspects of additional components of ACT-R.

Summary of own research (3): We use models of human episodic memory
(i.e., MINERVA2), and activation process in human memory (i.e., ACT-R) for a
transparent design, implementation, and evaluation process of recommendation
algorithms. We also illustrate to what extent the components of ACT-R (e.g.,
BLL) contribute to the generation of the recommendation lists.
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2.3 Privacy and Limited Preference Information in
Recommender Systems

This section gives an overview of privacy-aware recommendations. Since the users’
privacy concerns could also lead to the limited availability of preference informa-
tion (e.g., users disclose their preferences, or do not sign in to the system), this
section also gives an overview of session-based and cold-start recommendations.

2.3.1 Privacy-aware Recommendations

In terms of privacy, this habilitation focuses on differentially-private recommenda-
tions. This section also briefly discusses privacy aspects of recommender systems.

Privacy Aspects of Recommender Systems

Recommender systems need to store and process user preference information,
which could lead to potential privacy risks to its users [90]. This includes the
inference of private information. Here, related research has shown that inference
attacks can be used to derive a user’s sensitive information (e.g., gender [245])
based on the information shared with the recommender system [33,129,268]. For
example, in k-nearest neighbor-based recommender systems, the use of neighbors’
preference information in the recommendation process can pose a privacy risk to
the neighbors [218, 276]. In this way, the preference information of the neighbors
can be uncovered, or the neighbors’ identities (or sensitive attributes) can be
revealed. Other inference attacks in recommender systems work by generating fake
users, i.e., sybils, based on the limited knowledge of a victim’s preferences. These
sybils isolate the victim utilized as a neighbor, and compromise its privacy [49].

Different privacy-preserving technologies have been used to mitigate the users’
privacy risks, including homomorphic encryption, federated learning, and differen-
tial privacy. While homomorphic encryption techniques aim to generate privacy-
aware recommendations by employing encrypted user preference information [275],
federated learning techniques build on the assumption that sensitive user infor-
mation should never leave the user’s device [25, 272]. Finally, differential privacy
protects the users by introducing noise into the recommendation process [73].

Our own research focuses on using differential privacy. Additionally, we study
how limiting the preference information of users can help to increase privacy.
Therefore, we use the concept of meta learning [173] to calculate recommenda-
tions based on a minimal amount of user preference information. With this, we
study privacy constraints of users (e.g., willingness to share preference informa-
tion) [197]. We find that users with small profiles can afford a higher degree
of privacy than users with large profiles, and that meta learning is helpful for
increasing the robustness against the users’ privacy constraints (see Section 3.2).

Differentially-Private Recommendations

The aim of differentially-private recommendations is to inject randomness and
noise into the recommendation calculation process to mitigate the inference risk

14



of users’ preference information [89, 188]. This habilitation focuses on a specific
attack, which can be addressed by using differential privacy. Here, a user with
malicious intent, i.e., the adversary a, tries to infer preference information (here,
rating scores) of a specific neighbor n in user-based k-nearest neighbor CF (i.e.,
UserKNN ) [49]. In this attack scenario, the adversary a has some prior knowledge
about n, such as publicly available rating information P of n that could have
been inferred from, e.g., product reviews. Using P , a modifies its own user profile
Ra such that it (partially) matches n’s profile, which increases the likelihood
of n being used as a neighbor for calculating a’s recommendations. With this,
a queries estimated rating scores from the recommender system, i.e., Rk(a) =
{Rk(a, i1),Rk(a, i2), . . . ,Rk(a, il)}, where Rk(a, ij) is the estimated rating score
for item ij ∈ Qa, and Qa is the set of a’s rating queries. Then a aims to infer
rating information rn,ij of a neighbor n for item ij used to generate the estimated
rating scores. More formally, this is given by:

Pr[rn,i1 , rn,i2 , . . . , rn,il |Rk(a, i1),Rk(a, i2), . . . ,Rk(a, il), P ∪Ra] (2.5)

To mitigate the inference risk of n’s rating information, different variants of
differential privacy such as the Laplace input perturbation [75] or plausible deni-
ability [41] can be used. This habilitation utilizes randomized responses [267] to
establish plausible deniability. Specifically, a privacy mechanism mDP is applied
to the neighbors’ ratings to generate the differentially-private set of ratings R̃:

R̃ = {mDP (rn,i) : n ∈ Nk
u,i} (2.6)

Via randomized responses, neighbors can plausibly deny that their real rating
was used in the recommendation process. In detail, the privacy mechanism mDP

flips a fair coin, and if the coin is heads, the neighbor’s real rating is used in
the recommendation calculation. If the coin is tails, mDP flips a second fair coin
to decide whether the neighbor’s real rating, or a random rating drawn from a
uniform distribution over the range of ratings, is used. With this, the adversary
a does not know if the utilized rating is real, or random, which leads to the
guarantees of differential privacy [75]. However, the randomness introduced to
the users’ preference information typically leads to accuracy drops, and thus also
to a fundamental trade-off between accuracy and privacy [38].

In our research, we address this accuracy-privacy trade-off by proposing a
novel differentially-private recommendation approach termed ReuseKNN [201].
ReuseKNN aims to reduce the number of users that need to be protected via
differential privacy by employing an efficient neighborhood reuse concept. With
this, the majority of users (we call them secure users) are rarely used in the recom-
mendation process and thus, do not need protection, while some highly reusable
users (we call them vulnerable users) can be protected with differential privacy.
Figure 2.2 schematically illustrates our approach, and shows that the fraction of
secure users is substantially larger in the case of ReuseKNN compared to tradi-
tional UserKNN. We also find that this leads to higher recommendation accuracy
compared to a fully differentially-private recommender system (see Section 3.2).
Additionally, we survey, analyze, and categorize the use of differential privacy in
26 papers published in recommender systems-relevant venues [200].
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Figure 2.2: Schematic illustration of the data usage (i.e., how often a user is used
as a neighbor) distribution of UserKNN and ReuseKNN. ReuseKNN increases
the number of secure users (green, no differential privacy needed) and decreases
the number of vulnerable users (red, differential privacy needs to be applied)
compared to UserKNN. The dashed line illustrates the data usage threshold τ , a
parameter to adjust the maximum data usage for users to be treated as secure.

Summary of own research (4): We study varying privacy constraints of
users, e.g., the willingness to share preferences with the recommender system.
Additionally, we address the privacy-accuracy trade-off in differentially-private
recommendations by employing a neighborhood reuse concept, and survey and
categorize the literature on using differential privacy in collaborative filtering.

2.3.2 Limited Availability of User Preference Information

Data protection initiatives as well as the users’ privacy concerns in recommender
systems can lead to the limited availability of preference information [40,137,164,
189, 260]. This habilitation investigates this issue in session-based and cold-start
recommendation settings, which are discussed in this section.

Session-based Recommendations

Session-based recommender system aim to provide meaningful recommendations
in cases where long-term user preferences, or user histories, are not available (e.g.,
due to users’ privacy concerns, or when users do not sign in to the system). The
input of a session-based recommender system consists of a typically short item se-
quence that is observed in the current user session [124,177]. Different algorithms
for session-based recommendations have been proposed, including methods based
on k-nearest neighbors [123] or recurrent neural networks [112]. Session-based
recommender systems are related to sequence-aware and sequential recommender
systems [132], which are not covered in this habilitation. Please see [216] for a
detailed overview of sequence-aware and sequential recommendations.

In our research, we employ autoencoders, a specific type of neural network for
reducing the dimensionality of data [157], to infer latent session representations,
and to generate session-based job recommendations. Specifically, we find that
variational autoencoders provide the best results across a set of accuracy and
beyond-accuracy evaluation metrics (e.g., system and session-based novelty) [162].
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The User Cold-Start Problem

The user cold-start problem in recommender systems refers to users that have in-
teracted with only a few or even with no items at all, i.e., users with limited avail-
ability of preference information [235]. Related research has proposed different
methods to address the user cold-start problem, including simple popularity-based
and unpersonalized approaches [235], location-aware recommendations [161], and
trust-based recommendations [77, 181]. This habilitation focuses on trust-based
recommendations, which exploit trust statements between users (e.g., user A
trusts user B) to create trust networks, and to calculate CF-based recommen-
dations using the connections in these trust networks [103,104,208].

In our research, we employ network measures such as regular equivalence [109]
to calculate trust-based recommendations for cold-start users. Via regular equiv-
alence, we do not only find neighbors that share the same trust connections, but
also neighbors that have similar structural roles in the trust network (e.g., users
that are only connected to influential nodes in the network). We find that our
approach outperforms related methods based on, e.g., Jaccard similarity [72].

Summary of own research (5): We address the issue of limited availability
of user preference information (e.g., due to users’ privacy constraints) in session-
based and cold-start recommendation settings. We demonstrate the usefulness
of variational autoencoders for session-based job recommender systems. Fur-
thermore, we address the user cold-start problem by employing trust-based
recommendations using network measures such as regular equivalence.

2.4 Fairness and Popularity Bias in Recommender Sys-
tem

This section gives a brief overview of fairness in algorithmic decision support, and
outlines research on popularity bias in recommender systems. For more detailed
reviews on fairness-aware recommender systems, please see [65,78,266,271].

2.4.1 Fairness in Algorithmic Decision Support

Fairness in algorithmic decision support and in machine learning applications has
gained a lot of attention in recent years, and has been studied especially for binary
classification problems [37, 158, 190]. In this problem setting, Y denotes the real
outcome to be predicted by the classifier (e.g., the class label, for example if a
job applicant has been put into a high- or low-prospect group), and A is the
set of protected attributes of an individual, thus the attributes that one must
not discriminate against (e.g., gender or race). Furthermore, X denotes non-
protected attributes of an individual, and Ŷ is the predictor of Y (e.g., to predict
to which class the individual belongs), which could depend on X and A. Different
definitions of fairness were proposed for such a setting in the literature.

For example, fairness through unawareness is satisfied if the predictor Ŷ only
depends on X and not on A to predict Y , i.e., Ŷ : X → Y . Although this fairness
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definition seems to be compelling and simple to implement, it was shown that it is
not sufficient in the area of algorithmic decision support since elements of X may
contain hidden discriminatory information of A (e.g., race may correlate with the
place of residence) [105]. Another definition is based on individual fairness [74].
Given that we have a distance metric d(i, j), if two individuals i (with Xi and Ai)
and j (with Xj and Aj) are similar according to this metric (so d(i, j) is small),
then also their predicted outcomes should be similar: Ŷ (Xi, Ai) ≈ Ŷ (Xy, Ay).
One drawback of individual fairness is that the definition of d(i, j) requires de-
tailed information of the individuals as well as detailed domain knowledge.

Apart from that, the literature has also provided different definitions for group
fairness. According to the statistical parity (or demographic parity) definition [30],
fairness is given if the positive outcome proportion of the predictor P (Ŷ = 1) is
equal for all A, which, in the binary case with A ∈ {0, 1}, is given by:

P (Ŷ = 1|A = 0) = P (Ŷ = 1|A = 1) (2.7)

Legally, this metric is often related to the 4/5th rule [100]. This means that
the positive outcome ratio between the protected group (i.e., A = 0) and the
privileged group (i.e., A = 1) should be at least 0.8. For example, if the privileged
group has a positive outcome proportion of 50%, then the protected group should
have a positive outcome proportion of at least 40%. The downside of this metric
is that it does not depend on the real outcome Y (only on the predictions Ŷ ).

In contrast, equality of opportunity [106] also takes the real outcome Y into
account. The idea is that individuals of the privileged and individuals of the
protected group should have equal chance of getting a positive outcome, assuming
that the individuals of the groups are qualified for this positive outcome. This
can be measured via the true positive rate, which is given by:

P (Ŷ = 1|Y = 1, A = 0) = P (Ŷ = 1|Y = 1, A = 1) (2.8)

Equality of opportunity can also be defined using the false negative rate [237].
Additionally, equalized odds is a stricter variant of equality of opportunity that
requires that both the true positive rate and the false positive rate are equal [263].
Research has also found a trade-off between individual and group fairness [42].

In our research, we employ some of these definitions and adjust them to study
long-term dynamics of fairness in algorithmic decision support. Therefore, we
develop an agent-based model and evaluate it in a labor market setting [237]. We
find that there is a trade-off between different long-term fairness goals, which vali-
dates the aforementioned individual and group fairness trade-off (see Section 3.3).
Although, this work does not directly study recommender systems, it sheds light
on the usefulness of agent-based modeling for studying algorithmic fairness in the
long-term, which is also relevant for the research field of recommender systems.

Summary of own research (6): We study long-term fairness dynamics in
algorithmic decision support in a labor market setting using agent-based model-
ing techniques. We highlight the trade-off between different long-term fairness
goals in such a setting (i.e., individual and group fairness).
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2.4.2 Measuring, Understanding, and Mitigating Popularity Bias

In this section, metrics to measure and understand popularity bias, and methods
to mitigate popularity bias in recommender systems are briefly discussed.

Popularity Bias Metrics

Research has shown that recommendation algorithms (especially those based on
CF) are biased towards popularity, which leads to the overrepresentation of popu-
lar items in the recommendation lists [81,82]. This also leads to the underrepresen-
tation of unpopular items (long-tail items) in the recommendation lists [44, 212].
The literature has proposed different metrics to measure and understand popular-
ity bias from the item and user perspective [20,136]. This habilitation focuses on
three specific ways to measure inconsistencies between user groups with respect to
popularity bias: (i) accuracy differences between user groups, (ii) miscalibration,
and (iii) popularity lift. While the first one simply requires comparing the aver-
age recommendation accuracy between the groups, miscalibration and popularity
lift are more complex to calculate. Additionally, via skewness and kurtosis, we
measure the asymmetry and “tailedness” of the popularity distributions [34].

In general, calibration quantifies the similarity of a genre spectrum between a
user profile p and a list of recommendations q [247]. For example, if a user has
consumed 80% of rock music and 20% of pop music in the past, then a calibrated
recommendation list should also contain this genre distribution. Although this
metric is not a popularity bias metric by definition, it is often used to measure and
understand popularity bias in recommendations [6,8]. The definition of calibration
can be reinterpreted in the form ofmiscalibration, i.e., the deviation between p and
q [172]. This deviation is calculated using the Kullback-Leibler (KL) divergence
between the distribution of genres in p, i.e., p(c|u), and the distribution of genres
in q, i.e., q(c|u). More formally, for user u, this is given by:

KL(p||q) =
∑

c∈C
p(c|u) log p(c|u)

q(c|u) (2.9)

Here, C is the set of all genres in a given dataset. Therefore, KL(p||q) = 0 means
perfect calibration, and higher KL(p||q) values (i.e., close to 1) mean miscalibrated
recommendations. The KL(p||q) values can be averaged for a given group g.

In contrast, popularity lift measures to what extent recommendation algo-
rithms amplify the popularity bias inherent in the user profiles [7, 8]. Thus, this
metric quantifies the disproportionate recommendation of popular items for a
given user group g. Popularity lift is based on the group average popularity
GAPp(g), which is defined as the average popularity of the items in the user
profiles p of group g. Similarly, GAPq(g) is the average popularity of the recom-
mended items for all users of the group g. Taken together:

PL(g) =
GAPq(g)−GAPp(g)

GAPp(g)
(2.10)

PL(g) > 0 means that g’s recommendations are too popular, PL(g) < 0 means
that g’s recommendations are too unpopular, and PL(g) = 0 is the ideal value.
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In our research, we use these metrics to study popularity bias in recommender
systems [145,151,155]. We find that “niche” users interested in unpopular content
receive worse recommendation quality than users interested in popular content.
We study the characteristics of these “niche” users in the field of music recom-
mendations, and identify subgroups that also differ in the recommendation quality
they receive [152]. Finally, we also find that music recommendation algorithms
could intensify the popularity bias for the group of female users [166].

Popularity Bias Mitigation

Research has proposed different methods to mitigate bias in algorithms, including
pre-, in-, and post-processing methods [206]. In the field of recommender systems,
especially in-processing and post-processing techniques are used to mitigate pop-
ularity bias. Here, in-processing algorithms aim to adjust the recommendation
calculation procedure, and to correct the popularity bias using, e.g., calibration-
based techniques [9, 135]. In contrast, post-processing techniques do not change
the recommendation algorithm itself, but the generated recommendation list by
using, e.g., re-ranking techniques [4, 26]. Typically, in-processing techniques are
the most complex ones to implement, since the underlying algorithm needs to be
adapted. However, they are efficient with respect to computational costs. In con-
trast, one drawback of post-processing techniques is the computational inefficiency
of these methods due to the high computational complexity of item re-ranking.
However, they can be applied to any given item ranking independent of the un-
derlying algorithm [55]. Finally, the use of content-based recommendation algo-
rithms [63, 176] is another possibility to address popularity bias in recommender
systems due to their independence of user preference information [2, 198].

In our research, we study popularity bias mitigation in news article recom-
mender systems for both subscribed users and anonymous session users utilizing
content-based recommendations [159]. In an online study that we have conducted
together with the Austrian news platform DiePresse, we find that personalized
and content-based recommendations lead to a more balanced news article reader-
ship distribution compared to purely popularity-based recommendations. Thus,
we find that readers are not only interested in the most popular and recent news
articles, but also in long-tail articles if they match the user preference history, or
the preferences tracked in the current session (see Section 3.3).

Summary of own research (7): We analyze popularity bias in collaborative
filtering-based recommender systems, and find that “niche” users interested in
unpopular content receive worse recommendation accuracy than users inter-
ested in popular content. Thus, this “niche” user group is treated in an unfair
way by collaborative filtering-based recommender systems. Furthermore, we
analyze the characteristics of these users, and study popularity bias mitigation
in news article recommender systems using content-based recommendations.

Please note that the aim of this “Related Work and Background” chapter
has not been to give a comprehensive review of the various research fields men-
tioned, but rather to discuss the research and background related to the scientific
contributions and publications of this habilitation described in the next chapter.
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Chapter 3

Scientific Contributions

This chapter describes the scientific contributions of this habilitation according
to the three research topics that are investigated: (i) transparency and cogni-
tive models (Section 3.1), (ii) privacy and limited preference information (Sec-
tion 3.2), and (iii) fairness and popularity bias (Section 3.3) in recommender
systems. Therefore, the 17 publications listed in Table 1.1 are categorized into 7
scientific contributions. For research topics (i) and (ii), this leads to two contribu-
tions each, and for research topic (iii), this leads to three contributions, since this
topic also covers the most publications of this habilitation. The full texts of these
17 publications can be found in Appendix Chapter B. Additionally, Section 3.4
summarizes the scientific contributions, and elaborates on reproducibility aspects.

3.1 Transparency and Cognitive Models in Recom-
mender Systems

This section summarizes our research on transparency aspects of recommenda-
tions by using cognitive modeling techniques. It contains three studies employing
cognitive models for a transparent design process of tag and music recommenda-
tion algorithms P1 P2 P3 , and one survey and categorization of psychology-

informed recommender systems P4 (Contribution 1 ). Additionally, one study
illustrates to what extent the components of the cognitive model ACT-R con-
tribute to the generation of music recommendation lists P5 (Contribution 2 ).

Contribution 1: Using Cognitive Models for a Transparent Design and
Implementation Process of Recommender Systems (2018-2021)

P1 introduces a tag recommendation algorithm termed SoMe (Search of Mem-
ory) based on MINERVA2 [113], which is a model of human episodic memory (see
Section 2.2.2). We implement SoMe using our TagRec framework [144, 146], and
evaluate it in an online study with 18 participants. During the four-weeks study,
the participants had to investigate a specific topic (i.e., “designing workplaces that
inspire people”) by collecting and tagging three topic-related Web resources per
week. For this, the participants were supported with a social bookmarking user
interface (based on the KnowBrain tool [67]) that contained support via tag rec-
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Figure 3.1: (a) Calculation of the BLL equation’s d parameter. On a log-log scale,
we plot the relistening count of the genres over the time since their last listening
event (LE), and set d to the slopes α of the linear regression lines [168]. (b)
Recall/precision plots for k = 1 . . . 10 predicted genres of the baselines, and our
BLLu and ACTu,a approaches. ACTu,a achieves the highest accuracy [150].

ommendations. Here, the participants randomly received tag recommendations
calculated via SoMe or via a conventional MostPopular tag recommendation algo-
rithm. Additionally, the participants were divided into two groups at random: (i)
individual, where the participants only saw their own resources and tags, and (ii)
collaborative, where the participants also saw the resources and tags of the other
users in the group. Thus, in the collaborative setting, the tag recommendations
were calculated based on the categorized resources and tags of the other users as
well. The outcomes of our online study show that, in the collaborative setting,
SoMe provides significantly higher tag recommendation acceptance rates than the
MostPopular approach. In the individual setting, we do not observe a significant
difference between the two approaches in terms of recommendation acceptance.
Therefore, we find that a cognitive-inspired tag recommendation algorithm based
on a transparent model of human episodic memory supports users in collaborative
tagging settings. We have validated these findings in a follow-up paper using a
similar tag recommendation approach termed 3Layers, which we have presented
at the International World Wide Web conference 2018 (TheWebConf) [156].

P2 and P3 present the second set of our cognitive-inspired recommendation
algorithms based on activation processes in human memory as defined by the cog-
nitive architecture ACT-R [22] (see Section 2.2.2). We introduce two algorithms
for a transparent modeling and prediction approach for music genre preferences
of users: (i) BLLu, which implements the base-level learning (BLL) equation of

ACT-R as described in P2 , and (ii) ACTu,a, which extends BLLu, and imple-

ments the full activation equation of ACT-R as described in P3 . We evaluate
these approaches using dataset samples containing preferences (listening events)
of users of the Last.fm music platform, based on the LFM-1b dataset [229,232].

Figure 3.1 (a) illustrates the impact of time on the re-listening behavior of
users in our Last.fm dataset sample. We find that users tend to listen to music
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genres to which they have listened to very recently, and that this temporal decay
follows a power-law distribution as suggested by the BLL equation of ACT-R [24].
We use the slope α of the linear regression of this data to set BLL’s d parameter.
Figure 3.1 (b) shows the accuracy of our approaches compared to five baseline
algorithms: TOP suggests the most popular genres in the system, CFu and CFi

represent user-based and item-based CF, and POPu and TIMEu suggest the
most popular and most recent genres listened to by u, respectively. We find that
BLLu outperforms all baselines, and that ACTu,a outperforms BLLu by also
taking into account the current context of music listening (i.e., the genres of the
artist a to which the user u listened to most recently) via the spreading activation
component. Our findings show the usefulness of activation processes in human
memory for a transparent design process of music recommendation algorithms,
which also leads to high recommendation accuracy. We have validated these
findings for the task of hashtag recommendations [153, 167], and for the task
of music artist recommendations, which we have presented at the International
Society for Music Information Retrieval (ISMIR) conference 2019 [149].

Finally, P4 surveys and categorizes recommender systems that draw on psy-
chological theories for a transparent design, implementation, or evaluation process
of recommendations. We term this type of recommender systems psychology-
informed recommender systems and categorize them into three groups: (i) cog-
nition (or cognitive)-inspired, (ii) personality-aware, and (iii) affect-aware recom-
mender systems (see Section 2.2.1). We also discuss open issues in this research
field, for example, the need to incorporate psychological considerations into the
design process of user-centric recommender system evaluation studies.

Contribution 2: Illustrating to What Extent Components of the Cog-
nitive Model ACT-R Contribute to Recommendations (2022-2023)

In P5 , we discuss transparency aspects of music recommendations generated via
ACT-R by illustrating to what extent components of ACT-R have contributed
to the generation of recommendation lists. We investigate three ACT-R compo-
nents described in Section 2.2.2: (i) the base level learning (BLL) equation, which
describes the “current obsession” of a user (i.e., frequently and recently listened
tracks), (ii) the spreading activation (S) component, which describes “current
vibes” of a user (i.e., tracks that are similar to the user’s most recently listened
track), and (iii) the valuation (V) component, which accounts for “evergreens” of
the user (i.e., the user’s most frequently listened tracks, independent of the re-
cency component). Additionally, we analyze a social component (SC) to account
for track recommendations “from similar listeners” in the form of user-based CF.

Figure 3.2 shows six recommended tracks for a randomly selected user in our
newly created Last.fm dataset sample [195] based on the LFM-2b dataset [191,
231]. The heatmap illustrates how the music track recommendations are calcu-
lated by showing the relative contribution of these four components to the recom-
mendation score of a track. We see that the components contribute differently to
the recommended tracks. For example, for the first track “From the Past Comes
the Storms”, the current obsession (BLL) of the user is most important, while for
the last track “Troops of Doom” solely the social component (SC) contributes to
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Recommended Track Current obsession (BLL) Current vibes (S) Evergreens (V) From similar listeners (SC)

From the Past Comes the Storms 0.471 0.248 0.281 0.000

Escape to the Void 0.306 0.353 0.341 0.000

To the Wall 0.294 0.359 0.347 0.000

R.I.P. (Rest in Pain) 0.264 0.374 0.362 0.000

The Abyss 0.263 0.375 0.362 0.000

Troops of Doom 0.000 0.000 0.000 1.000

Figure 3.2: Heatmap illustrating the relative contribution of three ACT-R com-
ponents (BLL, S, and V) and one social component (SC) to the recommendation
scores of six recommended tracks for a randomly chosen Last.fm user [196].

the recommendation calculation. Based on this, concrete explanations could be
derived for all recommendations generated with this model. For example, “this
track was recommended because of your current obsession”, or “this track was
recommended because of similar listeners”. We discuss transparency aspects of
additional components of ACT-R for music recommendations in a chapter for
the “A Human-centered Perspective of Intelligent Personalized Environments and
Systems” Springer book, which was recently accepted for publication [154].

3.2 Privacy and Limited Preference Information in
Recommender Systems

Limited availability of user preference information (e.g., clicks) could be one con-
sequence of data protection initiatives or of the users’ privacy concerns in recom-
mender systems [40, 137, 164, 189, 260] (e.g., users are not willing to share prefer-
ences, or to sign in to the system). Thus, we discuss the findings of two studies
that address the limited availability of user preference information in the settings
of session-based and cold-start recommendations P6 P7 (Contribution 3 ). Ad-
ditionally, we address varying privacy constraints of users in recommender systems
(e.g., hiding preferences) P8 , and the accuracy-privacy trade-off of differentially-

private recommender systems P9 . Finally, we survey and categorize the litera-

ture on differential privacy in collaborative filtering P10 (Contribution 4 ).

Contribution 3: Addressing Limited User Preference Information in
Cold-Start and Session-based Recommendation Settings (2018-2020)

P6 presents a trust-based CF approach for addressing the user cold-start prob-
lem in recommender systems (see Section 2.3.2). Specifically, we aim to exploit
implicit and explicit connections between users in trust networks [181] to find the
k nearest neighbors and to overcome the limited availability of user preference
information in this setting. By employing the idea of regular equivalence via Katz
similarity [109], we do not only find neighbors that share the same trust connec-
tions, but also neighbors that have similar trust connections (i.e., neighbors with
similar structural roles in the network). We evaluate our approach using a dataset
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from the consumer reviewing portal Epinions [181], which allows users to specify
trust connections to other users. We find that our approach outperforms related
approaches (e.g., based on Jaccard similarity [58]) in terms of recommendation
accuracy for cold-start users. In our follow-up work [71], we employ graph em-
bedding techniques on the trust network of users by evaluating graph embedding
methods such as graph factorization [21], DeepWalk [214], or Node2Vec [101] for
the user cold-start problem. We find that Node2Vec and DeepWalk provide the
highest recommendation accuracy and user coverage [95] across all methods.

P7 presents our research on using variational autoencoders for session-based
job recommendations. Specifically, to provide personalized job recommendations
to users in a setting, in which we do not have full user preference histories avail-
able, we employ autoencoders to create latent representations of the limited pref-
erence information available in the anonymous user sessions (see Section 2.3.2).
Our approach recommends jobs within new sessions by employing a k-nearest
neighbor approach based on the inferred latent session representations generated
via standard autoencoders [36], denoising autoencoders [264], and variational au-
toencoders [134]. Our evaluation results on session-based job recommendation
datasets (e.g., based on XING from the RecSys challenge 2017 [12]) show that
our approach based on variational autoencoders provides the most robust results
compared to state-of-the-art methods such as GRU4Rec [112], session-KNN [123],
or sequential session-KNN [177]. Here, we do not only evaluate recommendation
accuracy, but also novelty metrics [262] such as system-based novelty (i.e., how un-
explored is the recommended job in general [215]) and session-based novelty (i.e.,
how surprising is the recommended job for the current user session [279]). To
further illustrate the usefulness of variational autoencoders for recommendations,
in another paper [230], we utilize them to incorporate a user’s country informa-
tion into context-aware music recommendations. Specifically, we incorporate the
users’ country context into the variational autoencoder architecture via a gat-
ing mechanism. Our evaluation results show that our country- and context-aware
recommendation approach provides higher recommendation accuracy than related
baselines (e.g., variational autoencoders without country information [171]).

Contribution 4: Addressing Users’ Privacy Constraints and the Trade-
Off Between Accuracy and Privacy in Recommendations (2021-2023)

P8 studies the robustness of meta matrix factorization (MetaMF ) against pri-
vacy constraints of users in recommender systems. For this, we conduct a repro-
ducibility study of the original MetaMF paper [173], and investigate the sensi-
tivity of this approach to the limited availability of user preference information,
e.g., when users employ privacy constraints by hiding a certain part of their pref-
erences from the system (see Section 2.3.1). Therefore, we deactivate the meta
learning [261] component to evaluate the robustness of MetaMF against varying
privacy constraints. Additionally, we study how users that differ in their profile
size (i.e., number of ratings or implicit item preferences) are affected by varying
privacy constraints. On the five datasets Douban [117], Hetrec-MovieLens [50],
MovieLens 1M [107], Ciao [102], and Jester [98] (we share the dataset samples
via Zenodo [202]), we demonstrate that meta learning is essential for MetaMF ’s
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Figure 3.3: Mean absolute error (MAE) of neural-based KNN recommender sys-
tem variants. Our results indicate that combining neighborhood reuse with dif-
ferential privacy (NeuKNN+ReuseDP ) yields better accuracy (lower MAE) than

neural-based methods that do not apply neighborhood reuse (NeuKNN full
DP ) [201].

robustness against users’ privacy constraints. We also show that users with small
profiles can afford a higher degree of privacy than users with large profiles.

P9 addresses the accuracy-privacy trade-off in differentially-private recom-
mender systems. Specifically, we propose our ReuseKNN recommendation ap-
proach, which aims to reduce the decrease in accuracy due to the application of
differential privacy [73,75] on users’ preference information [38]. We achieve this
by identifying small but highly reusable neighborhoods for k-nearest neighbor-
based recommendation approaches. Therefore, only this small set of users needs
to be protected with differential privacy, and the majority of the users do not need
to be protected, since they are rarely exploited as neighbors, i.e., they have a small
privacy risk [175] as defined in Section 2.3.1. We find that with ReuseKNN, in the
case of a Last.fm dataset sample, only 68.20% of the users need to be protected
with differential privacy, while a traditional UserKNN approach [110] requires the
protection of 99.89% of the users. We validate if this also leads to an improved
accuracy-privacy trade-off in various recommendation settings. Figure 3.3 shows
the recommendation accuracy results of neural-based CF approaches [108] when
our neighborhood reuse concept is applied (NeuKNN+ReuseDP , i.e., only vulner-

able users are protected), and when it is not applied (NeuKNN full
DP , i.e., all users

are protected). Additionally, we include a baseline approach without any appli-
cation of differential privacy (NeuKNN, i.e., no users are protected). We see that
(i) NeuKNN provides the best accuracy results according to the mean absolute

error [269], but without any privacy guarantees, (ii) NeuKNN full
DP provides the

worst accuracy results, but with the highest privacy guarantees, and (iii) that our
NeuKNN+ReuseDP approach provides a better accuracy-privacy trade-off than
the other methods. Additionally, in this work, we outline connections between
privacy, and item coverage [111], popularity bias [20], and fairness [79].
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Finally, P10 further discusses the accuracy-privacy trade-off in differentially-
private recommendations by surveying the literature in this field. Therefore, we
identify 26 papers that apply differential privacy either (i) to the user representa-

tions (e.g., as we do it in P9 ), (ii) directly to the recommendation model updates
(e.g., when calculating gradients locally), or (iii) after the recommendation model
training process (e.g., applying noise to the trained user and item embeddings).
We find that these papers address the accuracy-privacy trade-off in three different
ways: (i) using auxiliary data to foster recommendation accuracy (e.g., incorpo-
rate preferences of other users), (ii) reducing the noise level that is needed (e.g.,
requiring the minimal amount of noise to still ensure differential privacy), and

(iii) limit when to apply differential privacy (e.g., as we do it in P9 ).

3.3 Fairness and Popularity Bias in Recommender Sys-
tems

This section discusses our research on fairness and popularity bias in recommender
systems. This contains four publications that study popularity bias for user groups
that differ in mainstreaminess (i.e., users’ inclination towards mainstream con-

tent [31]) and gender P11 P12 P13 P14 (Contribution 5 ). This section
also describes two papers on understanding popularity bias mitigation and am-
plification using online and offline evaluation studies P15 P16 (Contribution
6 ). Another journal article analyzes the long-term dynamics of fairness (e.g., in-
dividual vs. group fairness trade-offs) in algorithmic decision support in a labor

market setting using agent-based modeling techniques P17 (Contribution 7 ).

Contribution 5: Measuring Popularity Bias for User Groups Differing
in Mainstreaminess and Gender (2020-2022)

P11 analyzes the unfairness of popularity bias in music recommendations. Specif-
ically, we reproduce a study by Abdollahpouri et al. [7], in which the authors find
that personalized recommendation algorithms in the movie domain are biased
towards popular items, and that this popularity bias also leads to the unfair
treatment of users with little interest into popular content (see Section 2.4.2).
We conduct this reproducibility study in the music domain using a newly created
dataset sample [141] gathered from Last.fm. Figure 3.4 shows that our results
are in line with the ones of [7] since all evaluated recommendation algorithms
tend to favor popular items also in the music domain. In the case of the Most-
Popular algorithm, as expected, the strongest evidence for popularity bias can
be found. In the case of traditional UserKNN [110] and Non-negative Matrix
Factorization (NMF ) [178], we also see a positive relationship between item (i.e.,
music artist) popularity and recommendation frequency. Finally, for UserKNN
and NMF, we find that beyond-mainstream (BeyMS ) users receive less accurate
recommendations than mainstream (MS ) users (see Figure 3.5a).

In P12 , we analyze the unfairly treated BeyMS user group in more detail by
identifying subgroups of beyond-mainstream music listeners. For this, we create a
new dataset termed LFM-BeyMS, which contains (among others) audio features
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(a) MostPopular (b) UserKNN (c) NMF

Figure 3.4: Correlation of music artist popularity and recommendation frequency.
All three algorithms investigated tend to favor popular music artists [155].

of the music tracks listened to by more than 2,000 BeyMS users. Using these
audio features and unsupervised clustering techniques, we identify four clusters
of beyond-mainstream music and music listeners: (i) Ufolk, listeners of music
with high acousticness such as “folk”, (ii) Uhard, listeners of high energy music
such as “hardrock”, (iii) Uambi, listeners of music with high acousticness and
instrumentalness such as “ambient”, and (iv) Uelec, listeners of high energy music
with high instrumentalness such as “electronica”. Figure 3.5b shows that there is
a substantial difference in recommendation accuracy between these subgroups of
BeyMS users. While Uambi users, on average, even receive better recommendation
accuracy results than MS users, Uhard users receive the worst recommendation
accuracy results. When relating our results to the openness of the subgroups’
users towards music listened to by the other subgroups, we find that Uambi is the
most open group, while Uhard is the least open group. This is in line with related
research [252], which has shown that a user’s openness towards content consumed
by other users is positively correlated with recommendation accuracy.

P13 studies if popularity bias in music recommender systems affect users of
different genders in the same way. To answer this question, we analyze seven rec-
ommendation algorithms, Random, MostPopular, ItemKNN [228], Sparse Linear
Method (SLIM ) [205], Alternating Least Squares Matrix Factorization (ALS ) [118],
Matrix Factorization with Bayesian Personalized Ranking (BPR) [222], and Vari-
ational Autoencoder for CF (VAE ) [171], on a Last.fm dataset sample based on
the LFM-2b dataset [191, 231]. We find that all personalized recommendation
algorithms investigated in this study, except for SLIM, intensify the popularity
bias for female users. Thus, not only user groups differing in mainstreaminess,
but also user groups differing in gender are affected differently by popularity bias.

Finally, P14 validates the findings of P11 and P12 in three additional mul-
timedia domains, namely (i) movies (MovieLens-1M [107]), (ii) books (BookCross-
ing [280]), and (iii) animes (MyAnimeList [219]). For these datasets, we create
dataset samples [143] with user groups that differ in their inclination to popular
and mainstream content, and analyze popularity bias of various CF-based rec-
ommendation algorithms on the levels of items and users. On the item level, we
find that the probability of an item to be recommended strongly correlates with
the popularity of the item. On the user level, we find that users with the least
inclination to popular content also receive the worst recommendation quality.
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Figure 3.5: (a) Recommendation accuracy measured by the mean absolute error
(MAE) of NMF and UserKNN for mainstream (MS ) and beyond-mainstream
(BeyMS ) user groups in Last.fm: BeyMS users receive a substantially lower rec-
ommendation quality (i.e., higher MAE) compared to MS users. (b) Comparison
of the MAE scores reached by NMF for the four BeyMS subgroups with the
ones reached by NMF for BeyMS (black dashed line) and MS (grey dashed line).
There are substantial differences between the subgroups in terms of MAE, es-
pecially when comparing Uhard with Uambi, i.e., two subgroups differing in their
openness to music listened to by users of other subgroups [152].

Contribution 6: Understanding Popularity Bias Mitigation and Ampli-
fication in Recommendations (2022-2023)

P15 presents an online study on popularity bias mitigation (see Section 2.4.2) in
a news article recommendation setting. To conduct our online study, we collab-
orate with DiePresse, a popular Austrian online news platform, and discuss the
introduction of personalized, content-based news article recommendations into
the platform as a replacement for unpersonalized MostPopular recommendations.
Our content-based recommendation algorithm [63, 176] is based on latent rep-
resentations of news articles using Latent Dirichlet Allocation (LDA) [43]. We
conducted our online study in a two-week time window (27th of October 2020 to
9th of November 2020), in which we tracked user preferences (i.e., clicks on news
articles) of more than one Million anonymous user sessions, and more than 15,000
signed in (subscribed) users of DiePresse. Within our two-week online study,
also two significant events happened that could influence the reading behavior
of users: (i) the COVID-19 lockdown announcements in Austria on the 31st of
October 2020, and (ii) the Vienna terror attack on the 2nd of November 2020.

Figure 3.6 shows the results of our online study in terms of skewness and kurto-
sis of the news article popularity distribution (i.e., number of article reads) across
the two weeks, and for both user groups (i.e., anonymous and subscribed users).
Here, skewness measures the asymmetry, and kurtosis measures the “tailedness”
of the popularity distribution [34]. For both metrics, high values indicate a popu-
larity biased news consumption, which could lead to filter bubble and echo cham-
ber effects [88]. At the beginning of the online study, where MostPopular recom-
mendations were shown, we see a large gap between the two user groups: while
anonymous users mainly read popular news articles, and thus, are prone to pop-
ularity bias, subscribed users show a much more balanced reading behavior. At
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Figure 3.6: Mitigation of popularity bias in news article consumption, measured
by (a) skewness and (b) kurtosis based on the number of article reads for each
day of our two-week online study. At the beginning of the study, the MostPop-
ular news article recommendations were replaced by personalized, content-based
recommendations. We find that popularity bias can be mitigated by introducing
personalized news article recommendations in the case of anonymous users [159].

the end of the study, i.e., after two weeks of personalized recommendations, we
see a considerably smaller difference between the two user groups, which means
that the introduction of personalized, content-based news article recommenda-
tions helped to mitigate popularity bias in the case of anonymous users already
after two weeks. However, in the case of significant events, e.g., the Vienna terror
attack on the 2nd of November 2020, both user groups are mostly interested into
popular articles reporting on the particular event. In another work [198], we also
find that content-based recommendations can help to mitigate popularity bias in
the case of recommendations provided in a data and algorithm sharing platform.

In P16 , we analyze miscalibration [172,247] and popularity bias amplification
(in terms of the popularity lift metric [7, 8]) in music, movie, and anime recom-
mender systems. For this, we extend the MovieLens 1M [107], LFM-1b [229,232],
and MyAnimeList [219] datasets with genre information of the items, and pub-
lish these new dataset samples via Zenodo [142]. Then we measure accuracy,
miscalibration, and popularity bias amplification (i.e., popularity lift) for various
recommendation algorithms (e.g., NMF [178] and co-clustering-based CF [97]),
and for user groups differing in their inclination to popular and mainstream con-
tent, i.e., (i) LowPop (low interest in popular content), (ii) MedPop (medium
interest in popular content), and (iii) HighPop (high interest in popular content).
We find that there is a connection between these three metrics, since the LowPop
user group, which receives the worst recommendation accuracy results, is also the
user group, which receives the most miscalibrated and popularity biased recom-
mendations. Finally, we investigate to what extent particular genres contribute to
the inconsistency of recommendation performance in terms of miscalibration and
popularity bias amplification. We find that there are indeed genres that highly
contribute to inconsistent and popularity biased recommendation results. One
example is the “Hentai” genre in the case of our MyAnimeList dataset sample:
this is a genre, which is highly popular for a specific user group (i.e., LowPop),
and unpopular for the other user groups (i.e., MedPop and HighPop).
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Contribution 7: Studying Long-Term Dynamics of Fairness in Algo-
rithmic Decision Support (2022-2023)

P17 studies the long-term dynamics of fairness in algorithmic decision support
(see Section 2.4.1) in a labor market setting [93]. Specifically, we develop and
evaluate an agent-based simulation model to investigate the impact of decisions
caused by a public employment service that decides which jobseekers receive tar-
geted help using a decision support tool. This tool uses a logistic regression
model [270] to classify jobseekers into low- and high-prospects. We use synthetic
data that describes a pool of jobseekers with unevenly distributed skills between
two groups that differ with respect to a protected attribute. We test two variants
of our prediction model: (i) a biased version that augments knowledge about the
actual skills of a jobseeker with knowledge about the protected attribute, and (ii)
an unbiased version that solely relies on the skills of a jobseeker. Based on the
classification into low-prospects and high-prospects, our agent-based simulation
model updates the skills of the jobseekers after each iteration accordingly (e.g., a
high-prospect receives help, and thus also the skills of this jobseeker increase).

Our results show that there is a trade-off between different long-term fairness
goals. On the one hand, when using the biased prediction model, the inequality
between the two protected groups is reduced at the end of the simulation. This
means, that statistical parity in the dataset [30] increases, and that the system is
fair from a group fairness perspective. However, on the other hand, the number
of misclassifications of jobseekers in the unprivileged group increases: some job-
seekers are classified as low-prospect mainly because of their sensitive attribute,
although they should belong to the high-prospect group. This means that the
system is unfair from an individual fairness perspective. Although this study
was not conducted in the field of recommender systems, we believe that the ap-
plied method (i.e., agent-based modeling) could also be of use when studying
long-term fairness dynamics of recommender systems. Additionally, our findings
with respect to the trade-off between individual and group fairness are also highly
relevant for the research area of fair recommender systems.

3.4 Summary of Contributions and Reproducibility of
Research Results

This section summarizes the 7 scientific contributions described in the previous
sections. Additionally, the reproducibility of the findings are discussed.

List of Contributions

1. Using cognitive models for a transparent design and implemen-
tation process of recommender systems (2018-2021): we propose a
tag recommendation approach based on a model of human episodic mem-
ory P1 , and two music recommendation approaches based on activation

process in human memory P2 P3 . Additionally, we identify three types
of psychology-informed recommender systems: (i) cognition-inspired, (ii)

personality-aware, and (iii) affect-aware recommender systems P4 .
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2. Illustrating to what extent components of the cognitive model
ACT-R contribute to recommendations (2022-2023): we illustrate to
what extent components of ACT-R (e.g., BLL or valuation) have contributed
to the generation of music recommendation lists. Based on this, explanations
for the music recommendation could be derived P5 .

3. Addressing limited user preference information in cold-start and
session-based recommendation settings (2018-2020): we model a
user’s trust network using regular equivalence to address the user cold-start
problem P6 . Additionally, we demonstrate the usefulness of variational

autoencoders for session-based job recommendations P7 .

4. Addressing users’ privacy constraints and the accuracy privacy
trade-off in recommendations (2021-2023): we study privacy con-

straints of users (e.g., hiding preferences) in meta matrix factorization P8 ,

design a neighborhood reuse approach P9 , and survey the literature for

differentially-private collaborative filtering recommender systems P10 .

5. Measuring popularity bias for user groups differing in mainstreami-
ness and gender (2020-2022): we study popularity bias P11 , charac-

teristics of beyond-mainstream users P12 , and differences with respect to

users’ gender in music recommendations P13 . We also show the presence

of popularity bias in movie, book, and anime recommendations P14 .

6. Understanding popularity bias mitigation and amplification in rec-
ommendations (2022-2023): we analyze and mitigate popularity in news

article recommender systems P15 , and study to what extent recommenda-

tions amplify popularity bias in the music, movie, and anime domains P16 .

7. Studying long-term dynamics of fairness in algorithmic decision
support (2022-2023): we show the usefulness of agent-based modeling
techniques for studying long-term dynamics of algorithmic fairness in a labor
market setting. Additionally, we find evidence for the presence of the trade-
off between individual and group fairness in this setting P17 .

Reproducibility of Research Results

To foster the reproducibility of these research results and findings, we provide
information on the used source-code and dataset samples in all publications. In
cases, in which we create new dataset samples or implement novel recommenda-
tion pipelines, we make them freely available via Zenodo or GitHub. For example,
to implement and evaluate our cognitive-inspired recommendation approaches,
we build upon our TagRec framework [144,146], and extend it with music recom-
mendation approaches. Another example is our Last.fm user group dataset sam-
ple [141] that can be used to study fairness and popularity bias in recommender
systems. Additionally, we contribute to reproducibility studies by presenting two
papers enlisted in this habilitation in the reproducibility track of the European
Conference on Information Retrieval (ECIR’2020 and ECIR’2021) P8 P11 .
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A list of the new dataset samples and recommendation pipelines created in
the publications that are part of this habilitation is given in the following:

1. The TagRec framework [144, 146] used to design, develop, and evaluate
cognitive-inspired algorithms for tag and music recommendations: https:

//github.com/learning-layers/TagRec.

2. A GitHub repository with the material to generate sequential music recom-
mendations and to illustrate to what extent the components of the cogni-
tive model ACT-R contribute to the generation of music recommendation
lists [196]: https://github.com/hcai-mms/actr.

3. A dataset sample based on the LFM-2b dataset [191, 231] used to generate
and evaluate sequential music recommendations [195]. This Zenodo reposi-
tory also contains the pre-calculated embeddings for the BPR approach.

4. Source-code and dataset references for using variational autoencoders in the
setting of session-based job recommendations [162]: https://github.com/
lacic/session-knn-ae. This GitHub repository also contains implemen-
tations of beyond-accuracy evaluation metrics (e.g., diversity and novelty)
for session-based recommender systems.

5. A dataset for studying privacy constraints of different users groups us-
ing meta matrix factorization [202] accompanied by a GitHub repository:
https://github.com/pmuellner/RobustnessOfMetaMF.

6. The material for the differentially-private ReuseKNN [201] recommender
system: https://github.com/pmuellner/ReuseKNN. This GitHub reposi-
tory also contains the implementation of Neural CF, as well as source-code
for sampling user preference histories in the datasets.

7. A dataset for studying beyond-mainstream users in music recommender sys-
tems [203] accompanied by a GitHub repository: https://github.com/

pmuellner/supporttheunderground. Apart from popularity bias evalua-
tion metrics, this GitHub repository contains implementations of unsuper-
vised clustering techniques to analyze audio features of music tracks.

8. Datasets containing different user groups to study fairness and popularity
bias in music, movie, book, and anime recommender systems [141,143]. For
calculating calibration-based metrics in these settings, an extended version
of these datasets also contains genre information for the items [142].

9. A Python-based pipeline to process the datasets used in [145, 151, 155] for
studying fairness and popularity bias in recommender systems: https://

github.com/domkowald/FairRecSys. This GitHub repository can also be
used as a basis to develop popularity bias mitigation methods.

By publishing these resources, the author of this habilitation hopes to con-
tribute to reproducible research practices in the field of recommender systems. As
mentioned already in Section 2.1, the reproducibility of research results is highly
important for being able to track progress in recommender systems research.
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Chapter 4

Outlook and Future Research

This chapter gives an outlook into future research directions of this habilitation.

Transparency and Cognitive Models in Recommender Systems

The underlying algorithms of modern recommender systems are often based on
purely data-driven machine learning models. Although these approaches provide
high accuracy, they are based on principles of artificial intelligence rather than
human intelligence. One consequence could be that the logic of these models is
not directly understandable by humans, which could lead to non-transparent al-
gorithmic decisions [244]. This habilitation has shown that using psychological
theories, and modeling the underlying cognitive processes that describe how hu-
mans access information in their memory, is one way to overcome this issue, and
at the same time, to generate accurate recommendations (see Section 3.1).

Besides MINERVA2 [113], the cognitive architecture ACT-R [22] provides an
excellent basis by formalizing two kinds of human memory: (i) declarative mem-
ory, and (ii) procedural memory. The declarative memory corresponds to things
that humans know by determining the importance of information chunks, while
the procedural memory corresponds to knowledge of how humans do things by
defining production rules for making decisions. This habilitation has focused
on modeling declarative memory processes for a transparent design process of
cognitive-inspired recommender systems. Thus, in future research, I aim to inves-
tigate to what extent also the procedural memory module of ACT-R can be used
to design recommendation models (e.g., by adapting the SNIF-ACT [92] user nav-
igation model). Here, one interesting research question would be if the defined
production rules could further contribute to transparency aspects of cognitive-
inspired recommender systems. This question could be answered by conducting
user studies following well-established procedures in the field (e.g., [138,210,255]).

Privacy and Limited Preference Information in Recommender Systems

Privacy is a key requirement for recommender systems, since there are multiple
privacy threats to users in these systems. For example, disclosing users’ preference
information to untrusted third parties [49], or inferring users’ sensitive attributes
such as gender [277]. Privacy is also related to the issue of limited availability
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of user preference information, since users increasingly care about their privacy
and may not want to share their preferences with the system [137, 189, 260]. Ad-
ditionally, initiatives such as the European General Data Protection Regulation
(GDPR) restrict the use of user preference information to generate recommenda-
tions [40,62]. This habilitation has addressed session-based and cold-start recom-
mendation settings, and the accuracy-privacy trade-off when applying differential
privacy to the users’ preference information (see Section 3.2).

In the future, I plan to not only study the trade-off between accuracy and
privacy, but also to investigate other relevant trade-offs between recommendation
objectives. This includes the trade-off between privacy and fairness [79]. Here,
an interesting research question would be if different user groups are treated dif-
ferently by the accuracy drops due to privacy-preserving technologies, such as
differential privacy. For this, related studies from the field of private and fair
machine learning (e.g., [29]) could be adapted for recommender systems. Addi-
tionally, studying privacy dynamics in recommendations using agent-based sim-
ulations would be a promising research direction, as described in our position
paper [199] presented in the SimuRec workshop of ACM RecSys 2021.

Fairness and Popularity Bias in Recommender Systems

Biases in the perception and behavior of humans are captured, reflected, and
potentially amplified in recommender systems [55, 91, 163]. The replication of
popularity bias is a common issue in collaborative filtering-based recommender
systems, which leads to the overrepresentation of popular items in the recommen-
dation lists. The research presented in this habilitation has shown that users with
little interest in popular content receive worse recommendation accuracy than
users that like to consume popular content. Based on this, these users are treated
in an unfair way by the recommender system (see Section 3.3).

In my future research, I plan to work on popularity bias mitigation methods to
reduce the accuracy differences between the user groups, and with this, increase
the fairness in the system. For this, not only technical debiasing methods (e.g., in-
or post-processing [9]), but also novel multidisciplinary approaches using models
from psychology and physics should be developed. For the former, ACT-R [22]
could be a promising basis to build strongly personalized user models, and for the
latter, techniques from physics-informed machine learning could be transferred to
fairness problems, as described in our recent arXiv pre-print [236].

Reproducibility Aspects of this Habilitation

I want to highlight the importance of reproducibility for the research field of
recommender systems [32,86]. This habilitation has provided several resources to
foster the reproducibility of the presented research results (see Section 3.4). In
the future, I want to further contribute to the reproducibility of machine learning
research in general, and recommender systems research in particular, by discussing
barriers and best practices as outlined in our recent arXiv pre-print [241].

Finally, I hope that the scientific results and findings of this habilitation con-
tribute to advancing research on the trustworthiness of recommender systems.
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[200] Peter Müllner, Elisabeth Lex, Markus Schedl, and Dominik Kowald. Dif-
ferential privacy in collaborative filtering recommender systems: A review.
Frontiers in Big Data, 6, 2023.
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Appendix A

Own Contributions to Main
Publications

This chapter describes my own contributions to the 17 main publications of this
cumulative habilitation. All of these publications were created in a joint effort
with my co-authors, and I would like to thank them again here for the great
collaborations that made these publications possible.

Furthermore, the habilitation guidelines of Graz University of Technology re-
quire that own contributions to papers with co-authors are highlighted. I do this
in Table A.1 by stating my contributions to the publications below each paper
reference in the table. Wherever possible, the stated contributions are in line with
the author contribution sections of the given journal papers.

Table A.1: Description of own contributions to the main publications selected by
the author of the habilitation.

No. Publication

Transparency and Cognitive Models in Recommender Systems

P1 Seitlinger, P., Ley, T., Kowald, D., Theiler, D., Hasani-Mavriqi, I.,
Dennerlein, S., Lex, E., Albert, D. (2018). Balancing the Fluency-
Consistency Tradeoff in Collaborative Information Search with a Rec-
ommender Approach. International Journal of Human–Computer Inter-
action, 34:6, pp. 557-575. DOI: https://doi.org/10.1080/10447318.
2017.1379240

I contributed to the research idea of this paper and developed large parts
of the bookmarking interface, which was used to conduct the study. I
also developed the tag recommendation algorithms (MostPopular and
SoMe), integrated them into the bookmarking interface, as well as con-
tributed to the technical user study setup, data collection procedure,
and the evaluation of the recommendation results. Additionally, I con-
tributed to writing the paper throughout all iterations of writing. Apart
from that, I was the first author of a short version of this publication,
which I presented in the poster track of TheWebConf’2018.

61

https://doi.org/10.1080/10447318.2017.1379240
https://doi.org/10.1080/10447318.2017.1379240


P2 Lex, E.*, Kowald, D.*, Schedl, M. (2020). Modeling Popularity and
Temporal Drift of Music Genre Preferences. Transactions of the Interna-
tional Society for Music Information Retrieval, 3:1, pp. 17-30. (*equal
contribution) DOI: https://doi.org/10.5334/tismir.39

I shared the first authorship of the paper with Elisabeth Lex. Together,
we created the research idea, methodology, and main text of this pa-
per. Apart from that, I created the Last.fm dataset sample used in the
paper, identified the different user groups in the dataset, developed the
cognitive-inspired recommendation algorithms, and evaluated them us-
ing the TagRec framework, for which I am the main developer. I also
created all tables and figures presented in the paper.

P3 Kowald, D.*, Lex, E.*, Schedl, M. (2020). Utilizing Human Mem-
ory Processes to Model Genre Preferences for Personalized Music Rec-
ommendations. In 4th Workshop on Transparency and Explainability
in Adaptive Systems through User Modeling Grounded in Psychological
Theory (HUMANIZE @ ACM IUI’2020). (*equal contribution) DOI:
https://doi.org/10.48550/arXiv.2003.10699

As in the case of P2 , I shared the first authorship of this paper with
Elisabeth Lex, and together, we created the research idea, methodology,
and main text of the paper. In addition, I developed and evaluated the
semantic context component of the activation equation of the cognitive
model ACT-R, and integrated it into the TagRec framework. I discussed
the difference between the full activation equation and base-level learn-
ing equation of ACT-R, and created all tables and figures.

P4 Lex, E., Kowald, D., Seitlinger, P., Tran, T., Felfernig, A., Schedl,
M. (2021). Psychology-informed Recommender Systems. Foundations
and Trends in Information Retrieval, 15:2, pp. 134–242. DOI: https:
//doi.org/10.1561/1500000090

I contributed to the general idea and the survey method of this paper. I
also contributed to the sections on cognitive-inspired recommender sys-
tems and cognitive models of attention, to all discussion subsections in
the paper, the formalization of activation process in human memory, and
created the schematic illustration of the ACT-R architecture. Finally, I
contributed to writing the paper throughout all iterations of writing, and
supported in identifying potential avenues for future research, as well as
discussing how cognitive models contribute to transparency aspects.

P5 Moscati, M., Wallmann, C., Reiter-Haas, M., Kowald, D., Lex, E.,
Schedl, M. (2023). Integrating the ACT-R Framework and Collaborative
Filtering for Explainable Sequential Music Recommendation. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems (Rec-
Sys’2023), pp. 840–847. DOI: https://doi.org/10.1145/3604915.
3608838
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I contributed to the description of the method and experimental setup,
and to the description and interpretation of the results, as well as to
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P9 Muellner P., Lex, E., Schedl, M., Kowald, D. (2023). ReuseKNN:
Neighborhood Reuse for Differentially-Private KNN-Based Recommen-
dations. ACM Transactions on Intelligent Systems and Technology,
14:5, pp. 1-29. DOI: https://doi.org/10.1145/3608481

As last author, I contributed to the original research idea, finding and
describing related work, defining the problem setting, formalizing the
approach and the evaluation settings, and interpreting the evaluation
results. I also contributed to discussing the trade-off between privacy
and accuracy. Additionally, I contributed to paper writing in all iter-
ations. This paper is part of Peter Muellner’s (first author) ongoing
Ph.D. thesis, for which I am co-supervisor together with Elisabeth Lex.

P10 Muellner P., Lex, E., Schedl, M., Kowald, D. (2023). Differential
Privacy in Collaborative Filtering Recommender Systems: A Review.
Frontiers in Big Data, 6:1249997, pp. 1-7. DOI: https://doi.org/10.
3389/fdata.2023.1249997

As last and corresponding author of this article, I contributed to the
original idea, conceptualization, writing process throughout all itera-
tions, and supervision of the review methodology and the paper writing
process. Additionally, I contributed to the categorization of the 26 publi-
cations reviewed in this article, and to the identification of open research
questions in the field of differentially private recommender systems. This
article is part of Peter Muellner’s (first author) ongoing Ph.D. thesis, for
which I am co-supervisor together with Elisabeth Lex.

Fairness and Popularity Bias in Recommender Systems

P11 Kowald, D., Schedl, M., Lex, E. (2020). The Unfairness of Pop-
ularity Bias in Music Recommendation: A Reproducibility Study.
In Proceedings of the 42nd European Conference on Information Re-
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978-3-030-45442-5_5

As first and corresponding author of this paper, I contributed to the re-
search idea, created the first full draft of the paper, created the Last.fm
dataset sample, implemented the recommendation algorithms and eval-
uation methods, conducted the experiments, and described and inter-
preted the results. The source-code for this publication started my Fair-
RecSys GitHub repository, which contains Python scripts for studying
fairness and popularity bias in recommender systems. I also presented
the paper in the reproducibility track of the European Conference on
Information Retrieval (ECIR’2020).

P12 Kowald, D., Muellner, P., Zangerle, E., Bauer, C., Schedl, M., Lex,
E. (2021). Support the Underground: Characteristics of Beyond-
Mainstream Music Listeners. EPJ Data Science, 10:14. DOI: https:
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As first and corresponding author of this publication, I contributed to
the original idea, the collection of related work, identification of beyond-
mainstream users in the Last.fm dataset, data analysis methods, and
description and interpretation of results, as well as large parts of the
paper writing process during all iterations. I also contributed to estab-
lish the connection between the recommendation accuracy results of the
subgroups and openness patterns of these subgroups. This paper was
part of Peter Muellner’s (second author) Master’s thesis, for which I
was co-supervisor together with Elisabeth Lex. I was also involved in
interviews discussing the findings of this paper for several news outlets
(e.g., Rolling Stone Italy or BioMed Central).

P13 Lesota, O., Melchiorre, A., Rekabsaz, N., Brandl, S., Kowald, D., Lex,
E., Schedl, M. (2021). Analyzing Item Popularity Bias of Music Rec-
ommender Systems: Are Different Genders Equally Affected? In Pro-
ceedings of the 15th ACM Conference on Recommender Systems (Rec-
Sys’2021), pp. 601-606. DOI: https://doi.org/10.1145/3460231.
3478843

I contributed to the conceptualization, finding and description of re-
lated work, methodology for measuring popularity bias across genders,
investigation and interpretation of the results, and paper writing in all
iterations. Specifically, I contributed to defining delta metrics for mea-
suring popularity bias based on the delta group average popularity met-
ric, which was proposed for music recommendations in P11 .

P14 Kowald, D., Lacic, E. (2022). Popularity Bias in Collaborative
Filtering-Based Multimedia Recommender Systems. In Advances in
Bias and Fairness in Information Retrieval (BIAS @ ECIR’2022). Com-
munications in Computer and Information Science, vol. 1610, pp. 1-11.
DOI: https://doi.org/10.1007/978-3-031-09316-6_1

As first and corresponding author of this paper, I contributed to the re-
search idea, created the first full draft of the paper, created the dataset
samples and user group divisions, implemented the recommendation al-
gorithms and evaluation methods using my FairRecSys GitHub repos-
itory, conducted the experiments, and described and interpreted the
results. I also presented the paper at the European Conference on In-
formation Retrieval (ECIR’2022). Together with Emanuel Lacic, I was
awarded with the Mind-the-Gap Gender and Diversity award of Graz
University of Technology for this paper.

P15 Lacic, E., Fadljevic, L., Weissenboeck, F., Lindstaedt, S., Kowald, D.
(2022). What Drives Readership? An Online Study on User Interface
Types and Popularity Bias Mitigation in News Article Recommenda-
tions. In Proceedings of the 44th European Conference on Information
Retrieval (ECIR’2022), pp. 172-179. DOI: https://doi.org/10.1007/
978-3-030-99739-7_20
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As last and corresponding author of this paper, I contributed to the
original research idea, the design of the content-based news article rec-
ommendation algorithm, the definition of the research questions and
experimental setup, the design of the online user study, the choice of
suitable evaluation metrics, and the description and interpretation of the
results. I did the main communications with representatives of the news
platform DiePresse, and created a first full draft of the paper together
with the first author, Emanuel Lacic. Together, we presented the paper
at the European Conference on Information Retrieval (ECIR’2022).

P16 Kowald, D.*, Mayr, G.*, Schedl, M., Lex, E. (2023). A Study on
Accuracy, Miscalibration, and Popularity Bias in Recommendations.
In Advances in Bias and Fairness in Information Retrieval (BIAS @
ECIR’2023). Communications in Computer and Information Science,
vol. 1840, pp. 1-16. (*equal contribution) DOI: https://doi.org/10.
1007/978-3-031-37249-0_1

As first and corresponding author of this publication, I contributed to
the original idea, the methodology, the creation of the dataset samples,
interpretation of results, and paper writing in all iterations. Specifically,
I extracted the genre information of the three datasets, and assigned the
genres to the corresponding items using my FairRecSys GitHub reposi-
tory. This paper was part of Gregor Mayr’s (co-first author) Bachelor’s
thesis and Master’s project, for which I was co-supervisor together with
Elisabeth Lex. I also presented the paper at the European Conference
on Information Retrieval (ECIR’2023).

P17 Scher, S., Kopeinik, S., Truegler, A., Kowald, D. (2023). Long-Term
Dynamics of Fairness: Understanding the Impact of Data-Driven Tar-
geted Help on Job Seekers. Nature Scientific Reports, 13:1727. DOI:
https://doi.org/10.1038/s41598-023-28874-9

As last author, I contributed to the analysis of the data, the discussion
and interpretation of the empirical results, and writing of the manuscript
in all iterations of the writing process. Additionally, I contributed to
formalizing and describing the trade-off between the different long-term
fairness goals, and to relating them to the trade-off between individual
and group fairness. Together with the first two authors of this publica-
tion, I set up Master thesis topics to transfer the methodology of this
study to the area of fair recommender systems.

As described in this table, I contributed substantially to all 17 publications,
and for 10 of these publications I am also either first or last author. In the
following, the full texts of the papers are given. I use the published journal and
conference formats for all papers, except for P4 , where I altered the formatting
slightly due to copyright restrictions of the journal’s publisher.
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Balancing the Fluency-Consistency Tradeoff in Collaborative Information Search
with a Recommender Approach
Paul Seitlingera, Tobias Leya, Dominik Kowaldb, Dieter Theilerb, Ilire Hasani-Mavriqib,c, Sebastian Dennerleinb,
Elisabeth Lexb, and Dietrich Albertb,c,d

aSchool of Educational Sciences, Tallinn University, Tallinn, Estonia; bInstitute of Interactive Systems and Data Science, Graz University of
Technology, Graz, Austria; cKnow-Center GmbH, Research Center for Data-Driven Business & Big Data Analytics, Graz, Austria; dInstitute of
Psychology, University of Graz, Graz, Austria

ABSTRACT
Creative group work can be supported by collaborative search and annotation of Web resources. In this
setting, it is important to help individuals both stay fluent in generating ideas of what to search next
(i.e., maintain ideational fluency) and stay consistent in annotating resources (i.e., maintain organization).
Based on a model of human memory, we hypothesize that sharing search results with other users, such
as through bookmarks and social tags, prompts search processes in memory, which increase ideational
fluency, but decrease the consistency of annotations, e.g., the reuse of tags for topically similar
resources. To balance this tradeoff, we suggest the tag recommender SoMe, which is designed to
simulate search of memory from user-specific tag-topic associations. An experimental field study
(N = 18) in a workplace context finds evidence of the expected tradeoff and an advantage of SoMe
over a conventional recommender in the collaborative setting. We conclude that sharing search results
supports group creativity by increasing the ideational fluency, and that SoMe helps balancing the
evidenced fluency-consistency tradeoff.

KEYWORDS
Ideational fluency;
tagging consistency;
exploration–exploitation
tradeoff; collaborative
search; tag recommender;
reflective search framework

1. Introduction

Imagine a team of people in product development or organi-
zational design with diverse backgrounds that have been given
the task to deliver new kinds of products or solutions for
designing new workspaces. They may try to research recent
trends in workspace design to come up with innovative ideas.
In today’s work, such teamwork has become commonplace to
deal with complex problems or for finding innovative solu-
tions. In such a setting, it is necessary that the persons
involved learn from one another, draw on their creativity,
overcome groupthink (Janis, 1972; Page, 2007) and to come
up with innovative product ideas (Paulus & Brown, 2007).

If the group uses information technology to do research
and communicate, then this constitutes a networked search of
solutions (e.g., Lazer & Bernstein, 2012), where each member
receives help from human and non-human sources and con-
tributes to a collective attempt to connect all those sources to
a creative solution that is novel and useful. Digital curation,
i.e., collaborating on the search and organization of problem-
related sources (e.g., articles, videos, etc.) in social Web envir-
onments (e.g., Kerne, Smith, Koh, Choi, & Graeber, 2008;
Kerne et al., 2014; Linder, Snodgrass, & Kerne, 2014), can be
key in networked search. By raising one’s awareness of others’
contributions (e.g., collected sources) and reflections upon
them (e.g., annotations), digital curation helps to mutually
stimulate ideas “to increase one’s potential for realizing

creativity” (Linder et al., 2014, p. 2411). In the sense of
Sarmiento and Stahl (2008), digital curation supports the
social dimension of creativity because it facilitates the building
and maintenance of a shared problem space (e.g., of emerging
relations between Web resources mediated by annotations)
and bridging across different individuals’ complementary
ideas.

Lazer and Bernstein (2012) and Lazer and Friedman (2007)
reported a number of theoretical and simulation-based studies
in the tradition of networked search suggesting that effective
search needs to balance divergent and convergent search
processes. Divergent processes give each individual agent
enough room for experimentation (e.g., autonomous explora-
tion of information). From time to time, this needs to be
balanced by convergent processes that allow exploiting and
aligning each other’s approaches toward a solution. The latter
is usually accomplished by providing appropriate communi-
cation structures through which agents align their
understanding.

Different research perspectives on social tagging (e.g., Fu,
Kannampallil, Kang, & He, 2010; Lorince & Todd, 2016;
Nelson et al., 2009; Pirolli & Kairam, 2012; Schweiger,
Oeberst, & Cress, 2014) suggest that the use of tag-based
annotations in digital curation could support such balancing.
Tags are freely chosen keywords with which users describe
resources on the Web and which may be visible to others. On
the one hand, as social tags reveal other members’ thoughts,
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they trigger cognitive conflicts and inspire new ideas during
individual experimentation (e.g., Schweiger et al., 2014). On
the other hand, given sufficient consistency in applying cer-
tain tags for reoccurring topics, they support tag-based shar-
ing of collected resources and facilitate an exploitation of own
and others’ search results (e.g. Fu et al., 2010; Lorince & Todd,
2016; Nelson et al., 2009; Pirolli & Kairam, 2012).

According to networked search (e.g., Lazer & Bernstein,
2012), a balanced view on the divergence–convergence con-
tinuum should lead to effective designs of digital curation
environments. However, in social media and particularly
social tagging studies, questions around the convergent pole
have dominated the discourse and its agenda (e.g., Golder &
Huberman, 2006). Probably because the lack of central con-
trol (e.g., standardized vocabularies) can lead to the “vocabu-
lary problem” (divergent wording when tagging the very same
object; Furnas, Landauer, Gomez, & Dumais, 1987), an endea-
vor of investigating and supporting consistency has come to
the fore, for example by studying “semantic stabilization”
(Wagner, Singer, Strohmaier, & Huberman, 2014). This
focus on the convergent pole is also reflected by a large
body of literature on the development of automatic tag
recommendation mechanisms (TRM) (Dellschaft & Staab,
2012; Font, Serrà, & Serra, 2015; Jäschke, Marinho, Hotho,
Schmidt-Thieme, & Stumme, 2007). TRM are services that
encourage a convergent tag use and hence, alleviate the voca-
bulary problem by suggesting tags already applied in the past
by other users. An example for a very simple strategy is
represented by “most popular” recommenders which assume
that what has been applied by many in the past is a good
predictor for future assignments. Despite their simplicity,
Most Popular Tag (MPT) recommenders work surprisingly
well in predicting tag reuse in offline studies (Jäschke et al.,
2007; Kowald et al., 2014).

In this article, we address the question of how to balance
both processes in tag-based digital curation, i.e., how to
increase exploration (divergent thinking of new search topics)
against the backdrop of a sufficient level of tagging consis-
tency in support of exploitation (making use of other persons’
tags and associated search results). We investigate this ques-
tion in a scenario where creative solutions are particularly
important, namely in a work-integrated information search,
and where a strong focus on convergent processes may espe-
cially be detrimental because persons are likely to share a
common background and information goal, so that divergent
processes need to be stressed to allow for creative solutions.

Rather than focusing on social imitation as many of the
previous works have done in the area of tag-based curation,
we approach this problem by drawing on the framework of
“reflective search” (Seitlinger & Ley, 2016). The reflective
search framework regards human web interaction as an itera-
tive search of human memory shaped by past and present
learning episodes. In our previous article, we have especially
focused on convergent processes by looking at stabilizing tag
vocabulary. In the present article, we draw our attention to
the divergent pole of the exploration–exploitation continuum
by considering effects of networked search on ideational flu-
ency, a concept from the creative cognition literature (e.g.,
Benedek & Neubauer, 2013). In the present context, it

describes how easily and continuously diverse ideas can be
accessed from memory during information-based ideation
(Kerne et al., 2008, 2014), i.e., when thinking about search
topics to be explored in future queries. Referring to previous
work on cognitive effects of social tags on mental structures
(e.g., categories and associations; e.g., Fu & Dong, 2012;
Seitlinger & Ley, 2012; Seitlinger, Ley, & Albert, 2015), we
anticipate a tradeoff between fluency and consistency: when
users of a digital curation environment perceive others’ tags,
these tags leave episodic memory traces (Seitlinger & Ley,
2012; Seitlinger et al., 2015), strengthening previously weak
associations to a search topic, in case these traces represent
new ideas. Considering research in creative cognition (e.g.,
Smith, Ward, & Finke, 1995; Ward, 2007), this tag-based
cognitive effect should reduce the dominance of pre-existing
stereotyped associations and give rise to a broader (mental)
fan of equally available ideas around a topic. This is also called
a flatter hierarchy of associative strengths (Benedek &
Neubauer, 2013; Mednick, 1962). While such a mental orga-
nization allows for a steadier stream of ideas, i.e., more flu-
ency, the increased availability of several responses to a
certain topic should simultaneously decrease tagging
consistency.

The first research question of this work is whether the
anticipated fluency-consistency tradeoff can be evidenced
when people perform tag-based search and curation collabora-
tively (seeing each other’s tags and search results) in contrast
to when they perform this search individually. In particular, we
seek to demonstrate the flattening impact of social cues (e.g.,
tagged bookmarks) on people’s associative hierarchies by the
manifestation of the tradeoff (decreased consistency and
increased fluency) in a realistic information search scenario
at the workplace. We let persons (research staff) bookmark
and tag Web resources on a given topic (‘redesigning work-
spaces to move people’) both under an individual and colla-
borative search condition. Under both conditions, we then
examine each person’s tagging consistency (extent of choosing
similar tags for topically similar bookmarks) and ideational
fluency (stream of responses in a free association task on a set
of subtopics, such as ‘interior design’, ‘inspiration sources’,
etc.) and expect the experimental variation (individual vs.
collaborative) to lead to increases in fluency being accompa-
nied by decreases in consistency, and vice versa.

In the light of the previously mentioned studies of Lazer
and Bernstein (2012) and Lazer and Friedman (2007) on the
tradeoff between divergent and convergent search processes in
effective problem solving in groups, this research question is
not novel. Moreover, in this context, studies on creative group
cognition (e.g., Kohn, Paulus, & Choi, 2011; Nijstad &
Stroebe, 2006) should also be mentioned, which have already
found evidence that mutual stimulation in collaborative
brainstorming settings can have positive effects on individual
fluency scores. Therefore, investigating our first research
question is primarily of an incremental nature and asks
whether existing evidence gathered under controlled experi-
mental conditions generalizes to more natural conditions of
an information search at the workplace. Especially, from an
applied perspective, such validation appears important to us
because it would imply that designing social systems for
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information search can be directed either toward convergence
(i.e., tagging consistency), or toward divergence (i.e., idea-
tional fluency). The former would aim for aligning the voca-
bulary (e.g., Font et al., 2015), while the latter for stimulating
creation (e.g., Candy & Hewett, 2008), and it would seem
difficult to balance the two complementary processes.
Considering recent discussions around filter bubbles in Web
environments (e.g., Pariser, 2011; Sunstein, 2001), we consider
such research to contribute to a more balanced view on
interaction in the social web.

As a second aim of this article, we therefore address this
design challenge by introducing a tag recommendation mechan-
ism (TRM) that compensates for the hypothesized downside of
decreased consistency by pushing the reuse of tags for certain
topics, even if associative hierarchies are flat. To design such a
TRM, we draw on formalisms of memory psychology that help
translate the reflective search framework into a computational
model to be readily applied as a TRM. As summarized in
Figure 1, the first step of translation, i.e., a formalization of the
model, makes use of a stochastic account of human memory
search (e.g., Unsworth & Engle, 2007) to specify cognitive struc-
tures (e.g., an associative hierarchy) and processes (e.g., encoding
and retrieval), which are involved in reflecting on objects and
underlie the tradeoff between fluency and consistency. The
second translation step then instantiates the search-of-memory
formalization to create a TRM, which emulates a person’s asso-
ciations by tracking and consolidating tag choices for particular
resource topics. Based on this memory-like representation of
tagging behavior, the mechanism is able to mimic a resource-
triggered search of memory (SoMe) for topically relevant tags.
This should confer an advantage over conventional most popu-
lar tags (MPT) approaches, if associative hierarchies are flat.
Therefore, the second research question is whether SoMe achieves
high tag acceptance rates under a collaborative search where

associative hierarchies are assumed to be flat, and, more specifi-
cally, whether the SoMe advantage (over MPT) is larger under the
collaborative than individual search condition.

Summarizing, while our first research question asks for
empirical evidence of the fluency-consistency tradeoff, the
second points toward an effective strategy to alleviate incon-
sistent tagging behavior in case ideational fluency is high. We
will now turn to the first research question and present an
empirical study conducted to that evidence. In the article's
second part, we will then tackle the second question and
introduce an effective recommender approach that is applied
in the same study.

2. Evidence of the fluency-consistency tradeoff in
collaborative information search

2.1. Background and hypotheses

As the question of the fluency-consistency tradeoff is built upon
specific assumptions on the mental organization of a person’s
associations (the associative hierarchy), we first provide a more
formal and process-oriented interpretation of an associative
hierarchy in form of a stochastic model of memory search.
Based on this model, we specify the assumed effect of social
cues (during a collaborative search) on an associative hierarchy
and derive the hypotheses on the fluency-consistency tradeoff.

A process-oriented interpretation of an associative
hierarchy
Our starting point of formalizing the associative hierarchy is
the reflective search framework (Seitlinger & Ley, 2016). We
assume that reflections upon objects (e.g., when tagging topics
of an article, or generating ideas to approach a problem, etc.)
are accompanied by a search of secondary memory. Referring

Figure 1. Design process translating reflective search model into a service that balances the fluency-consistency tradeoff.
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to long-standing research on human memory search (for a
review see Davelaar & Raaijmakers, 2012), this process is
triggered by an environmental cue, such as a problem to be
solved or an article to be tagged. This cue is assumed to
activate a mental search set S (see Figure 2), a reservoir of
associations, from which a number of N targets (e.g., pro-
blem-relevant ideas, or topic-related aspects; schematized by
black filled dots) can be sampled (i.e., brought to mind) with a
particular search rate λ.

The temporal dynamics of memory search are driven by an
inverse relationship between N and λ (e.g., Albert, 1968;
Bousfield, Sedgewick, & Cohen, 1954; Kaplan, Carvellas, &
Metlay, 1969): If many ideas about a given problem or aspects
of an article’s topic can come to mind (large N; right search
set in Figure 2), the search rate is reduced (small λ) due to
more competition between the available ideas – with “each
[idea] competing against all of its peers” (Rohrer, 2002). Put
differently, the mental search set is in a state of defocused
activation (e.g., Dorfman, Martindale, Gassimova, &
Vartanian, 2008; Martindale, 1995) that is distributed among
several elements with comparatively low relative strengths.
Such an activation state constitutes a flat associative hierarchy
allowing for a slow but steady stream of ideas (Mednick,
1962). To the contrary, if only few ideas have strong associa-
tions to a given topic, the search set exhibits a state of focused
activation shared among only few associations with high
relative strengths (left search set in Figure 2). The resulting
steep hierarchy becomes manifest in a fast retrieval (large λ)
of only few ideas (small N).

As mentioned above, one way to reveal a person’s associa-
tive hierarchy, i.e., to estimate N and λ, is to measure idea-
tional fluency with respect to the topics of the collaborative

information search. To this end, we drew on a free association
task, and a corresponding stochastic model to analyze the
responses and derive the two parameters. In the free associa-
tion task, a participant is exposed to a cue (e.g., the topic
‘interior design’) and asked to name as many associations
(ideas) that come to mind. The triggered stream of responses
is recorded in form of the cumulative number of unique ideas
(ideational fluency) and then analyzed in terms of the tem-
poral dynamics, i.e., inter-response times (in seconds; see
schematic diagrams on the bottom of Figure 2). In the present
study, we have used the topics of the information search (e.g.,
‘interior design’, ‘augmented reality’, etc.) as cues for a Web-
based free association task at the beginning of the study and
after the individual as well as collaborative search condition.

In order to derive estimates of N and λ from the recorded
ideational fluency, search through memory can be approxi-
mated as a random search process following a repeated sam-
pling-with-replacement scheme (e.g., Bousfield & Sedgewick,
1944; Wixted & Rohrer, 1994; Unsworth & Engle, 2007). At
the beginning, i.e., on the first sample, S includes N targets
(relevant ideas) and S – N non-targets. Since sampled targets
are replaced, the rate of producing new associations, λi,
decreases linearly with the number of already sampled targets
i according to λi = (N – i)λ (e.g., Albert, 1968). The conse-
quence is an exponential decay function (Bousfield &
Sedgewick, 1944) given by

F tð Þ ¼ N 1� e�λt
� �

(1)

where F(t) represents the cumulative number of unique
responses by time t. A large number of studies demonstrates
that the cumulative exponential of Equation (1) can be fitted
to the response protocol gathered by a free association task to

Figure 2. Associative hierarchy as a mutual dependence of N (asymptotic number of topic-related associations) and λ (rate of approach to N).
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estimate N and λ (e.g., Wixted & Rohrer, 1994). In the present
study, we have adopted this approach to characterize the
associative hierarchies of the participants with respect to the
topics explored during their information search.

Next, we make use of this stochastic search scheme to
specify the effect of social cues (e.g., tagged bookmarks) on
a person’s associative hierarchy and to derive our hypotheses
on the fluency-consistency tradeoff.

The impact of social cues on an associative hierarchy
When people collect and tag bookmarks of resources on
the Web, we assume their thoughts and ideas to develop
within an evolving practice that is co-created in a collec-
tive and artifact-mediated activity (e.g., Hutchins &
Johnson, 2009). As a methodological consequence, we do
not aim to decontextualize our unit of analysis, i.e., asso-
ciative hierarchy, under laboratory conditions, but try to
shed light on its relations to the natural and cultural
environment and practice, in which it evolves and – at
the same time – to which it contributes (e.g., Roepstorff,
Niewöhner, & Beck, 2010).

To attain a holistic picture of the evolving practice, we also
consider the active role of non-human actors (Latour, 2005),
such as tag clouds or recommender mechanisms, which med-
iate the co-creation of environmental structures by distribut-
ing joint artifacts (e.g., social tags) and thus, affecting mental
structures (e.g., Schweiger et al., 2014). For instance, we
assume that a person’s mental search set S (the set of associa-
tions activated by a given topic) is affected by joint artifacts
(tags that have been introduced by other people and become
visible through a tag cloud or recommendation mechanism).
Evidence for the assumed long-term influence of those tags on
mental associations comes from studies demonstrating per-
ceived tags to leave robust memory traces and to affect future
tag choices (e.g., Seitlinger et al., 2015). Given that some of
these experienced tags convey new and interesting ideas the

person hasn’t thought of before, the number N of topic-
related associations (targets) should therefore increase over
time within the shared bookmarking system. The assumption
that tags help a person experience new ideas cannot be
observed directly. However, we think the assumption is war-
ranted, if active engagement with others’ tags can be observed
(e.g. through analyzing the log-file), and at the same time
estimates of N are in fact larger after a collaborative than
individual search. In the results section, we will be offering
some more insights on whether tag-mediated mutual stimula-
tions has likely happened in our case.

Figure 3 illustrates the expectation of tag-based influ-
ences on a person’s mental search set S and contrasts a
collaborative with an individual search condition. The tag
clouds in the shared environment as well as the web
resources others have contributed should expose a person
to different perspectives on a given topic, resulting in more
topic-relevant associations (dark shaped dots) within S. The
consequence should be a flattening of the associative hier-
archy: activation among elements in S should become defo-
cused (larger N) and each association’s relative strength
should decrease and become less available (smaller λ). On
the other hand, the activities in the individual bookmarking
condition give rise to tag clouds resulting exclusively from
an individual’s contributions. In this case, the function of
the tag clouds is less to propagate new than to reinforce
existing associations, resulting in a smaller increase of new
topic-relevant associations. This ‘individualistic’ interplay of
environmental and mental structures mediated and rein-
forced by tag clouds should thus give rise to a compara-
tively steep associative hierarchy: a focused activation
within S (small N) accompanied by a fast access to the
correspondingly few associations (large λ).

As already stated, we assume the shape of an associative
hierarchy (steep vs. flat) to have opposing effects on ideational
fluency on the one hand, and tagging consistency on the other

retfAerofeB Information search

Collaborative condition

Individual condition

Figure 3. Artifact-mediated mutual stimulation causes associative hierarchy to be flatter after a collaborative than individual information search.
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hand. This fluency-consistency tradeoff is described next as
well as the two hypotheses following from it.

Testing the fluency-consistency tradeoff: Hypotheses H1.1
and H1.2
Ideational fluency was measured by means of the stream of
responses in a free association task characterized by N (the
asymptotic number of associations) and λ (the rate of approach
to the asymptote). Based on a number of studies on retrieving
from semantic memory (for a review see Wixted & Rohrer,
1994), we assumed the following relationship: The flatter the
hierarchy, the larger the estimate of N and the smaller the
estimate of λ (see Figure 2). In the current study, each partici-
pant performed the task three times: at the beginning of the
study (baseline measurement), after an individual and after a
collaborative information search (counterbalanced repeated
measurement). The stimuli were eight sub-topics of the search
task (‘augmented reality’, ‘health’, ‘interior design’, ‘gamifica-
tion’, ‘inspiration sources’, ‘collaboration technologies’, ‘perso-
nalization services’, ‘socializing’; for details see Section Search
task and bookmarking interface) and held constant across the
three points of measurement. Based on the assumption that the
collaborative condition results in flatter associative hierarchies
than the individual condition, the first hypothesis was that
relative to the baseline measurement, participants exhibit a stron-
ger increase in estimates of ideational fluency (larger N and
smaller λ in the free association task) after the collaborative
than after the individual search (H1.1).

Tagging consistency, the second indicator applied to charac-
terize an associative hierarchy, was defined as the extent to which
similar tags were assigned to bookmarks of semantically similar
resources, i.e., resources dealing with similar topics.With respect
to its relationship to the associative hierarchy, we assumed that if
several associations compete for indexing a topic (flat hierarchy),
the tagging behavior for resources of that topic should be more
variable than if only few associations have high probabilities
being retrieved (steep hierarchy). To quantify consistency, we
implemented a tagging interface that prompted a person to
describe each bookmark semantically (by selecting from a list
of the eight search topics) and by a set of freely chosen tags.
Thus, for two bookmarks x and y, we could calculate a topical
similarity score ST (normalized topic overlap of x and y) and a
verbatim similarity score SW (normalized tag overlap of x and y).
Finally, we defined tagging consistency r(ST,SW) as the correla-
tion between ST and SW across all pairs of collected bookmarks
separately for the individual and collaborative search condition.
See Section Measures and statistical analysis for more details on
the two similarity scores and calculating r(ST,SW). Based on the
assumption that the collaborative condition results in flatter
associative hierarchies than the individual condition, the second
hypothesis was that estimates of r(ST,SW) are larger under the
individual than collaborative information search (H1.2).

Summarizing, the two hypotheses H1.1 and H1.2 spe-
cify the expected fluency-consistency tradeoff that is
mediated by the shape of the associative hierarchy. While
a flat hierarchy favors ideational fluency, a steep one
brings forward its conceptual counterpart, i.e., tagging
consistency.

2.2. Method

We investigated the hypotheses H1.1 and H1.2 within the
scenario of a work-integrated information search on the
topic ‘workspace redesign to move people’, which was sup-
ported by a bookmarking system for collecting (bookmarking)
and tagging topic-relevant Web resources. Our expectation
was that a collaborative search condition (shared bookmark-
ing system) on average results in a flatter associative hierarchy
than an individual condition (unshared system) and that this
difference manifests itself in a fluency-consistency tradeoff: a
higher ideational fluency (H1.1) and a lower tagging consis-
tency (H1.2).

Participants
The information search was performed by N = 18 researchers
(n = 6 female) from different groups across different institu-
tions, with an average age of 31.5 years (SD = 5.5, ranging
from 23 to 46 years). The following research groups partici-
pated in the study: one cognitive science group at an Austrian
technical university (n = 6), two groups from an Austrian
research institute dealing with social computing (n = 7) and
ubiquitous computing (n = 3), and one group on educational
technology from an Estonian university (n = 2). All research
groups were interdisciplinary having members on computer
science, humanities, and psychology.

Particular measures were taken to ensure that persons of a
shared bookmarking system could only influence each other
via shared artifacts (i.e., bookmarks and tags) independent of
their real geographical distance or research group member-
ship: First, the assignment of the participants to the experi-
mental conditions was random and did not take into account
the research group membership. Second, every participant
was visible in a bookmarking system only in form of a pseu-
donym, which was drawn randomly from a pool of popular
English names (e.g., George) and did not allow inferences on
her or his real name or identity. Third, participants were
instructed not to discuss ongoing activities within the book-
marking system with other participating colleagues, where on
average, the probability of sharing a system with a colleague
from the same research group was p = .14. As furthermore all
resources and tags had to be in English, we were confident
that having two participants contribute from Estonia and the
remaining sample from Austria had no significant influence
on the activities going on in the bookmarking system.

Design
The independent variable, denoted ‘Search Condition’, differ-
entiated between a collaborative and an individual informa-
tion search. The latter took place in a separate bookmarking
system only displaying each employee’s own Web resources
(in form of a list) as well as her/his own tags (in form of a tag
cloud). Under the collaborative condition, the employees
shared a social bookmarking system making available the
resources and tags of all the system’s members. To increase
statistical power, we realized a randomized counterbalanced
repeated measurement design: Every employee collected Web
resources under both conditions for two weeks each, where
one half of the participants switched from the individual to
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the collaborative and the other half from the collaborative to
the individual condition. For statistical analyses, we then
merged the data of the two individual and the two collabora-
tive study halves.

The dependent variables were (a) ideational fluency (mea-
sured by the Web-based free association task each employee
performed at the beginning, after the individual, and after the
collaborative search condition), and (b) tagging consistency
(determined by a log file-based analysis on the correlation
between the topical similarity ST and the tag similarity SW of
an employee’s bookmarks). The design included one addi-
tional independent variable (the type of Tag
Recommendation Mechanism displayed), as well as one addi-
tional dependent variable (acceptance of these recommenda-
tions). We will cover this part of the design in the article's
second part dealing with the tag recommendation mechanism
SoMe.

Search task and bookmarking interface
The information search had the character of a simulated
workplace learning scenario as the search topic ‘workspace
redesign to move people’ was not part of an ongoing research
project but defined specifically for the purpose of the study.
However, to make it as realistic and motivating as possible,
the topic was co-defined together with the work group leaders
as a topic they expected to stimulate valuable workflow reflec-
tions and improvements. Insights gained during search were
therefore discussed subsequent to the study in the context of
work group meetings. While the specific search environment
that was used was new to the participants, the way the search
task was set up (e.g., collecting resources and sharing them in
an online system) corresponded to how typically explorations
of new topics were done in these institutions.

Instruction. Instructions and passwords (to enter the book-
marking system) were sent via e-mail. The instruction
described the search topic, which was ‘workspace (re)design
to move people – improving knowledge exchange and creation
in your work group’. For the coming four weeks, the employ-
ees were asked to imagine the task of writing a state of the art
for a project proposal that ‘sheds light on the topic from
different perspectives’. To this end, each employee had to
bookmark at least three to four Web resources (e.g., articles,
videos) per week and to annotate each bookmark ‘by means of
predefined topics (e.g., ‘inspiration sources & techniques’) and
freely chosen tags (e.g., ‘physical_proximity’, ‘random_encoun-
ters’, etc.)’. Under the collaborative condition, the employee
was also instructed to attend to each other’s contributions
(tags and shared bookmarks) to get to know different per-
spectives on the task.

Bookmarking interface. A Web resource was bookmarked by
means of an interface displayed in Figure 4, which prompted an
employee to annotate a resource by choosing one or several topics
froma predefined eight-item list (number 2), and assigning tags by
choosing from a list of recommendations (number 3) and/or
typing in personal tags (number 4). The subset of chosen topics,
denotedT, was logged for a later analysis of the employee’s tagging
consistency as well as to trigger the presentation of the set of

recommended tags. It was therefore important to provide a list
of topics, which, from the viewpoint of the employees, covered
important thematic aspects of the search task and was readily
comprehensible for them based on their prior knowledge. To
gather such a list, a Web-based idea generation task had been
administered oneweek before study start, asking each employee to
“list as many design ideas as possible for a workspace, which could
improve the exchange and creation of knowledge in your work
group”. All listed ideas were then subjected to a qualitative content
analysis identifying the most important workspace dimensions
mentioned by the employees and reducing these dimensions to
the following eight topics: ‘Interior design’, ‘Inspiration sources &
techniques’, ‘Collaboration technologies’, ‘Gamification &
Playfulness’, ‘Personalization services’, ‘Augmented reality’,
‘Wellbeing & health’, and ‘Socializing’.

Though this list was certainly incomplete, it was exhaus-
tive with respect to the responses the present sample of
participants had produced in the idea generation task. To
further take account of the opportunity that new topics can
be discovered during search, we instructed the participants
to inform us whenever they would become aware of an
important topic not included in the current list. As we,
however, never received such feedback from the partici-
pants, the eight-topic list depicted in Figure 4 (number 2)
was maintained during the whole study duration.

Measures and statistical analysis
Free association task to observe ideational fluency. To mea-
sure ideational fluency, every employee generated free
associations for 60 s to each of the eight topics in a
Web-based free association task (FAT) at the beginning

Select a topic 

Figure 4. Bookmarking interface to collect a Web resource (number 1), classify it
by choosing from a list of pre-defined topics (number 2), receive a set of
recommended tags, denoted WREC (number 3), and make a tag assignment
(number 4).
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(baseline measurement) and after each of the two search
conditions (individual and collaborative). Per employee
and per point of measurement (baseline, individual, colla-
borative), we gathered an average FAT response protocol,
which was the cumulative number of associations per
second averaged across the eight stimuli (topics). In a
final step, we merged the average protocols of all 18
employees to characterize the average ideational fluency
under each of the three points of measurement in terms of
N and λ (by fitting the cumulative exponential of Equation
1).

Tagging consistency. To measure each employee’s tagging
consistency, we first extracted from the log data all the book-
marks that s/he had collected, where each bookmark was
characterized semantically by the set of selected topics (e.g.,
‘interior design’, ‘inspiration sources’), denoted T, and by the
set of assigned tags (e.g., ‘creativity’, ‘curation’, ‘mental_fixa-
tion’) denoted W. Then, for each pair of the employee’s book-
marks we calculated two scores, a topic similarity score ST and
a tag similarity score SW, by applying the Jaccard index. Thus,
for any two bookmarks x and y, ST and SW were given by

ST x; yð Þ ¼ Tx \Ty

�� ��= Tx [Ty

�� �� (2)

SW x; yð Þ ¼ Wx \Wy

�� ��= Wx [Wy

�� �� (3)

E.g., if Tx is {‘inspiration sources & techniques’, ‘collaboration
technologies’} and Ty is {‘collaboration technologies’, ‘perso-
nalization services’}, the intersect and union of both sets
include one and three elements, respectively, resulting in
ST = 1/3. Above, we defined tagging consistency as the corre-
lation between ST and SW. Therefore, to quantify the predicted
differences in consistency between the individual and colla-
borative condition, we performed a regression of SW on the
continuous predictor ST and the categorical predictor ‘Search
Condition’, and included an interaction term to test the pre-
dicted assumption of different slopes under the individual and
collaborative condition.

2.3. Results

Our research design and methodology aimed at investigating
the assumption that an individual’s associative hierarchy
becomes flatter during interactions with joint artifacts (i.e.,
social tags) that are propagated in a shared bookmarking
system by virtue of tag clouds. Based on this assumption, we
expected a fluency-consistency tradeoff that becomes manifest
in a higher ideational fluency (H1.1) and a lower tagging
consistency (H1.2) under the collaborative than individual
information search.

Hypothesis H1.1
Our first hypothesis H1.1 was that employees exhibit a higher
ideational fluency in a free association task (FAT; larger N and
smaller λ) after a collaborative than individual information
search. Figure 5 presents the average ideational fluency data –
cumulative associations (workspace design ideas) generated
by 18 employees to eight different topics as a function of

time (seconds) – before the study start (baseline condition;
black-filled circles), after the individual search condition
(squares), and after the collaborative search condition (trian-
gles). A glance at the three latency distributions reveals a
general learning effect of the search task: in comparison to
the baseline distribution, employees appeared to produce
more associations both after the individual and collaborative
search. In addition and according to our expectation, this
learning effect seemed to be larger under the latter condition.

In line with research on retrieval from semantic memory
(e.g., Rohrer, 2002), the model-based analysis showed that the
rate of producing new associations slowed continuously in
time and could be well described by the cumulative exponen-
tial given by Equation 1. The best-fitting parameter estimates
of the exponentials (dashed lines), together with the percent
of variance explained, are presented in Table 1. With respect
to parameter N, the estimates lend support to Hypothesis
H1.1 that this asymptotic number of produced associations
increased monotonously from the baseline, over the indivi-
dual, up to the collaborative condition. Thus, the employees
could increase their knowledge especially in the course of the
collaborative search, i.e., they could substantially extend the
pool of relevant ideas about the eight search topics.

However, in contrast to our expectation, this monotonous
increase was not related inversely to the parameter λ, the rate of
approach to asymptote, whose estimates were approximately
equal for the baseline and individual and, in fact, largest for
the collaborative condition. That is, the collaborative search
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Figure 5. Cumulative free association latency distribution. Error bars represent 1
standard error of mean.

Table 1. Best-fitting parameter estimates of association latency distributions.

Condition N λ Variance explained

Baseline 8.610 .086 .66
Individual 9.156 .087 .67
Collaborative 9.388 .095 .81
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resulted in an increase of both the number and speed of pro-
duced associations. In the light of the stochastic search model,
this pattern might be explained post-hoc by the assumption that
the activation in the mental search set S was not only spread
among a larger number of N targets (relevant ideas) but also
drained out of the remaining S–N non-targets (irrelevant asso-
ciations) e.g. through stronger lateral inhibition. In other words,
the learning process during collaborative search allowed, on the
one hand, getting to know more ideas and on the other hand,
effectively inhibiting irrelevant associations or perhaps even
replacing them from S. Note that such a pattern still implies a
mental activation that is distributed more evenly among a larger
number of targets (topic-relevant associations) and that the
collaborative search brings about a flatter associative hierarchy
for relevant ideas than the individual search.

Finally, a Friedman test on differences in the number of
unique associations among the three conditions of baseline
(Median = 4.81), individual search (Median = 5.00), and
collaborative search (Median = 5.69) reached significance at
the .05 level, χ2(2, N = 18) = 5.68, p = .06. Pairwise compar-
isons using Wilcoxon test and controlling for the Type I
errors by using the LSD procedure further revealed that this
effect could be attributed to the difference between the colla-
borative and baseline condition, p < .05; there were no differ-
ences neither between the collaborative and individual,
p = .46, nor between the individual and baseline condition,
p = .45. In other words, only the collaborative search gave rise
to fluency scores that contrasted significantly with those
scores that the participants had already been able to achieve
before performing the information search.

Summarizing, hypothesis H1.1 assumed ideational flu-
ency to be greater after the collaborative than individual
search. As the employees exhibited both the largest number
and highest speed of responses under the collaborative
condition, we interpret the results as providing support to
H1.1. In particular, they harmonize with the assumption of
mutual stimulation through joint artifacts, i.e., social tags
that act as sign vehicles propagating diverse ideas among
the employees. This assumption was further corroborated
by a descriptive analysis of participants’ click behavior, in
particular, their clicks on tags in the shared tag cloud to
filter already collected bookmarks within the system. The
analysis showed that the probability of a person clicking on
a tag that had been introduced by a different person was
relatively high, i.e., p = .68 (SD = .27), indicating curiousity-
driven search behavior and the intentional use of tags to
discover novel sources of information. In light of this addi-
tional pattern, the active role of tags in mediating the
experience of novel ideas appears even more likely. From
a learning perspective, this tag-based propagation of ideas is
highly desirable, as it seems to broaden and flatten the
hierarchy of topic-related associations and thus, supports a
more creative encounter with a given topic (e.g., Benedek &
Neubauer, 2013).

At the same time, however, a broader and, in addition
to that, easily accessible hierarchy of topic-related associa-
tions around a given topic can be expected to result in a
stronger variability in tag choices for related Web
resources. In the following, we therefore investigate this

tradeoff, i.e., the hypothesized downside of a flatter asso-
ciative hierarchy, namely a higher tagging inconsistency
(hypothesis H1.2).

Hypothesis H1.2
Our second hypothesis was that a flatter associative hierarchy
under the collaborative condition should become manifest in a
more inconsistent tagging behavior, i.e., in a weaker tendency to
assign similar tags to topically similar Web resources. In parti-
cular, H1.2 was that the relationship between SW and ST is
stronger under an individual than collaborative search condi-
tion. To test H1.2, we first gathered all pairs of an employee’s
bookmarks, determined each pair’s tag and topical similarity
(SW and ST, respectively; see Equations 2 and 3) and finally,
performed a regression of SW on the continuous predictor ST
and the categorical predictor ‘Search Condition’.

685 data points entered the regression, which consisted of
the 361 bookmark pairs of the individual and of the 324 book-
mark pairs of the collaborative condition. The model explained
about 13% of variance in the tag similarity SW of an employee’s
pair of bookmarks (adjusted R2 = 0.132, p < .001) and yielded a
highly significant effect for the predictor ST (t = 9.87, p < .001),
and – in line with H1.2 – a highly significant interaction
between this continuous predictor and the categorical predictor
‘Search Condition’ (t = −4.44, p < .001). Table 2 shows the
estimates of the model’s intercept and slope and how these
estimates change as a function of ‘Search Condition’. The
small amount of variance explained is not surprising as the
probability of reusing tags (that underlies ST) depends not
only on semantic attributes of the resources, but also on med-
iating cognitive processes (e.g., Fu & Dong, 2012; Seitlinger
et al., 2015), which are to some extend specified by the tag
recommender’s algorithm presented in the article’s second
part. The present regression model, however, did not capture
such cognitive processes because its primary purpose was not to
explain a large amount of variance in the individuals’ tagging
behavior but to determine whether the amount of variance
explained by the predictor SW differs between the individual
and collaborative condition.

Under the individual information search, the standardized
coefficient β1 (i.e., the slope of the predictor ST) takes on the
value of about 0.40, which is indicative of a moderate effect size.
Thus, the higher ST, i.e., the higher the topical similarity of two
Web resources collected by an employee, the higher is the
similarity of the tags SW applied to that pair of Web resources.
However, as Table 2 also shows, the predictor’s slope signifi-
cantly declines under the collaborative condition and, in fact,
takes on the value of only 0.14, which is indicative of a small
effect size. Thus, the small amount of variance explained (ca.
13%) in the whole dataset can probably be attributed to the fact
that ST is a substantial predictor of SW only under the condition
of an individual information search. These results are well in

Table 2. Summary of the regression of SW (tag similarity of a bookmark pair) on
ST (the pair’s topical similarity) and ‘Search Condition’.

Search condition Intercept Slope

Individual β0 = 0.05 β1 = 0.39
Collaborative β0 + α = 0.12 β1 + β2 = 0.14

Note. α = 0.07; β2 = −0.25

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 565



accordance with H1.2, which assumes that under the collabora-
tive condition, where tag clouds propagate divergent tag-topic
associations, the tendency to reapply the same tags for reoccur-
ring topics (semantically similar Web resources) is smaller than
under the individual condition.

Controlling for priming effects.1 Especially with respect to
hypothesis H1.2 (on differences in participants’ tagging con-
sistency), a question may be to what extent our result patterns
were an artifact of having participants select from the eight
pre-defined topics, as this potentially had priming effects on
their subsequent choice of tags. However, as our main interest
was in investigating the impact of an experimental variable
(differing search conditions), we did not expect our results to
be sensitive to the topic structure because topic-based priming
should not vary between the conditions. Nevertheless, in
order to explore its potential impact, we performed a statis-
tical control analysis, which is described next.

We performed a second regression analysis by entering the
categorical predictor ‘topic use’. Based on a median split, ‘topic
use’ distinguished between participants who on average selected
many vs. few topics to describe a given bookmark. The rational
behind it was that if topic-based priming effects were actually
negligible for our results (on condition-dependent differences in
consistency), hypothesis H1.2 (stronger ST – SW relationship
under the individual than collaborative condition) should hold
in both pre-experimental groups that can be assumed to be
affected by different priming effects due to different ways of
interacting with the topic structure.

The dummy variable split the sample along the median of
1.8 into a “few topics” and a “many topics” group that on
average had selected 1.44 and 2.46 topics per resource. This
extended regression model indeed yielded a second-order
interaction (t = 2.51, p < .05), which, however, was of an
ordinal nature and only qualified our previous data interpre-
tation: under both groups, the relationship between ST and SW
was stronger under the individual than collaborative search,
where this difference was greater in the “few topics” (standar-
dized coefficients: βindividual = .42, βcollaborative = .05) than
“many topics” group (βindividual = .31, βcollaborative = .23).
This effect can be explained by drawing on the search of
memory model (Figure 2): selecting more topics provides
more context cues, which constrain the mental search set
more strongly and in further consequence, reduce the var-
iance in tagging behavior across time and different environ-
mental conditions, such as those of an individual vs.
collaborative search. Summarizing, the regression model
extended by the variable of ‘topic use’ further strengthened
hypothesis H1.2 because the experimentally induced differ-
ence in consistency could be observed in both pre-experimen-
tal groups. We therefore conclude that topic-based priming
processes did not contribute substantially to the observed
differences in search condition. Hence, our results should
generalize to other settings that e.g. make use of a more or
less differentiated topic structure.

2.4. Discussion

We gathered evidence for the expected fluency-consistency
tradeoff by observing opposing effects of ‘Search Condition’
on temporal dynamics of free associations and tagging beha-
vior: Displaying social cues (under the collaborative condi-
tion) increased ideational fluency (measured by a FAT), but
reduced the consistency of tag choices for reoccurring topics
(measured by a correlational analysis of log data). Networked
search (e.g., Lazer & Bernstein, 2012), however, benefits from
balancing individual exploration – a process that benefits
from ideational fluency (e.g., Kerne et al., 2014) – and exploi-
tation of each other’s search results, which, in the context of
tag-based bookmark sharing, is facilitated by topically consis-
tent tag choices (Dellschaft & Staab, 2012). Therefore, finding
evidence of the fluency-consistency tradeoff begs the question
of how we are to deal with the downside of a flat associative
hierarchy, i.e., growing inconsistency.

One potential answer will be explored in the next section
where we have contrasted the use of two tag recommendation
mechanisms (TRM). One of those mechanisms is built on a
“Most Popular Tag (MPT)” recommendation strategy, a var-
iant of which can be found in many contemporary web
environments. The other is derived from a mechanism that
models associative hierarchies over different search topics and
produces tag choices as a search of memory. As the latter is
especially tuned to a situation of flat associative hierarchies
and increased ideational fluency, it should be especially effec-
tive in the collaborative information search condition.

3. An effective recommendation mechanism for
collaborative information search

Tag recommendation mechanisms (TRM) can be seen as non-
human actors (Webster, Gibbins, Halford, & Hracs, 2016) to
which developers of social information systems delegate the
intention of making information search more effective. TRM
can be directed either toward convergence (i.e., tagging con-
sistency) for the sake of aligning the vocabulary (e.g., Font
et al., 2015), or divergence (i.e., ideational fluency) for stimu-
lating creative ideation (e.g., Kerne et al., 2014). For system
designers, this means it is difficult to achieve both things at
the same time.

When designing TRM, we draw on our framework of
reflective search. By modeling a fundamental search process,
namely that of search of (human) memory when reflecting on
a resource, it allows to deal with cognitive dynamics involved
in the tradeoff between exploration and exploitation of net-
worked search. We introduce SoMe, a TRM that simulates
search of memory dynamics in response to a resource and
hence, to identify tags that are co-created in collaborative
search and are likely to resonate with a user’s current reflec-
tion. That way, the probability of reusing tags for re-occurring
topics (i.e., tagging consistency) can be increased and the
tradeoff balanced toward exploitation when associative hier-
archies are flat (as in the situation of collaborative search): in
this situation, inconsistent tag choices for reoccurring topics

1We thank an anonymous reviewer for prompting this additional analysis.
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may impair convergent group processes, i.e., reduce the ben-
efits of exploiting each other’s search results through a con-
sistent tag vocabulary. We then compare SoMe to a most
popular tags (MPT) recommender. SoMe’s advantage over
MPT should come to the fore under the collaborative search
condition, that is, if the relationship between word and mean-
ing (tag and topic) becomes looser (less consistent) due to
flatter associative hierarchies.

In what follows, we first demonstrate this decreased
semantic distinctiveness (looser tag topic relationship) in col-
laborative information search. This decreased semantic dis-
tinctiveness of popular tags should lead to problems when
trying to predict and recommend tag choices by estimates of
popularity, as in the case of MPT approaches.

In a second step, we then describe in detail how SoMe
simulates a person’s search of memory when choosing tags in
order to filter an inconsistent tag vocabulary by searching for
topically resonant (relevant) tags. Finally, we provide the
results of the evaluation that has taken place in the same
study reported above and addresses the second research ques-
tion whether SoMe achieves high tag acceptance rates under a
collaborative search and, more specifically, whether the SoMe
advantage (over MPT) is larger under the collaborative than
individual search condition.

3.1. The challenge of predicting tags based on flat
associative hierarchies

Above, we have shown the shape of an associative hierarchy to
affect tagging consistency, where a steep hierarchy gives rise
to a closer relationship between tag and topic than a flat one
(see Table 2). Furthermore, we argue that the extent of tag-
ging consistency is related to the extent of semantic distinc-
tiveness of popular tags (to be shown below), which in turn
should determine the extent by which a TRM has to combine
statistics of both popularity (tag use frequency) and semantic
resonance (topical relevance of a tag) to derive appropriate
recommendations.

For instance, in case of a highly consistent tagging beha-
vior, a given tag wi can be expected to be chosen quite
exclusively for a certain topic tj. More formally, if P(tj|wi)
denotes the posterior probability that wi belongs to tj, it
should exhibit high estimates for only one of the eight search
topics (of the current study) and rather low estimates for the
remaining seven topics, given wi is used consistently. The
posterior probability can be calculated applying the Bayes
theorem (e.g., Fu & Dong, 2012), where, in this study, the
priors are estimated by counting their relative frequencies
being assigned to bookmarks, and the conditional probability
P(wi|tj) by dividing nj (number of bookmarks in tj that are
associated with wi) by n (total number of bookmarks in tj). To
observe the shape of the average distribution of the posteriors
over the eight topics (e.g., ‘peaky’ in case of consistency and
flat in case of inconsistency), per tag we can – similar to a
rank-frequency distribution – rank the eight topics according
to their strengths, i.e., P(wi|tj), then average these ranked
posteriors across several tags (e.g., the seven most popular
tags, MPT), and finally, as shown in the left diagram in
Figure 6, draw these means against the corresponding ranks.
In line with our expectation, the left diagram reveals that P(wi|
tj) drops off comparatively steeply under the individual search
(solid line), which means that the steep associative hierarchies
(reported above) are reflected in the emerging tag vocabulary
by a steep hierarchy of the posteriors: given a particular topic,
we can predict the choice of tags with higher certainty. By
contrast, under the collaborative search, the flat associative
hierarchies become manifest in a comparatively flat distribu-
tion of the posteriors (dashed line), indicating higher uncer-
tainty when predicting tags based on a given set of resource
topics.

As already argued, the strength of relationship between tag
and topic should further affect the extent to which popular
tags are topically distinct from each other. To quantify dis-
tinctiveness Di of a tag wi, we introduce the notion of a tag’s
semantic profile Si, which is simply the unranked distribution
of P(wi|tj) over the eight topics. Di can then be defined as 1
minus the average cosine similarity between Si and each of the
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Figure 6. Strength of tag-topic relationship (left diagram, Figure 6a) and semantic distinctiveness (right diagram, Figure 6b) as a function of “Search Condition”
(Individual vs. Collaborative). Error bars represent 1 standard error of mean.
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profiles of the remaining six tags in MPT. In accordance with
our expectation, the right diagram in Figure 6 shows Di to be
pronounced more strongly under the individual than colla-
borative search (except for the seventh tag in MPT), indicat-
ing a less ambiguous tag-topic co-occurrence pattern under
the individual search, where different popular tags seem to
refer to different search topics.

Summarizing the two patterns of Figure 6, we anticipate
that the strategy of an MPT-based TRM, i.e., recommending
tags from the head of the rank-frequency distribution, should
be effective under the individual search condition: Due to its
semantic distinctiveness and high popularity, the set of MPT
(head of the rank-frequency distribution) is likely including a
subset of familiar tags that fit the unknown resource an
employee is bookmarking and tagging. Under the collabora-
tive condition, however, statistics of popularity (rank and
frequency) do not appear to provide sufficient information
to disambiguate the tag recommendation problem: sampling
from MPT does not necessarily result in a set of semantically
distinct tags; instead it is likely to obtain a set of prominent
tags indexing the same or similar topics. Thus, to identify tags
that are both popular and topically distinct, a TRM strategy is
needed filtering the tag vocabulary by popularity and seman-
tic resonance (relevance).

3.2. Modeling search of memory to disambiguate the tag
recommendation problem

To realize a TRM that searches for popular and semantically
resonant (topically relevant) tags, we make use of a strategy
that has been conceptually proposed (but not empirically
evaluated) by Seitlinger, Ley, and Albert (2013). First simula-
tion-based analyses of large-scale social tagging datasets
(Kowald et al., 2014) have shown this strategy to be successful
in modeling and predicting users’ tag choices. The question,
however, whether these results (i.e., high prediction accura-
cies) generalize to a realistic information search scenario, and
whether tags can be recommended the employees actually
adopt for their tag assignments, remains open and is
addressed in the following.

This strategy implements the search of memory (SoMe)
scheme (Figure 2), i.e., the cue-based activation of a search set
S (step 1) and subsequent selection of N cue-relevant associa-
tions (tags; step 2). Drawing on MINERVA2, a model of
episodic memory (e.g., Hintzman, 1986; Kwantes, 2005;
Sprenger et al., 2011), the SoMe recommender distinguishes
a primary memory (PM) that represents the experienced
retrieval cue (e.g., the resource being bookmarked and tagged)
from a secondary memory (SM) – “the vast pool of largely
dormant memory traces” (Hintzman, 1986, p. 412). In the
present study, the retrieval cue in PM is represented as the
subset of search topics the employee assigns to the present
resource via the bookmarking interface (Figure 4); a memory
trace in SM is a record of each of the employee’s bookmarks,
in particular, of the correspondingly chosen topics and tags.
The set of all SM traces therefore provides a memory-like
representation of employee-specific topic-tag associations.

In the first step of the simulated PM-SM communication
(cue-based activation of S), all traces in SM (topic-tag

associations) are activated in parallel – according to their
topical similarity to the cue (i.e., topic subset in PM): the
more topics the cue and the trace have in common, the higher
the trace’s activation. That way, we implement a simple
mechanism of semantic resonance, by which those tags
come to the fore that are associated with cue-relevant topics.
In the second step, the SoMe recommender performs a fre-
quency-based ranking within the subset of strongly activated
traces in order to select N cue-relevant associations (tags).

Summarizing, SoMe can be regarded a semantically reso-
nant MPT approach that should improve MPT substantially,
if semantic distinctiveness among MPT (see Figure 6) is low
due to flat associative hierarchies. Based on the results of the
first part that associative hierarchies are flatter and ideational
fluency is higher under the collaborative than individual
search, the third hypothesis H2 is: The proposed tag recom-
mender SoMe reaches higher levels of acceptance rate, i.e., is
more likely recommending tags the user actually adopts for
personal tag assignments, than MPT during a collaborative
information search; no differences should be observed under
the individual search condition.

3.3. Method

This hypothesis (H2) was explored in the same study as
previously reported.

Design
To answer the second research question and test hypoth-
esis H2, the design (already described above) also included
the independent variable ‘Type of TRM’ (MPT vs. SoMe;
within subjects): When an employee bookmarked and
tagged a new Web resource, (s)he could choose from a
set of recommended tags that was generated either by
MPT or SoMe – with an equal chance for either TRM
being applied. Thus, to find an answer to our second
research question, we realized a 2 (Search Condition: indi-
vidual vs. collaborative search) × 2 (Type of TRM: MPT
vs. SoMe) research design. The second dependent variable
was acceptance rate of the tags generated by the two
TRMs. Each of these variables and its operationalization
are described below (see Section Measures). For the sake of
a comprehensible presentation, however, we first describe
some more details on the search task as well as the tech-
nical infrastructure.

Participants and search tasks
The process of annotating a bookmark, i.e., choosing topics
and assigning tags, was supported by the bookmarking inter-
face, illustrated by Figure 7, which this time also schematizes
the tag recommenders’ underlying algorithm (represented by
the flow chart on the right-hand side): After selecting from
the eight-topic list (number 2) to specify T (i.e., the subset of
chosen topics) and clicking on the ok button, the algorithm
was initiated producing a set of recommended tags, denoted
WREC: Depending on the outcome of the algorithm’s first step,
namely the random decision to choose between one of the
two recommenders, WREC was based on either the tags’ fre-
quency counts alone (in case of MPT) or on both the tags’
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frequency counts and their semantic relatedness to T (in case
of SoMe). The semantic relatedness was derived from a parti-
cipant’s past search behavior, in particular from topic-tag
choices assigned to previously collected bookmarks. Details
on how these choices were represented and processed by
SoMe are given in the next section.

Finally, after displaying WREC (number 3), the participant
was free to choose from the recommended tag list as well as to
type in personal tags (number 4). Note that this sequence of
steps – encompassing the selection of topics, the algorithm,
and the choice of tags – ensured that there were no interac-
tion differences (from a user perspective) between the two
recommenders, even if only SoMe was actually exploiting the
topical information given by T.

Recommendation mechanisms
SoMe. The Search of Memory (SoMe) tag recommendation
mechanism (TRM) was designed to mimic basic principles of
an employee’s search of memory when tagging a current Web
resource. To this end, SoMe is based on the episodic memory
model MINERVA2, which has been shown to account for a
wide range of memory-based human behavior, such as recogni-
tion (Hintzman, 1988), categorization (Hintzman, 1986), repre-
senting word similarities (Kwantes, 2005) or judgments on the
probabilities of hypotheses (Sprenger et al., 2011). Our goal, of
course, was not to represent a user’s entire episodic memory but
to account for the encoding of episodic memory traces in the
course of the user’s ongoing search history. Beyond that, we did
not aim to model specific search operations that would be
formalized by more detailed models, such as CMR (e.g.,
Polyn, Norman, & Kahana, 2009), but to mimic the general
principle of activating memory traces that are similar to a given
environmental cue, i.e., the resource being tagged. To model
this general principle, SoMe implemented the MINERVA2 dis-
tinction between a primary memory (PM) and secondary mem-
ory (SM) component. The role of PM was to represent the
resource being tagged in terms of the chosen topics and to
search SM for tags that the employee had assigned to

bookmarks with similar topics. To model PM, a probe P was
formed as an 8-element, binary (1,0) feature vector – with each
feature j representing one of the eight topics and taking on the
value +1, if it was assigned to the current resource. SM was
represented as a matrix B, with each row i being a binary (1,0)
feature vector representing a bookmark in the employee’s pre-
vious information search. The first j = 1,. . .,8 positions indexed
the topic-features, the subsequent j = (8 + 1),. . .,(8 + n) positions
indexed the tag-features, where n was the number of tags
generated within the whole bookmarking system.

To mimic a search of memory, SoMe proceeded in two
steps: First, in a process of resonance, P interacted with the
topic features (j = 1,. . .,8) of each row i in B to generate an
overall value of activation A(i) given by the cubed cosine
between P and the row’s first 8 feature values. Second, the
mechanism estimated R(j), i.e., the extent to which a feature
resonated with the probe, by multiplying all features of each
trace by the trace’s activation A(i) and then, summing these
products across all m traces, given by

R jð Þ ¼
Xm

i¼1

A ið ÞB i; jð Þ (4)

Under the individual search condition, the tags, i.e.,
j = (8 + 1),. . .,(8 + n), with the 7 highest resonance values R
(j) were included in WREC and displayed in the bookmarking
interface (number 3 in Figure 7). Under the collaborative
condition, an average resonance value �R jð Þwas calculated by
mimicking a search of each employee’s memory B and aver-
aging across the individual R(j) values. Finally, the seven
highest ranked �R jð Þ values were included in WREC.

MPT. This type of TRM only considered the reuse count of
tags and thus, determined the current rank-frequency distri-
bution of all tags that had been generated in the shared
(collaborative) or unshared (individual) bookmarking system.
Then, the seven highest ranked tags were included into WREC

and displayed in the bookmarking interface.

Figure 7. Bookmarking interface (left-hand side) and schematic illustration of the algorithm generating the set of recommended tags WREC (right-hand side).
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Measures
Tag acceptance rate. The tag acceptance rate was measured
calculating the precision and recall of the recommendations
generated by MPT and SoMe. Each time an employee col-
lected a new bookmark and classified it by selecting a set of
topics, the bookmarking interface (Figure 7) displayed a set of
x = 7 recommended tags (number 3 in Figure 7), denoted
WREC, and the employee was free to type in personal tags and/
or to choose tags from WREC. If WAPP denotes the set of tags
actually applied by the employee, the metrics of precision and
recall are calculated by the following two fractions:

precision ¼ WAPP \WRECj j= WRECj j (5)

recall ¼ WAPP \WRECj j= WAPPj j (6)

To combine both metrics and to derive a single score, the
harmonic mean of precision and recall is calculated, which is
denoted F-score and given by

F ¼ precision � recall � 2ð Þ= precisionþ recallð Þ (7)

Note that these metrics depend on the number of elements
(tags) included in WREC, and thus, precision, recall and the
F-score are usually determined for each possible x, which
varied between x = 1 and x = 7 in the present study.
Following this evaluation practice, we determined the average
F-score under the four factorial combinations (of the 2 × 2
research design) and for every x. For statistical analysis, we
then performed a 2 (Search Condition) × 2 (Type of TRM)
repeated measures ANOVA on the F-score, taking x as the
unit of analysis.

3.4. Results

We expected an interaction of the search condition with the
performance of the tag recommender SoMe, i.e., a larger advan-
tage over the baseline recommender MPT under the collaborative
than individual condition (H2).

Hypothesis H2
The tag recommender SoMe was designed to improve the
recommendation of tags under a collaborative condition, i.e.,
conditions of flat associative hierarchies and low semantic
distinctiveness. We, therefore, hypothesized an interaction
between ‘Type of TRM’ (MPT vs. SoMe) and ‘Search
Condition’ with respect to the tag acceptance rate and in
particular, a larger SoMe advantage under the collaborative
condition. To test this interaction, we extracted all tagging
events under each of the four factorial combinations and
compared the set of recommended tags (WREC) with the set
of actually applied tags (WAPP) by calculating the F-score
(Equation 7). Figure 8 presents the results. Under the indivi-
dual condition (left diagram), the two recommenders appear
to reach similar estimates of the F-score for a varying number
x of recommended tags (drawn on the abscissa). Averaged
over x, the F-scores achieved by MPT and SoMe are 0.29
(SD = 0.04) and 0.30 (SD = 0.03), respectively. We therefore
conclude that during an individual information search, where
employees exhibit comparatively steep associative hierarchies,
both MPT and SoMe generated recommendations at a com-
parable acceptance rate.

As expected, the relation between the two recommenders
changed under the collaborative condition (right plot), where,
descriptively, SoMe reached higher estimates of the F-score
than MPT across all values of x. In this case, the average and
x-independent scores for SoMe and MPT are 0.34 (SD = 0.09)
and 0.27 (SD = 0.08), respectively. Thus, we observed an
interaction between the variables ‘Search Condition’ and
‘Type of TRM’ and found that SoMe outperformed MPT
only during a collaborative information search. The results
of the ANOVA supported this interpretation by yielding a
significant effect for the interaction of the two variables, F
(1,6) = 12.45, p < .05. Beyond that, the test yielded a signifi-
cant main effect for ‘Type of TRM’, F(1,6) = 53.96, p < .001,
but not for ‘Search Condition’, F(1,6) = 0.19, n.s. Due to the
interaction, we did not consider the main effect and con-
cluded in line with hypothesis H2 that the SoMe-advantage
over MPT only applies to the collaborative condition.
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Figure 8. Tag acceptance rate achieved by the MPT and SoMe for a varying number of recommended tags (x = 1,. . .,7) under the individual (left, Figure 8a) and
collaborative search (right, Figure 8b). Error bars represent 1 standard error of mean.
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3.5. Discussion

These results demonstrate that the MPT-based approach is
less appropriate to predict and support individual tagging
behavior, if it is embedded into a collaborative search scenario
where associative hierarchies tend to be flat. A considerably
more effective strategy to derive topically relevant recommen-
dations under inconsistent tagging patterns appears to be the
simulation of a resource-triggered search through associative
memory for familiar and semantically resonant words.

Therefore, the proposed recommender SoMe seems to
implement a promising and robust approach to increase
employees’ tendencies of reusing existent tags independent
of how flat or steep the underlying associative hierarchies
are. Hence, it appears to be an effective and expandable
strategy for a non-human actor (i.e., TRM) helping to balance
exploration/divergence and exploitation/convergence during a
networked search. This is particularly the case in a collabora-
tive situation, where ideational fluency is high (driving indi-
vidual exploration and experimentation) and tagging
consistency needs to be supported to also drive exploitation
of each other’s search results. In such situation of higher
inconsistency, a given topic is more likely to co-occur with
several tags with similar frequencies. As a consequence, the
rank-frequency distribution of the tag vocabulary becomes
flatter and popular tags (head of the rank-frequency distribu-
tion) start overlapping in the topics they are used for. Thus,
statistics of popularity (e.g., usage frequency) alone no longer
suffice to identify topically distinct popular tags, among which
a subset would be likely to match a current resource’s topics.
In contrast, SoMe overcomes this problem of decreased dis-
tinctiveness by filtering the tag vocabulary not only by popu-
larity but also semantic resonance.

By doing so, SoMe considers more information about an
employee’s tagging behavior than MPT does, and therefore a
general advantage of SoMe over MPT (a “main effect”) is of
course expected. However, the question we have explored
with our study is not whether SoMe in general is a more
effective recommender than MPT, but rather whether the
advantage of SoMe interacts with the Search Condition, i.e.,
whether the advantage is larger in the collaborative search
condition. We are also not suggesting SoMe as the most
effective recommendation strategy in collaborative informa-
tion search. To be able to claim this would require a broader
set of alternative strategies to compare SoMe to. In this article,
we were rather interested in examining some of the effects of
collaborative information search on more fundamental cogni-
tive processes such as memory retrieval.

4. Overall discussion

The first goal of the study was to investigate the question
whether mutual stimulation during a collaborative and Web-
based information search has an impact on an employee’s
mental organization of associations around a given topic. In
particular, we expected a tag-mediated circulation of ideas
(collaborative search) to let an employee’s associative hierar-
chy become flatter, which should be indicated by a tradeoff
between an increase in ideational fluency and a decrease in

tagging consistency. The second goal was to introduce and
test the tag recommendation mechanism SoMe designed to
push the reuse of tags and thus, to compensate for the
hypothesized inconsistency in a collaborative search that ben-
efits from balancing processes of divergence (e.g., fluency) and
convergence (e.g., consistency; Lazer & Bernstein, 2012).

First, the task of searching for Web resources was found to
yield a general learning effect independent of the Search
Condition (individual vs. collaborative) by extending the asso-
ciative structure by topic-relevant representations.
Additionally, as this increase of associations did not reduce
their availability (response time), we concluded that learning
consisted not only in broadening the fan of topic-relevant
associations (i.e., flattening the associative hierarchy) but
also in inhibiting or even excluding topic-irrelevant associa-
tions. The resulting associative structure gave rise to an
increased ideational fluency, which was characterized by
both a larger number and a higher speed of responses.
Beyond that, this effect appeared to be larger under the
collaborative than individual condition and became manifest
in a fluency-consistency tradeoff. In line with hypothesis
H1.1., the flatter and more topic-related hierarchy under the
collaborative condition allowed for a steadier stream of ideas
in response to a particular topic (e.g., ‘interior design’); at the
same time, it also caused a more variable assignment of tags to
re-occurring topics during Web search, thereby lending sup-
port to H1.2.

From a psycho-pedagogical perspective, we therefore
gained evidence of a positive impact of mutual stimulation
on individual learning processes: a higher ideational fluency
facilitates creative cognition to the extent that it increases the
probability of bringing otherwise dissociated ideas for a new
and useful combination into ideational contiguity (e.g.,
Benedek & Neubauer, 2013; Mednick, 1962). Also from an
information discovery (Kerne et al., 2008) and information-
based ideation viewpoint (Kerne et al., 2014), our results have
practical design implications by revealing that an individual is
more likely to experience cognitive restructuring and to forge
new associations when searching the Web, if she or he parti-
cipates in a collaborative and tag-based curation of an evol-
ving problem space. From the perspective of information
retrieval, however, a tradeoff on the expense of consistency
exacerbates the stabilization of the tagging vocabulary and
thus, organization of an already curated space.

In order to compensate for this downside of mutual sti-
mulation and to support a tag-based collaborative information
search, we deduced and evaluated the tag recommendation
mechanism (TRM) SoMe from the search of memory scheme.
By mimicking a resource-triggered search of associative mem-
ory (topic-tag associations) to identify and recommend topi-
cally relevant tags, SoMe achieved adequate tag acceptance
rates and, under the collaborative condition, outperformed a
baseline TRM built upon the most popular tags (MPT)
approach (hypothesis H2). The SoMe advantage during a
collaborative search provided evidence of the model’s validity
(in representing an associative hierarchy) and showed an
increased availability of a larger number of associations to
be mirrored by a looser tag-topic relationship. Under such
conditions of inconsistency, a tag’s topical relevance (modeled
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by the search through memory) had to be taken into account
in addition to the tag’s popularity (modeled by frequency) in
order to anticipate an employee’s tagging behavior accurately.
Again our model of reflective search would predict such
interaction: Under the individual search condition, TRM
and tag clouds create a self-reinforcing loop between the
individual and her or his own artifacts that strengthens tag
associations to only a few and recurrently reflected search
topics. The consequence is a steep associative hierarchy with
semantically distinct tags ranking at the hierarchy’s top.
Under the collaborative condition, however, TRM and tag
clouds take a propagating role and animate an individual to
reflect and experience tags in a drifting context of varying
topics. The consequences are broader and overlapping fans of
topic associations that are hardly distinguishable based on
popularity.

5. Conclusions and practical implications

The study reported here adds further evidence to the reflec-
tive search framework that we have developed in the con-
text of social tagging on the web. Through this study, we
have added evidence through two diverse research methods.
First and in a more traditional way, we test the effects of
information search on mental organization (associative
hierarchy). By modeling and simulating memory access
mechanisms with a TRM, we then gather further evidence
for the soundness of the approach by means of an entirely
new research strategy. Taken together, we believe these
results offer convergent evidence for the framework we
have been proposing.

This approach is similar to that of Nijstad and Stroebe
(2006) in their research on group creativity. Like these
authors, we show how a model of learning and search of
memory can become part of a socio-cognitive framework
(i.e., reflective search) and how this integration helps to
describe and simulate supra-individual processes of tag-
based mutual stimulation. In our understanding, social
tags that people encounter in a shared environment do
not lead to imitation, but rather trigger a reflection of the
search topic which changes their mental structures. The
model of search through memory (see Figure 2) serves as
starting point to specify the notion of an associative hier-
archy that we assume to be enacted when users reflect on
objects (e.g., problems, Web resources; Seitlinger & Ley,
2016). The evidence we found for changes in that asso-
ciative hierarchy lends further evidence to the assumption
that reflection triggers an individual learning process (e.g.,
Renner, Prilla, Cress, & Kimmerle, 2016). This act of
“learning-by-reflecting” is stimulated by joint artifacts
(e.g., social tags) and thus, contributing to a collaborative
search results in a broader fan of topic-related associa-
tions and consequently, an increased level of ideational
fluency.

As ideational fluency is an indicator of creative potential
(e.g., Benedek & Neubauer, 2013), the present study also
sheds some light on a process that appears to be conducive
to group creativity (e.g., Nijstad & Stroebe, 2006; Paulus &
Brown, 2007), namely artifact-mediated learning-by-

reflecting, and how this process can be facilitated by
means of creativity-support tools (e.g., Kerne et al., 2008;
Sarmiento & Stahl, 2008), namely tagging combined with
an effective tag recommendation mechanism (TRM).
Especially in the light of echo chamber effects (Pariser,
2011; Sunstein, 2001), which are frequently observed in
online discourses, intelligent information services become
more important that prevent a group from converging in a
particular perspective too early. In future work, we there-
fore would like to investigate the question whether the
applied recommender approach of providing stimuli that
are novel but also resonate with personal knowledge struc-
tures can be an effective way to maintain a distribution of
diverse ideas and thus, to counteract echo chamber effects.

The present work also has implications for the applica-
tion of memory models in the context of TRM. While in
the present work, an abstract scheme of memory search and
a simple computational interpretation sufficed to account
for a comparatively simple behavior (i.e., choosing tags),
continuative research questions on Human-Web interac-
tions could require more complex models of memory
search. The present study took into account two landmarks
of memory psychology in recommending tags, namely
familiarity (represented by the popularity of tags), and
semantic resonance (as specified by the topical filtering
through the MINERVA model). In the future, one goal
will be to further refine the SoMe strategy, for instance,
by extending the model by recency of tag use (e.g., Trattner,
Kowald, Seitlinger, Kopeinik, & Ley, 2016), another impor-
tant factor in retrieval from memory. Furthermore, context
retrieval models (e.g., Polyn et al., 2009) would allow spe-
cifying and parameterizing executive processes (e.g., inter-
nal context updates) that take part in higher-level cognition
(e.g., reflection and formation of information goals) during
Web exploration (Seitlinger & Ley, 2016).

6. Limitations and future work

One limitation of this study is the small sample size of
N = 18 participants, which is owed to the difficulty of
acquiring employees motivated to take part in a four-
weeks work-integrated field study. To face this problem,
we took particular statistical measures inspired by pre-
vious studies on social tagging, such as the one of Pirolli
and Kairam (2012) or the one of Fu and Dong (2012) who
performed model-based analyses of data from samples of
N = 18 and N = 8 participants, respectively. For instance,
to investigate hypothesis H1.1, we drew on a well-estab-
lished modeling technique of memory psychology, which
allowed deriving robust estimates (of N and λ) by aggre-
gating responses across both different stimuli (i.e., topics)
and different participants. Furthermore, to examine H1.2,
not the individual participant but her or his recorded
activities within the bookmarking system served as units
of analysis, resulting in 685 rather than 18 data points.
Finally, for analyzing H2, the unit of analysis was x (i.e.,
the number of recommended tags), which again allowed
for aggregating across participants and all their
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bookmarks and hence, deriving robust estimates of their
tag acceptance rates.

While these statistical techniques help mitigate the pro-
blem of small sample sizes, they do not dissolve it.
Therefore, future studies are necessary that clarify whether
the reported results can be replicated and whether they
generalize to different conditions. On the one hand, such
studies will have to explore the impact of participants’
background and level of expertise in searching for infor-
mation. The present sample consisted of knowledge work-
ers who can be assumed to be highly trained in performing
the activities addressed by our research questions. Thus,
even if we assume general-psychological processes are at
play, such as cue-dependent search of memory, which
should generalize across knowledge domains and skill
levels, questions around external validity remain and
must be clarified empirically. On the other hand, general-
izability will have to be checked in terms of software
features that create affordance for particular behavior. For
instance, the eight-topic list of the bookmarking interface
could have prompted specific priming processes when par-
ticipants assigned tags to their collected resources and thus,
affected their tagging consistency. Though statistical con-
trol analyses indicated no substantial impact arising from
the number of chosen topics, future experiments are neces-
sary to systematically observe the effect of a more or less
differentiated upper-level structure.
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Modeling Popularity and Temporal Drift of Music Genre 
Preferences
Elisabeth Lex*,†, Dominik Kowald*,‡ and Markus Schedl§

In this paper, we address the problem of modeling and predicting the music genre preferences of users. We 
introduce a novel user modeling approach, BLLu, which takes into account the popularity of music genres as 
well as temporal drifts of user listening behavior. To model these two factors, BLLu adopts a psychological 
model that describes how humans access information in their memory. We evaluate our approach on a 
standard dataset of Last.fm listening histories, which contains fine-grained music genre information. To 
investigate performance for different types of users, we assign each user a mainstreaminess value that 
corresponds to the distance between the user’s music genre preferences and the music genre preferences 
of the (Last.fm) mainstream. We adopt BLLu to model the listening habits and to predict the music genre 
preferences of three user groups: listeners of (i) niche, low-mainstream music, (ii) mainstream music, and 
(iii) medium-mainstream music that lies in-between. Our results show that BLLu provides the highest accuracy 
for predicting music genre preferences, compared to five baselines: (i) group-based modeling, (ii) user-based 
collaborative filtering, (iii) item-based collaborative filtering, (iv) frequency-based modeling, and (v) recency-
based modeling. Besides, we achieve the most substantial accuracy improvements for the low-mainstream 
group. We believe that our findings provide valuable insights into the design of music recommender systems.

Keywords: Music Genre Preference Prediction; Music Recommendation; Music Retrieval; Personalized 
Music Access; Time-Aware Recommendation; ACT-R
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1. Introduction
Music recommender systems play a pivotal role in 
popular streaming platforms such as Last.fm,1 Pandora,2 
or Spotify3 to help users find music that suits their taste. 
Existing music recommender systems typically employ 
collaborative filtering algorithms based on the users’ 
interactions with music items (i.e., listening behavior or 
ratings), sometimes in combination with content features 
(e.g., acoustic features of songs) in the form of hybrid music 
recommender systems (Celma, 2010; Schedl et al., 2018b).

Problem. While music recommender systems can provide 
quality recommendations to listeners of popular music, 
related research (Schedl and Bauer, 2018; van den Oord 
et al., 2013) has shown that they tend to fail listeners who 
prefer niche artists and genres. A reason for that is the 

scarcity of usage data of such types of music as music 
consumption patterns are biased towards popular artists 
(van den Oord et al., 2013; Celma, 2010; Celma and Cano, 
2008). In this paper, we introduce a novel user modeling 
and genre prediction approach for users with different 
music consumption patterns and listening habits. We 
focus on three user groups: (i) LowMS, i.e., listeners of 
niche music, (ii) HighMS, i.e., listeners of mainstream (MS) 
music, and (iii) MedMS, i.e., listeners of music that lies 
in-between. The main problem we address in this work is 
how to exploit variations in listening habits to improve 
personalization for all three user groups. We investigate 
this problem by predicting the music genres a user is 
going to listen to in the future.

Approach and methods. We model the users’ listen-
ing behavior in terms of fine-grained music genre 
preferences. To that end, we use behavioral data in the 
form of listening events, i.e., the listening history of which 
genres a user has listened to in the past. Our approach 
is based on the Base-Level Learning (BLL) equation from 
the cognitive architecture ACT-R (Anderson and Schooler 
1991; Anderson et al., 2004) that accounts for the time-
dependent decay of item exposure in human memory. It 
quantifies the usefulness of a piece of information based 
on how frequently and recently a user accessed it in the 
past. This time-dependent decay takes the shape of a 
power-law distribution. Related work has employed the 
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BLL equation to recommend Web links (Fu and Pirolli, 
2007), to recommend scientific talks at conferences 
(Maanen and Marewski, 2009), to recommend tags in 
social bookmarking systems (Kowald and Lex, 2016), and 
to recommend hashtags (Kowald et al., 2017b).

In this work, we build upon these results and adopt the 
BLL equation to model the listening habits of users in our 
three groups to predict their music genre preferences. We 
demonstrate the efficacy of our approach on the LFM-1b 
dataset (Schedl, 2016), which contains listening histories 
of more than 120,000 Last.fm users, amounting to 
1.1 billion individual listening events over nine years. The 
music in this dataset is categorized according to a fine-
grained taxonomy that consists of 1,998 music genres 
and styles. Additionally, the dataset contains demographic 
data such as age and gender as well as a “mainstreaminess” 
factor (Bauer and Schedl, 2019) that relates the listening 
preferences of each user to the aggregated preferences of 
all Last.fm users in the dataset. Based on this factor, we 
assign the users in our dataset to one of the three groups, 
i.e., (i) LowMS, (ii) MedMS, and (iii) HighMS. This allows 
us to evaluate our proposed BLLu approach for different 
types of users.

Contributions and findings. The contributions of our 
work are two-fold. Firstly, we propose the BLLu approach 
for modeling popularity and temporal drift of music genre 
preferences. Secondly, we evaluate BLLu on three different 
groups of Last.fm users, which we separate based on the 
distance of their listening behavior to the mainstream: (i) 
LowMS, (ii) MedMS, and (iii) HighMS.

We find that for all three groups, BLLu provides the 
highest accuracy for predicting music genre preference, 
compared to five baselines: (i) group-based modeling (i.e., 
TOP), (ii) user-based collaborative filtering (i.e., CFu), (iii) 
item-based collaborative filtering (i.e., CFi), (iv) frequency-
based modeling (i.e., POPu), and (v) recency-based 
modeling (i.e., TIMEu). Moreover, BLLu gives the highest 
accuracy improvements for the LowMS group. Finally, we 
also validate our findings in a cold-start setting, in which 
we only evaluate users with a small number of listening 
events. Here, we also find that our BLLu approach provides 
the best prediction accuracy results.

Structure of this paper. This paper is organized as 
follows: In Section 2, we review related work, and in Section 
3, we describe the dataset as well as statistical analyses 
about genre mainstreaminess, popularity, and temporal 
drift of music genre preferences. Also, this section 
includes the methodology and the proposed approach 
for modeling music genre preferences. In Section 4, we 
present the experimental setup as well as the evaluation 
results. Finally, Section 5 concludes this paper and gives 
an outlook into future work.

2. Related Work
At present, we identify three strands of related research: 
(i) research on music preferences in light of psychology, 
(ii) temporal dynamics of music preferences, and (iii) 
personalization for music recommendation.

Research on music preferences in light of psychology. 
Research in music psychology (North and Hargreaves, 
2008) has shown that a range of factors impact music 
preferences (Schedl et al., 2015), such as emotional 
state (Cantor and Zillmann, 1973; Juslin and Sloboda, 
2001; Rodà et al., 2014), a user’s current activity, their 
self-view and self-esteem (North and Hargreaves, 1999), 
the cognitive functions of music (e.g., music as a way to 
communicate and to self-reflect) (Schäfer and Sedlmeier, 
2010), as well as personality (Cattell and Anderson, 1953; 
Arnett, 1992; Dollinger, 1993; Rentfrow and Gosling, 
2003; George et al., 2007; Delsing et al., 2008; Dunn et al., 
2012; Schedl et al., 2018a).

For instance, Rentfrow and Gosling (2003) showed 
that the Big Five personality traits (i.e., openness to 
experience, agreeableness, extraversion, neuroticism, and 
conscientiousness) influence genre preferences in music 
and that music preferences can be categorized along specific 
dimensions (e.g., reflective & complex, intense & rebellious, 
upbeat & conventional, and energetic & rhythmic music); 
the structure of music preferences is also discussed by 
Delsing et al. (2008). Greenberg et al. (2015) found that a 
person’s cognitive approach (i.e., their tendency towards 
empathy versus systemizing versus balancing both) impacts 
their music genre preferences. A user’s music preference is 
also impacted by familiarity (Pereira et al., 2011; Schubert, 
2007). This has been attributed to the so-called mere 
exposure effect (Peretz et al., 1998), which means that prior 
exposure can positively influence music liking. In our work, 
we also incorporate prior exposure (in this case, to a music 
genre) into our model.

Temporal dynamics of music preferences. Music 
preferences are often dynamic due to variations in user 
taste (Kim et al., 2018), or evolving music taste (Moore 
et al., 2013). One can distinguish between research on 
long-term temporal dynamics of listening behavior and 
short-term dynamics. Studies investigating long-term 
dynamics research on, for example, how music preferences 
of children and young adults evolve (Hargreaves et al., 
2015; Leadbeater, 2014), or how user tastes change over 
time and how artists develop (Moore et al., 2013).

Studies investigating short-term dynamics typically 
assess users’ listening behaviors (Aizenberg et al., 2012; 
Park and Kahng, 2010) on a fine-granular basis (e.g., time 
of the day) to detect patterns and periodicity in listening 
behavior, or in the case of Krause and North (2018), to 
study the relationship between music preferences and 
seasons of the year. The latter approaches are typically 
intended to help create predictive models of music 
preferences to create playlist recommendations for music 
streaming services, among others. As we describe in detail 
in Section 3, in our data, we observe interesting temporal 
dynamics in users’ genre listening histories. Specifically, 
the time-dependent decay of number of plays per genre 
follows a power-law distribution, so our users tend to 
listen to genres to which they have recently listened.

Personalization for music recommendation. A number 
of aspects make personalization in music recommender 
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systems challenging, such as, e.g., the variability of listen-
ing intent and purpose of music consumption, insufficient 
ratings and usage data, as well as users’ tendency to 
appreciate recommendations of items that have been 
previously recommended (Schedl et al., 2018b), but also the 
dependence of music preferences on the user’s personality 
traits or emotional state. In this vein, Selvi and Sivasankar 
(2019) extracted the user’s emotional context from social 
media messages as well as their current time context 
and incorporated both to generate personalized music 
recommendations. Ferwerda et al. (2015) used a specific 
personality-enriched dataset that provided links to users’ 
listening histories on Last.fm to leverage personality traits 
to predict a user’s genre preferences. Zheng et al. (2018) 
proposed a tag-aware dynamic music recommendation 
framework that represents musical tracks via user-generated 
tags and generates time-sensitive recommendations. 
Koenigstein et al. (2011) incorporated a temporal 
analysis of user ratings assigned to music pieces and item 
popularity trends into a matrix factorization approach to 
mitigate the issue of insufficient item ratings. The latter 
is a common problem that causes (music) recommender 
systems to suffer from bias towards popular items. Due to 
insufficient amou nts of usage data for less popular items, 
many recommendation algorithms cannot provide useful 
recommendations for consumers of less popular and niche 
items (Abdollahpouri et al., 2019; Celma, 2010; van den 
Oord et al., 2013). Recent work (Vall et al., 2019) has yet 
provided evidence that deep-learning-based methods (i.e., 
recurrent neural networks) seem to be less biased towards 
popular items.

In our work, we use only listening histories as a data 
source to model user preferences and to generate 
recommendations. As we show in Section 3, we observe 
that all users in our dataset tend to consume items they 
have listened to frequently and recently in the past, where 
the time-dependent decay of this item consumption 
count follows a power-law distribution. Correspondingly, 
the Base-Level Learning (BLL) equation from the cognitive 
architecture ACT-R (Anderson and Schooler, 1991; 
Anderson et al., 2004) describes a time-dependent decay of 
item exposure in human memory in the form of a power-
law distribution. Leveraging these similarities between 
characteristics of music consumption patterns and 
cognition models (i.e., ACT-R in our case), we propose here 
to use the BLL equation to describe listeners’ behavioral 
music consumption traces.

3. Data and Method
In this section, we present the dataset we use for our 
study and statistical analyses we carry out. We outline the 
approach of this work and the baselines, which we employ 
to validate our proposed method.

3.1 Dataset and Statistical Analyses
First, we describe the Last.fm dataset, as well as the selected 
genre mapping procedure. We report statistical analyses 
for (i) music genre popularity, (ii) average pairwise user 
similarity, (iii) popularity of music genre preferences, and 
(iv) temporal drifts of music genre preferences.

Dataset description and availability. For our study, 
we use a dataset gathered from the online music service 
Last.fm, namely the LFM-1b dataset.4 LFM-1b contains 
listening histories of more than 120,000 users, totaling 
to about 1.1 billion individual listening events accrued 
between January 2005 and August 2014. Each listening 
event is characterized by a user identifier, artist, album, 
track name, and a timestamp (Schedl 2016). Besides, the 
LFM-1b dataset contains user-specific demographic data 
such as country, age, gender as well as additional features 
such as mainstreaminess, which is defined as the overlap 
between the user’s listening history and the aggregated 
listening history of all Last.fm users in the dataset. More 
precisely, the mainstreaminess of a user corresponds 
to the average distance between all artists’ relative 
frequencies in the user’s listening profile and the artists’ 
relative frequencies among all users in the dataset (Schedl 
and Hauger, 2015).

Mapping listening events to music genres. Since we 
are interested in modeling and predicting music genre 
preferences, we enhance the listening events in the LFM-1b 
dataset with additional genre information. Therefore, we 
use an extension of the LFM-1b dataset, termed LFM-1b 
User-Genre-Profile (i.e., LFM-1b UGP) dataset (Schedl and 
Ferwerda, 2017), which describes the genres of an artist 
in a listening event by exploiting social tags from Last.fm.

Among others, LFM-1b UGP contains a weighted 
mapping of 1,998 music genres and styles available in 
the online database Freebase5 to Last.fm artists. In part, 
this taxonomy includes particular descriptors such as 
“Progressive Psytrance” or “Melodic Black Metal”, and 
therefore allows for a fine-grained representation of 
musical styles. The weightings correspond to the relative 
frequency of tags assigned to artists in Last.fm. For 
example, for the artist “Metallica” the top tags and their 
corresponding relative frequencies are “thrash metal” 
(1.0), “metal” (.91), “heavy metal” (.74), “hard rock” (.41), 
“rock” (.34) and “seen live” (.3). This means that the tag 
“thrash metal” is the most popular genre tag assigned to 
“Metallica” and thus, its weighting is 1.0. From this list, 
we remove all tags that are not part of the 1,998 Freebase 
genres (i.e., “seen live” in our example) as well as all tags 
with a relative frequency smaller than .5 (i.e., “hard rock” 
and “rock” in our example). Thus, for “Metallica”, we end 
up with three genres, namely “thrash metal”, “metal” and 
“heavy metal” that we assign to all listening events of the 
artist “Metallica”. Overall, this process gives us, on average, 
2–3 genres per artist (i.e., mean = 2.466). Furthermore, 
96.25% of the genres are assigned to more than one artist.

User groups based on mainstreaminess. The LFM-1b 
dataset contains a mainstreaminess value for each user, 
which defines the distance from this user’s music genre 
preferences to the music genre preferences of the (Last.fm) 
mainstream. To study different types of users, we split 
the dataset into three equally sized groups based on their 
mainstreaminess (i.e., low, medium, and high). We sort the 
users in the dataset based on their mainstreaminess value 
and assign the 1,000 users with the lowest values to the 
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LowMS group, the 1,000 users with the highest values to 
the HighMS group, and the 1,000 users with a value that 
lies around the average mainstreaminess (=.379) to the 
MedMS group.

Here, we consider only users with at least 6,000 and 
at most 12,000 listening events, a choice we made based 
on the average number of listening events per user in 
the dataset (i.e., 9,043) as well as the kernel density 
distribution of the data. With this method, on the one 
hand, we exclude users with too little data available for 
training our algorithms (i.e., users with <6,000 listening 
events), and on the other hand, we exclude so-called 
power listeners (i.e., users with >12,000 listening events) 
who might distort our results.

Furthermore, this high average number of listening 
events per user also means that we have enough listening 
events (i.e., between 6.9 to 8.2 million) to train and test 
the music genre preference modeling and prediction 
approaches, even if we only consider 1,000 users per group. 
Table 1 summarizes the statistics and characteristics of 
these three groups.

(i) LowMS. The LowMS group represents the |U| = 
1,000 least mainstream users. They have an average 
mainstreaminess value of .125MS  . This group contains 
|A| = 82,417 distinct artists, |LE| = 6,915,352 listening 
events, |G| = 931 genres and |GA| = 14,573,028 genre 
assignments.

(ii) MedMS. The MedMS group represents the 
|U|  = 1,000 users whose mainstreaminess values are 
between the ones of LowMS and HighMS groups (i.e., their 
mainstreaminess values lie around the average). This group 
has an average mainstreaminess value of .379MS  . Most 
statistics of this group lie between those of the LowMS 
and HighMS users (for example, the number of genre 
assignments per listening event |GA|/|LE| = 2.565), except 
for the average age, which is the highest for the MedMS 
users ( 25.352 yearsAge  ).

(iii) HighMS. This group represents the |U| = 1,000 most 
mainstream users in the LFM-1b dataset ( .688MS  ). These 
users are not only the youngest ones ( 21.486 yearsAge  ) 
but also listen to the highest number of distinct genres on 
average ( 186.010uG  ). Also, this user group exhibits the 
highest number of distinct genres (|G| = 973).

Average pairwise user similarity. Finally, the boxplots 
in Figure 1 show the average pairwise user similarity in 
the three user groups. We calculate these scores based on 

the genre distributions of the users and using the cosine 
similarity metric. We see that users in the LowMS group 
have a very individual listening behavior (mean user 
similarity = .118), while users in the HighMS group tend to 
listen to similar music genres (mean user similarity = .691). 
Again, the users in the MedMS group lie in between (mean 
user similarity = .392). Given these results, we expect a 
collaborative filtering approach based on user similarities 
to deliver good genre prediction results for the HighMS 
group.

Popularity of music genre preferences. In Figure 2, 
we compare the music genre popularity distributions of 
the LowMS, MedMS, and HighMS groups. To this end, 
we plot the number of listening events for the groups’ 
top-30 genres. We find that there are some dominating 
genres with more than 2 million LE counts in the HighMS 
group, while the genre distribution is much more evenly 
distributed in the LowMS group with a LE count of around 
500,000 for the most popular genres. We can describe the 
genre distribution of the MedMS group as an intermediate 
of the LowMS and HighMS distribution. We analyze the 
actual top-30 genres in these groups, and while the most 
popular genres Rock and Pop dominate the other genres 

Figure 1: Boxplots show the average pairwise user simi-
larity in our user groups using the cosine similarity met-
ric computed on the users’ genre distributions. While 
users in the LowMS group show a very individual listen-
ing behavior, users in the HighMS group tend to listen 
to similar music genres.
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Table 1: Dataset statistics for the LowMS, MedMS, and HighMS Last.fm user groups. Here, |U| is the number of distinct 
users, |A| is the number of distinct artists, |G| is the number of distinct genres, |LE| is the number of listening events, 
|GA| is the number of genre assignments, |GA|/|LE| is the number of genre assignments per listening event, uG  is the 
average number of genres a user u has listened to, MS  is the average mainstreaminess value, and Age  is the average 
age of users in the group.

User Group |U| |A| |G| |LE| |GA| |GA|/|LE| uG MS Age

LowMS 1,000 82,417 931 6,915,352 14,573,028 2.107 85.771 .125 24.582

MedMS 1,000 86,249 933 7,900,726 20,264,870 2.565 126.439 .379 25.352

HighMS 1,000 92,690 973 8,251,022 22,498,370 2.727 186.010 .688 21.486



Lex & Kowald et al: Modeling Popularity and Temporal Drift of Music Genre Preferences 21

in the HighMS group (LE count of Rock = 2,269,861), 
in the LowMS group, it is not as dominant (LE count of 
Rock = 685,998). Furthermore, we find several genres 
that are not popular in the MedMS and HighMS groups 
but are popular in the LowMS group, such as Ambient 
and Black Metal.

Based on the dataset characteristics, we expect that a 
group-based modeling approach, which models a user’s 
music genre preferences utilizing the most-frequently 
listened genres of all users in the group, performs fine for 
HighMS in relation to other modeling techniques, while 
for the LowMS group, a personalized modeling technique 
would be preferable. In the MedMS group, we expect both 
modeling approaches to work well due to the group being 
an intermediate of the HighMS and LowMS groups.

Temporal drift of music genre preferences. Next, we 
investigate the temporal drift of music genre preferences. 
The plots (a), (b), and (c) of Figure 3 show the effect of 
time on the genre listening behavior of our LowMS, 
MedMS, and HighMS user groups. We plot the relistening 

count of music genres over the time (in hours) since the 
last listening events of these genres on a log-log scale. 
For example, if a user u has listened to artists with genre 
g twice in a time interval of 1 hour, then the relistening 
count for “1 hour” is incremented by 1. We repeat this 
process for all listening events, which gives us a relistening 
count for each hour. We observe similar results for all 
three groups, which means that the shorter the time 
since the last listening event of a genre g, the higher its 
relistening count. In all three plots, we see a peak after 24 
hours, which indicates that people tend to listen to similar 
music genres daily at the same time. However, we also see 
that when people have not listened to a genre for a longer 
period, i.e., one month (around 750 hours), the relistening 
count of this genre drastically drops.

Finally, we also plot the linear regression lines of the 
empirical data in the plots of Figure 3. In the log-log-scaled 
plots, we can observe a good fit of the data, which indicates 
that the data likely follows a power-law distribution 
(cf. Anderson and Schooler, 1991). This claim is supported 
by the high R2 values of the fits, which are between .870 
and .895. Concerning the slopes α of the lines, which 
describe how strongly temporal listening drifts influence 
the user groups, we observe values between –1.480 and 
–1.587. We can use these values as the d parameter of the 
BLL equation (Anderson et al., 2004), cf. Equation 6.

Taken together, we observe interesting temporal effects 
in all three user groups: Last.fm users tend to listen to 
genres they have listened to recently. Moreover, we find 
that this temporal drift of music genre preferences follows 
a power-law distribution. Correspondingly, we can model 
this drift with the BLL equation.

3.2 Modeling and Prediction of Music Genre 
Preferences
In this section, we describe five baseline approaches (i.e., 
TOP, CFu, CFi, POPu, and TIMEu) as well as our approach 
based on the BLL equation for modeling and predicting 
music genre preferences (i.e., BLLu).

Group-based baseline: TOP. Motivated by our analysis in 
Figure 2, the TOP approach models a user u’s music genre 
preferences using the overall top-k (e.g., top-30) genres 

Figure 3: The effect of time on genre relistening behavior for the LowMS, MedMS, and HighMS Last.fm user groups. For 
all three groups, we find that the shorter the time since the last listening event of a genre, the higher its relistening 
count. Additionally, we plot the linear fits of the data and report the corresponding R2 estimates as well as the slopes 
α. We can observe a very good fit of the data, which indicates that the data likely follows a power-law distribution.
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(a) User group: LowMS
Linear regression: R2 = .870, α = -1.480
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(b) User group: MedMS
Linear regression: R2 = .894, α = -1.574
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(c) User group: HighMS
Linear regression: R2 = .895, α = -1.587

Figure 2: Number of listening events LE (in millions) for 
the top-30 genres of our LowMS, MedMS, and HighMS 
Last.fm user groups. We find that there are some domi-
nating genres in the HighMS group, while the genre dis-
tribution in the LowMS group is more evenly distributed.
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of all users in the user group UGu (i.e., LowMS, MedMS, 
HighMS) to which u belongs. This is given by:
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  (1)

where argmaxk refers to the “arguments of the maxima” 
function for the top-k genres with maximum values, 
k
uG  denotes the set of k predicted genres for user u, and 

|GAg,UGu| corresponds to the number of times g occurs in 
all genre assignments GA of UGu. Thus, we describe this 
approach as a group-based modeling technique since it 
reflects the preferences of the whole user group LowMS, 
MedMS or HighMS. As our analysis in Figure 2 shows that 
the genre distribution in the HighMS group is the least 
evenly distributed one, we expect the TOP approach to 
provide good prediction accuracy results for the HighMS 
group while performing worse for the LowMS group in 
relation to other modeling techniques.

User-based collaborative filtering baseline: CFu. User-
based collaborative filtering-based approaches aim to find 
similar users for a target user u, i.e., the set of neighbors 
Nu. Nu is calculated using the cosine similarity between u’s 
genre distribution and the genre distributions of all other 
users. Then, the top-20 users are defined as Nu. Finally, CFu 
predicts the genres these similar users in Nu have listened 
to (Shi et al., 2014), which is formally given by:
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where sim(Gu, Gv) is the cosine similarity between the 
genre distributions of user u and neighbor v, and |GAg,v| 
indicates how often v has listened to genre g. Since CFu 
relies on user similarities, we expect it to provide good 
results for the HighMS group compared to other modeling 
approaches (see also Figure 1).

Item-based collaborative filtering baseline: CFi. Similar 
to CFu, CFi is a collaborative filtering-based approach, 
but instead of finding similar users for the target user 
u, it aims to find similar items (i.e., music artists). Then 
it predicts the genres that are assigned to these similar 
artists as given by:
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Here, Au is the set of artists u has listened to, Sa is the set 
of similar artists for an artist a, sim(Ga, Gs) is the cosine 
similarity between the genres assigned to a and the 
genres assigned to a similar artist s, and |GAg,v| indicates 
how often genre g was assigned to artist a (hence, in our 
case either 0 or 1). Again, a neighborhood size |SAu| = 20 
leads to the best genre prediction results, and we also set 
Au to the set of the 20 artists that u has listened to most 
frequently.

Frequency-based baseline: POPu. The POPu approach is a 
personalized music genre preference modeling technique, 
which predicts the k most frequently listened to (i.e., most 
popular) genres in the listening history of a user u. POPu 
corresponds to the modeling approach presented in 
(Schedl and Ferwerda, 2017) and is given by the following 
equation:
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where Gu is the set of genres u has listened to6 and |GAg,u| 
denotes the number of times u has listened to tracks with 
genre g (i.e., the frequency). Thus, it ranks the genres u has 
listened to in the past by popularity. Therefore, in relation 
to other modeling algorithms, we expect POPu to generate 
good genre predictions for all users in our three user 
groups, but especially for HighMS, in which the popularity 
feature is the most important one (see Figure 2).

Recency-based baseline: TIMEu. Our analysis presented 
in Figure 3 motivates the personalized and recency-based 
music genre preference modeling, where we find that 
people tend to listen to genres to which they have listened 
just very recently. Thus, TIMEu predicts the most recently 
listened to genres that are present in the listening history 
of a user u, which is given by:
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where tu,g,n is the time since the last (i.e., the nth) listening 
event of g by u. Since we find that the temporal drift of 
music genre preferences is an important feature for all our 
three user groups, TIMEu should provide good prediction 
accuracy results for LowMS, MedMS, and HighMS in 
relation to other modeling approaches.

Our approach based on the BLL equation: BLLu. To 
combine the frequency-based modeling method POPu 
with the recency-based modeling method TIMEu, we 
utilize the BLL equation from the declarative memory 
module of the cognitive architecture ACT-R (Anderson et 
al., 2004). The BLL equation quantifies the importance of 
information in human memory (e.g., a word or a music 
genre) by considering how recently (i.e., temporal drift) 
and frequently (i.e., popularity) it was used in the past. In 
our setting, we define it as follows:

 , , ,
  1 

    d
n

u g u g j
j

B ln t −

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= ∑  (6)

Here, g is a genre user u has listened to in the past, and 
n is the number of times u has listened to g. Further, tu,g,j 
is the time since the jth listening event of g by u, and d is 
the power-law decay factor that accounts for the feature 
of the temporal drift of music genre preferences.

We set d to the slopes α identified in the analysis of 
Figure 3 (i.e., 1.480 for LowMS, 1.574 for MedMS, and 
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1.587 for HighMS). The resulting base-level activation 
values Bu,g are normalized using a simple softmax function 
in order to map them onto a range of [0,1] where they 
sum to 1 (Kowald et al., 2017b):
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,
,

exp( )
   

exp( )
u

u g
u g

u g
g G

B
B

B ′
′∈

′ =
∑

 (7)

Again, Gu is the set of distinct genres listened to by u. 
Finally, BLLu predicts the top-k genres kuG  with the highest 
B′u,g values for u:
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Comparison of approaches. Table 2 shows how the 
five baselines, as well as BLLu, cover our four features 
of interest, i.e., (i) personalization, (ii) collaboration, (iii) 
popularity, and (iv) temporal drift.

Here, our BLLu approach is the only one that covers the 
features of personalization, popularity, and temporal drifts. 
Moreover, TOP, CFu, and CFi are the only approaches that 
consider collaboration among users and, thus, investigate 
the listening events of all users. We further examine which 
feature combination works best for predicting genres in 
our setting in the next section of this paper.

4. Experiments and Results
In this section, we outline the experimental setup (see 
Section 4.1) and in Section 4.2, we present the results 
of our study on evaluating the usefulness for modeling 
music genre preferences using the BLL equation.

4.1 Experimental Setup
To measure the accuracy of our music genre preference 
modeling approaches, we conduct a study, in which we 
predict the genres assigned to the artists a user is going to 
listen to in the future.

Evaluation protocol. We split the datasets into train and 
test sets (Cremonesi et al., 2008) and make sure that our 

evaluation protocol preserves the temporal order of the 
listening events, which simulates a real-world scenario 
in which we predict (genres of) future listening events 
based on past ones (Kowald et al., 2017b; Seitlinger et 
al., 2015). This also means that a classic k-fold cross-
validation evaluation protocol with random splits is not 
useful.

Therefore, we put the most recent 1% of the listening 
events of each user into the test set and keep the 
remaining listening events for training. We do not use a 
classic 80/20 or 90/10 split as the number of listening 
events per user is large (i.e., on average 7,689 per user). 
Furthermore, although we only use the most recent 
1% of listening events per user, this process leads to 
three large test sets with 69,153 listening events for 
LowMS, 79,007 listening events for MedMS, and 82,510 
listening events for HighMS. On average, there are 
76 listening events per user for which we predict the 
assigned genres.

In Figure 4, we present boxplots showing the average 
duration in days per user we have available in our three 
test sets. We see that the average duration per user is 
evenly distributed across all three user groups with a 
median value of 11.8 days, which is also around 1% of the 
median value of the overall average duration per user (i.e., 
the sum of training and test durations). This corresponds 
to the 1% of the listening events per user we use for the 
test sets. Thus, we are going to predict the genres a user is 
going to listen to in this period.

Following this evaluation protocol, our goal is to validate 
whether our BLL-based approach (i.e., BLLu) provides 
better prediction accuracy results than the five baseline 
approaches (i.e., TOP, CFu, CFi, POPu, and TIMEu). When 
investigating the numbers shown in Table 1, we also 
see that our prediction task is not trivial since |GA|/|LE|, 
i.e., the number of genre assignments per listening event 
(=what should be predicted), is much smaller than uG , 
i.e., the average number of genres a user u has listened to 
(=what could be predicted).

Table 2: Comparison of our five baselines as well as our 
approach based on the BLL equation for modeling and 
predicting music genre preferences. In this table, a “” 
indicates that a specific approach covers a specific fea-
ture. While TOP, CFu and CFi also consider collabora-
tion among users (i.e., investigate listening events of all 
users), our BLLu approach is the only one that is person-
alized and accounts for the features of popularity as well 
as temporal drifts.

Feature TOP CFu CFi POPu TIMEu BLLu

Personalization     

Collaboration   

Popularity     

Temporal drifts  

Figure 4: Boxplots showing the average duration in days 
per user we have available in our three test sets. Across 
all three users groups, the average duration per user is 
evenly distributed with a median value of 11.8 days.

LowMS MedMS HighMS

User groups

0

20

40

60

80

100

A
ve

ra
ge

du
ra

ti
on

in
te

st
se

t
(i
n

da
ys

)



Lex & Kowald et al: Modeling Popularity and Temporal Drift of Music Genre Preferences24 

Evaluation metrics. To measure the prediction quality of 
the approaches, we use the following six state-of-the-art 
metrics (Baeza-Yates and Ribeiro-Neto, 2011):

(i) Recall: R@k. Recall is calculated as the number 
of correctly predicted genres divided by the number of 
relevant genres (i.e., from the test set). It is a measure of 
the completeness of the predictions.

(ii) Precision: P@k. Precision is calculated as the 
number of correctly predicted genres divided by the 
number of predictions k and is a measure of the accuracy 
of the predictions. We report recall and precision for k = 1 
… 10 predicted genres in the form of recall/precision plots.

(iii) F1-score: F1@5. F1-score is the harmonic mean 
of recall and precision. If 10 genres are predicted, the 
F1-score typically reaches its highest value for k = 5. Thus, 
we report it for k = 5.

(iv) Mean Reciprocal Rank: MRR@10. MRR is the 
mean of reciprocal ranks of all relevant genres in the list 
of predicted genres.

(v) Mean Average Precision: MAP@10. MAP is the 
mean of the average precision scores at all ranks where 
relevant genres are predicted. With this, it also takes the 
ranking of the correctly predicted genres into account.

(vi) Normalized Discounted Cumulative Gain: 
nDCG@10. nDCG is another ranking-dependent metric. 
It is based on the Discounted Cumulative Gain (DCG) 
measure (Järvelin et al., 2008).

We report MRR, MAP, and nDCG for k = 10 predicted music 
genres, where these metrics reach their highest values.

Evaluation framework. For reasons of reproducibility, we 
conduct the prediction study using our recommendation 
benchmarking framework TagRec (Kowald et al., 2017a), 
which provides the evaluation protocol and metrics 

described in this section. Furthermore, we also implement 
the modeling approaches described in Section 3.2 using 
TagRec. It is freely available via our Github repository.7

4.2 Results and Discussion
In this section, we report and discuss our prediction 
accuracy results on evaluating the usefulness of our BLL-
based music genre preference modeling approach (i.e., 
BLLu) compared to five baseline approaches: (i) group-
based modeling (i.e., TOP), (ii) user-based collaborative 
filtering (CFu), (iii) item-based collaborative filtering (CFi), 
(iv) frequency-based modeling (i.e., POPu), and (v) recency-
based modeling (i.e., TIMEu).

Table 3 summarizes our evaluation results for the three 
user groups (i.e., LowMS, MedMS, and HighMS), the four 
evaluation metrics (i.e., F1@5, MRR@10, MAP@10, and 
nDCG@10) as well as the six approaches (i.e., TOP, CFu, CFi, 
POPu, TIMEu, and BLLu). Additionally, in Figure 5, we show 
the recall/precision plots of the approaches for k = 1…10 
predicted genres (i.e., R@k and P@k).

Based on the features introduced in Table 2, we discuss 
these results concerning the influence of (i) personaliza-
tion, (ii) collaboration, (iii) popularity, and (iv) temporal 
drift. Furthermore, we compare the results of our BLLu 
approach for our user groups and different numbers 
of predicted genres in Figure 6 as well as show the 
performance of the approaches in a cold-start setting in 
Figure 7. Finally, we also discuss the implications of our 
findings for personalized music recommendation.

Influence of personalization. The personalized appro-
aches (i.e., POPu, CFu, CFi, TIMEu, and BLLu) outperform the 
group-based TOP approach in the LowMS setting. This is 
in line with our analysis presented in Figure 2, where we 

Table 3: Genre prediction accuracy results of our study comparing our BLLu approach with a group-based base-
line (TOP), a user-based collaborative filtering baseline (CFu), an item-based collaborative filtering baseline (CFi), a 
 frequency-based baseline (POPu) and a recency-based baseline (TIMEu). For all three user groups (i.e., LowMS, MedMS, 
and HighMS), the combination of popularity and temporal drift of music genre preferences in the form of BLLu 
 provides the best results for all metrics. According to a t-test with α = .001, “***” indicates statistically significant 
 differences between BLLu and all other approaches for all user groups.

User group Evaluation metric TOP CFu CFi POPu TIMEu BLLu

LowMS F1@5 .108 .311 .341 .356 .368 .397***

MRR@10 .101 .389 .425 .443 .445 .492***

MAP@10 .112 .461 .505 .533 .550 .601***

nDCG@10 .180 .541 .590 .618 .625 .679***

MedMS F1@5 .196 .271 .284 .292 .293 .338***

MRR@10 .146 .248 .264 .274 .272 .320***

MAP@10 .187 .319 .336 .351 .365 .419***

nDCG@10 .277 .419 .441 .460 .452 .523***

HighMS F1@5 .247 .273 .266 .282 .228 .304***

MRR@10 .188 .232 .229 .242 .201 .266***

MAP@10 .246 .304 .298 .314 .267 .348***

nDCG@10 .354 .413 .402 .429 .357 .462***
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found that the music genre popularity distribution in the 
LowMS group is the most evenly distributed one.

The same is true for the MedMS group, in which we 
observe a very similar performance of CFu, CFi, POPu, and 
TIMEu. However, in the HighMS setting only the four 
personalized approaches, which utilize the popularity 
feature (i.e., POPu, CFu, CFi, and BLLu) outperform TOP. 
This shows that the influence of personalization on the 

prediction accuracy becomes more important as the 
mainstreaminess of the users decreases (i.e., in the LowMS 
setting).

Influence of collaboration. We investigate the genre 
prediction accuracy of three approaches (i.e., TOP, CFu, 
and CFi) that consider collaboration among users, i.e., 
that analyze the listening events of all users. Here, the 
personalized CFu and CFi approaches provide better results 
than the non-personalized TOP approach for all three user 
groups.

Furthermore, CFu provides its best results for the 
HighMS group. This is in line with our analysis presented 
in Figure 1, which shows that the average pairwise user 
similarity is the highest for high-mainstream users. This 
is also the reason why CFi does not outperform CFu in the 
HighMS but outperforms it in the LowMS and MedMS 
settings.

Influence of popularity. We evaluate four popularity-
based approaches. The first approach provides non-
personalized genre predictions based on the preferences 
of all users (i.e., TOP), and the second offers personalized 
predictions based on user similarities (i.e., CFu). The third 
approach provides personalized predictions using item 
similarities (i.e., CFi), and the fourth produces personalized 
genre predictions based on the preferences of the 
individual user (i.e., POPu). While the prediction accuracy 
of TOP increases with the level of mainstreaminess, the 
prediction accuracy of POPu decreases with the level of 
mainstreaminess. The prediction accuracy of CFu and CFi 
are relatively stable over all three user groups, with the 
only exception that CFu provides better results than CFi in 
the HighMS setting.

Thus, in the HighMS group, TOP provides a higher 
prediction accuracy than in the other two groups. These 
results are in line with our analysis presented in Figure 2, 
where we find that there are some dominating genres in 
the HighMS group, which explains the good results of TOP, 
CFu, and POPu in this setting. When further comparing CFu 
with CFi, we see that CFi outperforms CFu in the LowMS 
and MedMS settings.

Influence of temporal drift. Our analysis in Figure 3 
reveals that users in Last.fm tend to listen to genres which 
they have listened to very recently. In other words, time is 

Figure 5: Recall/precision plots of the baselines and our BLLu approach for the three user groups LowMS, MedMS, and 
HighMS. We see that BLLu provides the best results for all groups and for all k = 1…10 predicted genres.
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(b) User group: MedMS
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Figure 6: Recall/precision plot of our BLLu approach for 
k  = 1…10 predicted genres for the three user groups 
LowMS, MedMS and HighMS. We see that BLLu provides 
good prediction accuracy results for all groups but espe-
cially in the LowMS setting. This shows that our approach 
is especially useful for predicting the music genre prefer-
ences of users with low mainstreaminess values.
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Figure 7: Recall/precision plot for our BLLu approach and 
our five baselines in a cold-start setting. We see that 
BLLu also provides the best results in cases where users 
only have a few listening events available for training.
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important for all three user groups. However, as shown in 
Table 3 and Figure 5, TIMEu provides the weakest accuracy 
results for HighMS and good prediction accuracy results 
for LowMS and MedMS. Thus, for HighMS, popularity is a 
more important feature than recency.

BLLu outperforms TIMEu in all experiments. This means 
that our personalized modeling approach, which also 
considers the features of popularity and temporal drifts, 
can provide accurate genre predictions for all three groups 
in relation to other modeling techniques.

Accuracy of BLLu for different values of k. In Figure 6, 
we show the recall/precision results of BLLu for k = 1…10 
predicted genres for the three user groups. We observe 
apparent differences in the accuracy value ranges when 
comparing the three groups. While BLLu outperforms 
the five baselines in all three settings (with significant 
differences between BLLu and all other approaches 
according to a t-test with α = .001), the accuracy estimates 
are much higher in the LowMS group (i.e., R@10 = .827 and 
P@1 = .559) than in the MedMS group (i.e., R@10 = .674 
and P@1 = .419) and the HighMS group (i.e., R@10 = .603 
and P@1 = .377). This shows that our approach is 
especially useful to predict the genre preferences of users 
with low inclination to listen to mainstream music.

Performance in cold-start setting. Since recommender 
systems are often faced with situations in which users only 
have a few interactions available to train the underlying 
recommendation algorithms, we also evaluate our BLLu 
approach in a cold-start setting (Schein et al., 2002). For 
this, we extract the 1,000 users with the lowest number 
of LEs from the LFM-1b dataset. As we need to make sure 
that we have at least 1 LE per user available for training 
the algorithms, this procedure leads to 1,000 users with 
a minimum of 2 LEs and a maximum of 46 LEs per user. 
For these users, we have precisely 1 LE in the test set, for 
which we predict the assigned genres.

Our results for this experiment are shown in the 
recall/precision plot of Figure 7. Here, we observe 
very similar results to the ones of our LowMS, MedMS, 
and HighMS settings (see Figure 6). Thus, again BLLu 
provides the best accuracy results followed by TIMEu, 
POP, CFi, and CFu. As expected, the non-personalized 
TOP approach provides the worst results in this setting. 
These results show that BLLu is also capable of effectively 
predicting music genre preferences in cold-start settings 
where users only have a few listening events available 
for training.

Implications for personalized music recommendation. 
In this section, so far, we have shown that BLLu outperforms 
the baseline approaches concerning prediction accuracy 
in different settings (i.e., LowMS, MedMS, HighMS, and 
cold-start). When looking at Figure 6, this is especially 
true for the LowMS group, in which users do not 
follow the preferences of the mainstream, and thus, a 
personalization technique, as given by the BLL equation, 
is critical. If we relate this to music recommender systems, 
which exploit the listening histories of users to suggest 

other music that they might also like, our findings lead to 
interesting implications. Schedl and Hauger (2015) have 
shown that standard recommendation algorithms such 
as collaborative filtering cannot provide suitable music 
recommendations for users with low mainstreaminess. 
The results presented in this section support this. In other 
words, such users need different music recommendation 
algorithms that account for their highly individual 
listening preferences.

One way to achieve this could be to combine state-of-
the-art music recommendation algorithms (see Section 2) 
with our music genre preference modeling approach based 
on the BLL equation presented in this paper. We could use 
the calculated B′u,g values given by our approach as an 
input for these algorithms or to rerank recommendation 
results based on the importance of a genre for a user. We 
elaborate on these ideas as well as other plans for future 
work in Section 5.

5. Conclusion and Future Work
In this paper, we presented BLLu, an approach that utilizes 
the features of popularity and temporal drifts to model and 
predict music genre preferences via fine-grained genres. 
We leveraged the LFM-1b dataset of more than one billion 
music listening events, created by approximately 120,000 
users of the online music service Last.fm. We divided the 
users into three groups based on the proximity of their 
music genre preferences to the mainstream: (i) LowMS, 
i.e., listeners of niche music, (ii) HighMS, i.e., listeners of 
mainstream music, and (iii) MedMS, i.e., listeners of music 
that lies in-between. To take into account the popularity 
and temporal drift of music genre preferences, we 
proposed to use the Base-Level Learning (BLL) equation 
from the cognitive architecture ACT-R, which quantifies 
the importance of information in human memory (e.g., 
a music genre) by considering how frequently (i.e., 
popularity) and recently (i.e., temporal drift) it was used in 
the past. A comparison between BLLu and a group-based 
baseline (i.e., TOP), a user-based collaborative filtering 
baseline (i.e., CFu), an item-based collaborative filtering 
baseline (i.e., CFi), a frequency-based baseline (i.e., POPu) as 
well as a recency-based baseline (i.e., TIMEu) showed that 
BLLu outperforms all other approaches for all three user 
groups in terms of prediction accuracy.

Furthermore, our results indicate that BLLu is especially 
useful to predict the music genre preferences of users 
with interest in low-mainstream music (i.e., the LowMS 
user group), which opens up interesting possibilities for 
future work in the research area of personalized music 
recommender systems.

Limitations and future work. So far, we limited our 
approach to the BLL equation of the declarative memory 
module of ACT-R. Since the BLL equation is only a part 
of the more exhaustive ACT-R framework that does 
not consider contextual information, one needs to 
consider this limitation when utilizing our approach. 
For example, when we model music genre preferences 
exclusively via past listening behavior, phenomena such 
as over-personalization or filter-bubble effects could occur 
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(Nguyen et al., 2014). To overcome this, we plan to extend 
our model to the full activation equation of ACT-R, which 
also considers contextual information via its associative 
activation (Anderson et al., 2004). Moreover, we plan to 
extend our model by other components of ACT-R, for 
example, to investigate further context dimensions such 
as the mood or the current activity of the user (see, e.g., 
Ferwerda et al. (2015)). We could achieve this by defining 
and implementing so-called production rules from ACT-
R’s procedural memory module as, for instance, done in 
the SNIF-ACT model (Pirolli and Fu, 2003; Fu and Pirolli, 
2007). Another limitation of our work is that we employed 
a rather simple definition for the mainstreaminess of a 
user. We, therefore, plan to extend our analysis to include 
more sophisticated mainstreaminess measures, e.g., based 
on rank-order correlation or Kullback-Leibler divergence 
(Schedl and Bauer, 2018). As part of future work, we plan 
to integrate our findings into music recommendation 
algorithms, with particular attention to addressing the 
low mainstreaminess group, since standard collaborative 
filtering approaches tend to fail to provide suitable music 
recommendations for this user group (Schedl and Hauger, 
2015). For example, we plan to integrate the preference 
values we obtain for a specific user and a particular genre 
via our approach as a context dimension into a matrix 
factorization-based approach (Mnih and Salakhutdinov, 
2008; Koenigstein et al., 2011) or a deep learning-based 
approach (Lin et al., 2018; Sachdeva et al., 2018).

Furthermore, we aim to apply our approach to the 
problem of music playlist continuation, which was also the 
task of the ACM RecSys Challenge 2018.8 We believe that 
our findings concerning the temporal relistening patterns 
of music genres (see Section 3.1) could help identify genres 
that users commonly listened to consecutively. We could 
then, for example, incorporate such genre sequences 
into the two-stage convolutional neural network (CNN) 
model for automatic playlist continuation that was 
proposed by Volkovs et al. (2018). Finally, we would like 
to highlight that our approach could be easily leveraged 
by researchers and practitioners also for other related 
tasks (e.g., recommending music artists) and not only for 
genre prediction. Thus, we hope that future work in the 
areas of user modeling and music recommendation will 
be attracted by our insights.

Reproducibility
To foster the reproducibility of our research, we use the 
publicly available LFM-1b Last.fm dataset (see Section 
3.1). Furthermore, we provide our evaluation framework 
TagRec (see Section 4.1) freely for academic purposes. 
We hope that the approach presented in this paper and 
its implementation in TagRec, as well as the dataset, will 
attract further research on music preference modeling 
and recommender systems.

Notes
 1 https://www.last.fm/.
 2 https://www.pandora.com/.
 3 https://www.spotify.com/.
 4 http://www.cp.jku.at/datasets/LFM-1b/.

 5 https://developers.google.com/freebase/ (no longer 
maintained).

 6 Here, we could also use G instead of Gu, which 
would lead to the same results, but to reduce the 
computational effort, we only need to consider the 
genres that the target user u has listened to in the past.

 7 https://github.com/learning-layers/TagRec.
 8 http://www.recsyschallenge.com/2018/.
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ABSTRACT
In this paper, we introduce a psychology-inspired approach
to model and predict the music genre preferences of differ-
ent groups of users by utilizing human memory processes.
These processes describe how humans access information
units in their memory by considering the factors of (i) past
usage frequency, (ii) past usage recency, and (iii) the current
context. Using a publicly available dataset of more than a
billion music listening records shared on the music stream-
ing platform Last.fm, we find that our approach provides
significantly better prediction accuracy results than various
baseline algorithms for all evaluated user groups, i.e., (i) low-
mainstream music listeners, (ii) medium-mainstream music
listeners, and (iii) high-mainstream music listeners. Further-
more, our approach is based on a simple psychological model,
which contributes to the transparency and explainability of
the calculated predictions.

1 INTRODUCTION
Computational models of user preferences are crucial ele-
ments of music recommender systems [27] to tailor recom-
mendations to the preferences of the user. Such user models
are typically derived from the listening behavior of the users,
i.e., their interactions with music artifacts, content features
of music [34], or hybrid combinations of both. Research in
music psychology [16] has shown that a wide range of factors
impact music preferences [27], such as emotional state [5, 10],
a user’s current context [20], or a user’s personality [20, 25].
Several aspects make the modeling of music preferences

∗Both authors contributed equally to this work.
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challenging, such as, e.g., that music consumption is context-
dependent and serves various purposes for listeners [28].
Also, recent research [7] has verified that classic music rec-
ommendation approaches suffer from popularity bias, i.e.,
they are biased to the mainstream that is prevalent in a music
community. As a result, listeners of non-mainstream music
receive less relevant recommendations compared to listeners
of popular, mainstream music [4, 17, 22, 23].

In this paper, we introduce a psychology-inspired ap-
proach to model and predict the music genre preferences of
users. We base our approach on research in music psychol-
ogy that found music liking being positively influenced by
prior exposure to the music [18, 29]. This has been attrib-
uted to the mere exposure effect or familiarity principle [33],
i.e., users tend to establish positive preferences for items to
which they are frequently and consistently exposed. Our idea
is to computationally model prior exposure to music genres
using the activation equation of human memory from the
cognitive architecture Adaptive Control of Thought–Rational
(ACT-R) [1, 2]. The activation equation determines the use-
fulness of a memory unit (i.e., its activation) for a user in
the current context, based on how frequently and recently
a user accessed it in the past as well as how important this
unit is in the current context. In our previous work, we have
employed a specific part of the activation equation, namely
the Base-Level-Learning (BLL) equation, to recommend mu-
sic artists [14]. The BLL equation computes the base-level
activation of a memory unit based on how frequently and
recently a user has accessed it in the past, following a time-
dependent decay in the form of a power-law distribution.
A high base-level activation means that the memory unit
is vital for the user and, thus, can be more easily retrieved
from her memory. However, in this work [14], we did not
implement the full activation equation as we left out the
associative activation that tunes the base-level activation of
the memory unit to the current context.

In the present paper, we extend our previous model and
utilize the associative activation for music genre predictions.
This helps us tune the predictions to the current context of
the user. As the current context, we utilize the set of genres
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User Group |U | |A| |G | |LE | |GA| |GA|/|LE | |G |/|U | Avд.MS Avд.Aдe M/F
LowMS 1,000 82,417 931 6,915,352 14,573,028 2.107 85.771 .125 24.582 74%/26%
MedMS 1,000 86,249 933 7,900,726 20,264,870 2.565 126.439 .379 25.352 68%/32%
HighMS 1,000 92,690 973 8,251,022 22,498,370 2.727 186.010 .688 21.486 65%/35%

Table 1: Dataset statistics for the LowMS, MedMS, and HighMS Last.fm user groups. Here, |U | is the number of distinct users,
|A| is the number of distinct artists, |G | is the number of distinct genres, |LE | is the number of listening events, |GA| is the
number of genre assignments, |GA|/|LE | is the average number of genre assignments per LE, |G |/|U | is the average number of
genres a user has listened to, Avд.MS is the average mainstreaminess value, Avд.Aдe is the average age of users in the group
and M/F is the users’ male/female ratio.

that are assigned to the most recently listened artist of a user.
On a publicly available dataset of Last.fm music listening
histories, we model the genre preferences of users from three
different groups, which we extract using behavioral data in
the form of music listening events: (i) LowMS, i.e., listeners
of niche music (low mainstreaminess), (ii) HighMS, i.e., lis-
teners of mainstream music (high mainstreaminess), and (iii)
MedMS, i.e., listeners of music that lies in-between (medium
mainstreaminess). We introduce the ACTu ,a approach that
employs the full activation equation to take into account the
current context of the user, which we define as the user’s
current genre preference. We compare the efficacy of ACTu ,a
to a variant, i.e., BLLu , that uses only the BLL equation to
model the past usage frequency (i.e., popularity) and recency
(i.e., time). Furthermore, we compare both approaches to
five baselines, including two collaborative filtering variants,
mainstream-aware genre modeling, popularity-aware genre
modeling, as well as time-based genre modeling.

The contributions of our work are two-fold. Firstly, we
propose ACTu ,a , as an extension to BLLu , to model and pre-
dict the genre preferences of users. Secondly, we evaluate the
efficacy of both BLLu and ACTu ,a on three different groups
of Last.fm users, which we separate based on the distance
of their listening behavior to the mainstream: (i) LowMS,
(ii) MedMS, and (iii) HighMS. We find that both BLLu and
ACTu ,a outperform the five baseline methods in all three
groups, with ACTu ,a achieving the significantly highest per-
formance. Our results also show that with both BLLu and
ACTu ,a , we can specifically improve the prediction perfor-
mance for the users in the LowMS group. In other words, we
can serve better the music consumers, whose prediction qual-
ity suffers the most from popularity bias. Also, both BLLu
and ACTu ,a are based on a psychological theory, whose com-
putational model is transparent and explainable and not a
black box.

2 DATA AND APPROACH
In this section, we describe the Last.fm dataset as well as our
music genre modeling and prediction approaches.

Dataset
In this paper, we use the publicly available LFM-1b dataset1

of music listening information shared by users of the online
music platform Last.fm. LFM-1b contains listening histories
of more than 120,000 users, which sums up to over 1.1 billion
listening events (LEs) collected between January 2005 and
August 2014. Each LE contains a user identifier, the artist, the
album, the track name, and a timestamp [21]. Furthermore,
the LFM-1b dataset contains demographic data of the users
such as country, age, gender, and a mainstreaminess score,
which is defined as the overlap between a user’s personal
listening history and the aggregated listening history of all
Last.fm users in the dataset. Thus, the mainstreaminess score
reflects a user’s inclination to music listened to by the Last.fm
mainstream listeners (i.e., the “average” Last.fm listener) [26].

User groups. In order to study different types of users, we
use this mainstreaminess score to split the LFM-1b dataset
into three equally sized user groups based on their main-
streaminess (i.e., low, medium, and high). Specifically, we
sort all users based on their mainstreaminess score and assign
the 1,000 users with the lowest scores to the low-mainstream
group (i.e., LowMS), the 1,000 users with scores around the
median mainstreaminess (= .379) to the medium-mainstream
group (i.e., MedMS), and the 1,000 users with the highest
scores to the high-mainstream group (i.e., HighMS).

In our study, we consider only users with a minimum
of 6,000 and a maximum of 12,000 LEs. We choose these
thresholds based on the average number of LEs per user
in the dataset, which is 9,043, as well as the kernel density
distribution of the data. With this method, on the one hand,
we exclude users with too little data available for training our
algorithms (i.e., users with less than 6,000 LEs), and on the
other hand, we exclude so-called power listeners (i.e., users
with more than 12,000 LEs) that might distort our results.
Table 1 summarizes the statistics and characteristics of our
three user groups. We see that, even if we only consider 1,000
users per group, we have a sufficient amount of LEs, i.e.,
between 6.9 to 8.3 million, to train and test our music genre
1http://www.cp.jku.at/datasets/LFM-1b/
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modeling and prediction approaches. Further characteristics
of our user groups are as follows:

(i) LowMS. The LowMS group represents the |U | = 1,000
users with the smallest mainstreaminess scores. These users
have an average mainstreaminess value of Avд.MS = .125.
LowMS contains |A| = 82,417 distinct artists, |LE | = 6,915,352
listening events, |G | = 931 genres, and |GA| = 14,573,028
genre assignments. Interestingly, the male/female ratio is the
least evenly distributed one in this group (i.e.,M/F = 74%/26%).

(ii) MedMS. The MedMS group consists of the |U | = 1,000
users with mainstreaminess scores around the median and
thus, lying between the ones of the LowMS and HighMS
groups. This group has an average mainstreaminess value
of Avд.MS = .379. The majority of dataset statistics of this
group lies between the ones of the LowMS and HighMS
users, except for the average age, which is the highest for
the MedMS users (i.e., Avд.Aдe = 25.352 years).

(iii) HighMS.The HighMS group represents the |U | = 1,000
users in the LFM-1b dataset with the highest mainstreami-
ness scores (Avд.MS = .688). These users are not only the
youngest ones (i.e., Avд.Aдe = 21.486 years) but also listen
to the highest number of distinct genres on average (i.e.,
|G |/|U | = 186.010), indicating that music which is consid-
ered mainstream is quite diverse on Last.fm. Also, this user
group exhibits the largest number of female listeners (i.e.,
M/F = 65%/35%) and the highest number of distinct genres
(|G | = 973).

Additionally, we investigate the most frequent countries
of the users. Here, for all three groups, the United States (US)
is the dominating country. The share of US users increases
with the mainstreaminess, i.e., while this share is only 14%
for LowMS and 18% for MedMS, it is already 22% for HighMS.
Interestingly, Russia (RU, 13%), Poland (PL, 9%), and Japan
(JP, 8%) are frequent in the LowMS group, while the United
Kingdom (UK) contributes a substantial share in the other
two groups (9% for MedMS and 14% for HighMS). Germany
(DE) is among the most popular countries in all three groups
(10% for LowMS and HighMS, 8% for MedMS); Brazil (BR)
can only be found among the most popular countries in the
MedMS group (8%); and the Netherlands (NL, 5%) as well as
Spain (ES, 4%) can only be found in the HighMS group.

Genre mapping. For mapping music genres to artists, we
use an extension of the LFM-1b dataset, namely the LFM-1b
UGP dataset [24], which describes the genres of an artist by
leveraging social tags assigned by Last.fm users. Specifically,
LFM-1b UGP contains a weighted mapping of 1,998 music
genres available in the online database Freebase2 to Last.fm
artists. This database includes a fine-grained representation
of musical styles, including genres such as “Progressive Psy-
trance” or “Pagan Black Metal”.
2https://developers.google.com/freebase/ (no longer maintained)

The genre weightings for any given artist correspond to
the relative frequency of tags assigned to that artist in Last.fm.
For example, for the artist “Metallica”, the top tags and their
corresponding relative frequencies are “thrash metal” (1.0),
“metal” (.91), “heavy metal” (.74), “hard rock” (.41), “rock” (.34),
and “seen live” (.3). From this list, we remove all tags that are
not part of the 1,998 Freebase genres (i.e., “seen live” in our
example) as well as all tags with a relative frequency smaller
than .5 (i.e., “hard rock” and “rock” in our example). Thus, for
“Metallica”, we end up with three genres, i.e., “thrash metal”,
“metal” and “heavy metal”.

Approach
In this section, we describe our music genre modeling and
prediction approach based on the declarative memory mod-
ule of ACT-R.

The Cognitive Architecture ACT-R. ACT-R, which is short
for “Adaptive Control of Thought – Rational”, is a cognitive
architecture developed by John Robert Anderson [1]. ACT-R
defines and formalizes the basic cognitive operations of the
human mind (e.g., access to information in human memory).

Figure 1 schematically illustrates the main architecture of
ACT-R. In general, ACT-R differs between short-term mem-
ory modules, such as the working memory module, and
long-term memory modules, such as the declarative and
procedural memory modules. Using a sensory register (i.e.,
the ultra-short-term memory), the encoded information is
passed to the short-term working memory module, which
interacts with the long-term memory modules. In the case
of the declarative memory, the encoded information can be
stored, and already stored information can be retrieved. In
the case of the procedural memory, the information can be
matched against stored rules that can lead to actions [32].

Thus, declarative memory holds factual knowledge (e.g.,
what something is), and procedural memory consists of se-
quences of actions (e.g., how to do something). In our work,
we focus on the declarative part, which contains the activa-
tion equation of human memory. The activation equation
determines the usefulness, i.e., the activation level Ai , of a
memory unit i (e.g., a music genre in our case) for a user u
in the current context. It is given by:

Ai = Bi +
∑
j

Wj · S j ,i (1)

Here, the Bi component represents the base-level activation
and quantifies the general usefulness of the unit i by consid-
ering how frequently and recently it has been used in the
past. It is given by the base-level learning (BLL) equation:

Bi = ln

(
n∑

j = 1
t−dj

)
(2)
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Figure 1: Schematic illustration of ACT-R. In our work, we
focus on the activation equation of the declarative memory
module.

where n is the frequency of i’s occurrences and tj is the time
since the jth occurrence of i . The exponent d accounts for
the power-law of forgetting, which means that each unit’s
activation level caused by the jth occurrence decreases in
time according to a power function [1].

The second component of Equation 1 represents the asso-
ciative activation that tunes the base-level activation of the
unit i to the current context. The context is given by any
contextual element j that is relevant for the current situation.
In the case of a music recommender system, that could be
a music genre that the user prefers in the current situation.
Through learned associations, the contextual elements are
connected with i and can increase i’s activation depending
on the weightWj and the strength of association S j ,i .

Modeling and Predicting Music Genre Preferences. For model-
ing and predicting music genre preferences, we investigate
two approaches: (i) BLLu based on the BLL equation to model
the past usage frequency (i.e., popularity) and recency (i.e.,
time), and (ii) ACTu ,a based on the full activation equation
to also take the current context into account.

We start with BLLu and thus, with defining the base-level
activation B(д,u) for genre д and user u by utilizing the
previously defined BLL equation:

B(д,u) = ln

(
n∑

j = 1
t−du ,д, j

)
(3)

Here, д is a genre user u has listened to in the past, and n
is the number of times u has listened to д. Further, tu ,д, j is

the time in seconds since the jth LE of д by u, and d is the
power-law decay factor, which we identify using a similar
method as used in [15]. Thus, in Figure 2, for all LEs and
genres in our dataset, we plot the relistening count of a genre
д over the time since the last LE of д. Then, we set d to the
slope α of the linear regression lines of this data, which leads
to 1.480 for LowMS, 1.574 for MedMS, and 1.587 for HighMS.

The resulting base-level activation values B(д,u) are then
normalized using a simple softmax function in order to map
them onto a range of [0, 1] that sums up to 1 [13, 15]:

B′(д,u) = exp(B(д,u))∑
д′∈Gu

exp(B(д′,u)) (4)

Here, Gu is the set of distinct genres listened to by u. Finally,
BLLu predicts the top-k genres G̃k

u with highest B′(д,u) val-
ues to u:

G̃k
u =

karg max
д∈Gu

(B′(u,д))
︸                         ︷︷                         ︸

BLLu

(5)

To investigate not only the factors of frequency and time
but also the current context by means of an associative activa-
tion, we implement the full activation equation (see Equation
1) in the form of:

A(д,u,a) = B′(д,u) +
∑
c ∈Ga

Wc · Sc ,д (6)

where the first part represents the base-level activation by
means of the BLL equation and the second part represents
the associative activation.

To calculate the associative activation and thus, to model
a user’s current context, we incorporate the set of genres Ga
assigned to the most recently listened to artist a by user u.
When applying this equation in the context of recommender
systems, related literature [31] suggests using a measure of
normalized co-occurrence to represent the strength of an
association Sc ,д . Accordingly, we define the co-occurrence
between two genres as the number of artists to which both
genres are assigned. We normalize this co-occurrence value
according to the Jaccard coefficient:

Sc ,д =
|Ac ∩Aд |
|Ac ∪Aд | (7)

where Ac is the set of artists to which context-genre c is
assigned, and Aд is the set of artists to which genre д is
assigned. Thus, we set the number of times two genres co-
occur into relation with the number of times in which at
least one of the two genres appears. In this work, we set
the attentional weightWc of context-genre c to 1. By doing
so, we give equal weights to all genres assigned to an artist,
which avoids down-ranking of less popular, but perhaps
more specific, and hence more valuable, genres.
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(a) User group: LowMS
Linear regression: α = -1.480
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(b) User group: MedMS
Linear regression: α = -1.574
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(c) User group: HighMS
Linear regression: α = -1.587

Figure 2: Calculation of the BLL equation’s d parameter. On a log-log scale, we plot the relistening count of the genres over
the time since their last LEs. We set d to the slopes α of the corresponding linear regression lines.
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Figure 3: Example illustrating the difference between BLLu
(left panel) and ACTu ,a (right panel). Here, unfilled nodes
represent target genres д1 and д2, and black nodes represent
genres of the last artist listened to by the target user (i.e.,
contextual genres). For д1 and д2, the node sizes represent
the activation levels and for the contextual genres, the node
sizes represent the attentional weights Wc . The association
strength Sc ,д is represented by the edge lengths. While BLLu
determines a higher activation level forд1 than forд2,ACTu ,a
gives a higher activation level to д2 than to д1 by also consid-
ering the associative association based on the current con-
text.

Finally, we normalize the A(д,u,a) values using the afore-
mentioned softmax function and predict the top-k genres
G̃k
u with highest A′(д,u,a) values for a given user u and the

genres of the user’s most recently listened artist a (i.e., the
current context):

G̃k
u =

karg max
д∈Gu

(A′(u,д,a))
︸                            ︷︷                            ︸

ACTu ,a

(8)

We further illustrate the difference between BLLu and
ACTu ,a in the example of Figure 3 by showing the additional

impact of the associative activation defined by the second
component of the activation equation. As defined, this asso-
ciative activation is evoked by the current context (i.e., the
genres of the last artist the target user has listened to).

The left panel of Figure 3 shows two genres, д1 and д2,
with different base-level activation levels (illustrated by the
circle size). Thus, according to BLLu ,д1 reaches a higher base-
level activation, which means a better rank, than д2. This
relationship changes in the right panel of Figure 3, where we
consider the influence of the genres in the current context
(illustrated by the black nodes). Specifically, depending on
the weightsWc (represented by the size of the black nodes)
and strength of association Sc ,д (represented by the length of
the edges), the genres in the current context spread additional
associative activation to the genresд1 andд2. Now, according
to ACTu ,a , д2 receives stronger associative activation than
д1, which also leads to a better rank.

3 EXPERIMENTS AND RESULTS
In this section, we describe our experimental setup, i.e., the
baseline algorithms, the evaluation protocol and metrics, as
well as the results of our experiments.

Baseline Algorithms
We compare the BLLu andACTu ,a approaches to five baseline
algorithms:

Mainstream-based baseline:TOP . TheTOP approach mod-
els a useru’s music genre preferences using the overall top-k
genres of all users (i.e., the mainstream) in u’s user group
(i.e., LowMS, MedMS, HighMS). This is given by:

G̃k
u =

karg max
д∈G

(|GAд |) (9)
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Here G̃k
u denotes the set of k predicted genres, G the set of

all genres, and |GAд | corresponds to the number of times д
occurs in all genre assignments GA of u’s user group.

User-based collaborative filtering baseline: CFu . User-
based collaborative filtering-based approaches aim to find
similar users for target user u (i.e., the set of neighbors Nu )
and predict the genres these similar users have listened to in
the past [30]. CFu is given by:

G̃k
u =

karg max
д∈G(Nu )

( ∑
v ∈Nu

sim(Gu ,Gv ) · |GAд,v |
)

(10)

where G̃k
u denotes the set of k predicted genres for user u,

G(Nu ) are the genres listened to by the set of neighbors Nu ,3
sim(Gu ,Gv ) is the cosine similarity between the genre distri-
butions of user u and neighbor v . Finally, |GAд,v | indicates
how often v has listened to genre д in the past.

Item-based collaborative filtering baseline:CFi . Similar
to CFu , CFi is a collaborative filtering-based approach, but
instead of finding similar users for the target user u, it aims
to find similar items, i.e., music artists SAu , for the artists Au
that u has listened to in the past. Then, it predicts the genres
that are assigned to these similar artists as given by:

G̃k
u =

karg max
д∈G(SAu )

( ∑
a∈Au

∑
s ∈Sa

sim(Ga,Gs )
)

(11)

where G(SAu ) are the genres assigned to the similar artists
SAu , Sa is the set of similar artists for an artist a ∈ Au ,4 and
sim(Ga,Gs ) is the cosine similarity between the genre distri-
butions assigned to a and the genres assigned to a similar
artist s ∈ Sa .

Popularity-based baseline: POPu . POPu is a personalized
music genre modeling technique, which predicts the k most
frequently listened genres in the listening history of user u.
POPu is given by the following equation:

G̃k
u =

karg max
д∈Gu

(|GAд,u |) (12)

Here, Gu is the set of genres u has listened to in the past
and |GAд,u | denotes the number of times u has listened to
д. Thus, it ranks the genres u has listened to in the past by
popularity.

Time-based baseline:TIMEu . The time-based baselineT IMEu
predicts the k genres that user u has most recently listened

3We set the neighborhood size for CFu and CFi to 20.
4For Au , we consider the set of the 20 artists that u has listened to most
frequently.

to. It is given by:

G̃k
u =

k
arg min
д∈Gu

(tu ,д,n) (13)

where tu ,д,n is the time since the last (i.e., the nth) LE of д by
u.

Evaluation Protocol and Metrics
We split the datasets into train and test sets [6]. In doing
so, we ensure that our evaluation protocol preserves the
temporal order of the LEs, which simulates a real-world
scenario in which we predict genres of future LEs based on
past ones and not the other way round [15]. This also means
that a classic k-fold cross-validation evaluation protocol is
not useful in our setting.

Specifically, we put the most recent 1% of the LEs of each
user into the test set (i.e., LEtest ) and keep the remaining LEs
for the train set (i.e., LEtrain ). We do not use a classic 80/20
split as the number of LEs per user is large (i.e., on average,
7,689 LEs per user). Although we only use the most recent
1% of listening events per user, this process leads to three
large test sets with 69,153 listening events for LowMS, 79,007
listening events for MedMS, and 82,510 listening events for
HighMS. To finally measure the prediction quality of the
approaches, we use the following six well-established per-
formance metrics [3]:

Recall: R@k . Recall is calculated as the number of correctly
predicted genres divided by the number of relevant genres
taken from the LEs in the test set LEtest . It is a measure for
the completeness of the predictions and is formally given by:

R@k =
1

|LEtest |
∑

u ,a∈LEtest

|G̃k
u ∩Gu ,a |
|Gu ,a | (14)

where G̃k
u denotes the k predicted genres and Gu ,a the set of

relevant genres of an artist a in user u’s LEs in the test set.

Precision: P@k . Precision is calculated as the number of
correctly predicted genres divided by the number of predic-
tions k and is a measure for the accuracy of the predictions.
It is given by:

P@k =
1

|LEtest |
∑

u ,a∈LEtest

|G̃k
u ∩Gu ,a |

k
(15)

We report recall and precision for k = 1 . . . 10 predicted
genres in form of recall/precision plots.

F1-score: F1@k . F1-score is the harmonic mean of recall
and precision:

F1@k = 2 · P@k · R@k

P@k + R@k
(16)
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User group Evaluation metric TOP CFu CFi POPu T IMEu BLLu ACTu ,a

LowMS

F1@5 .108 .311 .341 .356 .368 .397 .485∗∗∗
MRR@10 .101 .389 .425 .443 .445 .492 .626∗∗∗
MAP@10 .112 .461 .505 .533 .550 .601 .785∗∗∗
nDCG@10 .180 .541 .590 .618 .625 .679 .824∗∗∗

MedMS

F1@5 .196 .271 .284 .292 .293 .338 .502∗∗∗
MRR@10 .146 .248 .264 .274 .272 .320 .511∗∗∗
MAP@10 .187 .319 .336 .351 .365 .419 .705∗∗∗
nDCG@10 .277 .419 .441 .460 .452 .523 .753∗∗∗

HighMS

F1@5 .247 .273 .266 .282 .228 .304 .427∗∗∗
MRR@10 .188 .232 .229 .242 .201 .266 .412∗∗∗
MAP@10 .246 .304 .298 .314 .267 .348 .569∗∗∗
nDCG@10 .354 .413 .402 .429 .357 .462 .642∗∗∗

Table 2: Genre prediction accuracy results comparing our BLLu and ACTu ,a approaches with a mainstream-based baseline
(TOP ), a user-based collaborative filtering baseline (CFu ), an item-based collaborative filtering baseline (CFi ), a popularity-
based baseline (POPu ) and a time-based baseline (T IMEu ). For all three user groups (i.e., LowMS, MedMS, and HighMS), ACTu ,a
outperforms all other approaches. According to a t-test withα = .001, “∗∗∗” indicates statistically significant differences between
ACTu ,a and all other approaches.
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Figure 4: Recall/precision plots for k = 1 . . . 10 predicted genres of the baselines and our BLLu and ACTu ,a approaches for the
three user groups LowMS, MedMS, and HighMS. ACTu ,a achieves the best results in all settings.

We report the F1-score for k = 5, where it typically reaches
its highest value if 10 genres are predicted.

Mean Reciprocal Rank: MRR@k. MRR is the average
of reciprocal ranks r (д) of all relevant genres in the list of
predicted genres:

MRR@k =
1

|LEtest |
∑

u ,a∈LEtest

1
|Gu ,a |

∑
д∈Gu ,a

1
r (д) (17)

This means that a high MRR is achieved if relevant genres
occur at the beginning of the predicted genre list.

Mean Average Precision: MAP@k. MAP is an extension
of the precision metric by also taking the ranking of the

correctly predicted genres into account and is given by:

MAP@k =
1

|LEtest |
∑

u ,a∈LEtest

1
|Gu ,a |

k∑
i=1

Reli · P@i (18)

Here, Reli is 1 if the predicted genre at position i is among
the relevant genres (0 otherwise) and P@i is the precision
calculated at position i according to Equation 15.

Normalized Discounted Cumulative Gain: nDCG@k.
nDCG is another ranking-dependent metric. It is based on the
Discounted Cumulative Gain (DCG@k) measure [9], which
is defined as:

DCG@k =
k∑
i=1

(
2Reli − 1
loд2(1 + i)

)
(19)
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where Reli is 1 if the genre predicted for the ith item is
relevant (0 otherwise). nDCG@k is given as DCG@k divided
by iDCG@k , which is the highest possible DCG value that
can be achieved if all relevant genres are predicted in the
correct order:

nDCG@k =
1

|LEtest |
∑

u ,a∈LEtest

(
DCG@k

iDCG@k

)
(20)

We report MRR, MAP, and nDCG for k = 10 predicted music
genres, where these metrics reach their highest values.

Results and Discussion
In this section, we present and discuss our evaluation re-
sults. The accuracy results according to F1@5, MRR@10,
MAP@10, and nDCG@10 are shown in Table 2 for the five
baseline approaches as well as the proposedBLLu andACTu ,a
algorithms. Furthermore, we provide recall/precision plots
for k = 1 . . . 10 predicted genres.

Accuracy of baseline approaches. When analyzing the
performance of the baseline approachesTOP ,CFu ,CFi , POPu ,
and T IMEu , we see a clear difference between the non per-
sonalized and the personalized algorithms. While the non
personalizedTOP approach, which predicts the top-k genres
of the mainstream, provides better accuracy results in the
HighMS setting than in the LowMS setting, the personal-
ized CFu , CFi , POPu , and T IMEu algorithms provide better
results in the LowMS setting than in the HighMS setting.
Hence, personalized genre modeling approaches provide bet-
ter results, the lower the mainstreaminess of the users. Non-
personalized genre modeling approaches, however, have
higher performance, the higher the mainstreaminess of the
users.

Next, we compare the accuracy of the two collaborative
filtering-based methods, CFu , and CFi . Here, the item-based
CF variant CFi reaches higher accuracy estimates in the
LowMS and MedMS settings, while the user-based CF vari-
ant CFu provides better performance in the HighMS setting.
To better understand this pattern of results, we provide the
average pairwise user similarity in the form of boxplots in
Figure 5. Here, for all three user groups, we calculate the
pairwise similarity between the users via the cosine similar-
ity metric based on the users’ genre distribution vectors. We
see that users in the HighMS setting are very similar to each
other, which explains the good performance of an algorithm
that is based on user similarities, such as CFu .
POPu and T IMEu reach the highest accuracy estimates

among the five baseline approaches. Interestingly, the popularity-
based POPu algorithm provides the best results for the HighMS
user group, while the time-based T IMEu algorithm provides
the best results in the LowMS user group. For the MedMS
user group, however, both algorithms reach a comparable
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Figure 5: Average pairwise user similarity for LowMS,
MedMS, and HighMS. We calculate the user similarity using
the cosine similarity metric based on the users’ genre distri-
butions. While users in the LowMS group show a very indi-
vidual listening behavior, users in the HighMS group tend
to listen to similar music genres.

accuracy performance, which shows the importance of both
factors, frequency (i.e., popularity) and recency (i.e., time).

Accuracy of BLLu andACTu ,a . We discuss the results of the
BLLu and ACTu ,a approaches, which utilize human memory
processes as defined by the cognitive architecture ACT-R in
order to model and predict music genre preferences. Specifi-
cally, BLLu combines the factors of past usage frequency and
recency via the BLL equation (see Equation 3) and ACTu ,a
extends BLLu by also considering the current context via the
activation equation (see Equation 6). In this work, we define
the current context by the genres assigned to the artist that
the target user u has listened to most recently.

As expected, when combining the factors of past usage fre-
quency and recency in the form of BLLu , we can outperform
the best performing baseline approaches POPu and T IMEu
in all three settings (i.e., LowMS, MedMS, and HighMS).
We can further improve the accuracy performance when
we additionally consider the current context in the form of
ACTu ,a . Here, we reach a statistically significant improve-
ment5 over all other approaches across all evaluation met-
rics and user groups. Furthermore, in Figure 6, we present
a recall/precision plot showing the accuracy of ACTu ,a for
k = 1 . . . 10 predicted genres for LowMS, MedMS, and
HighMS. We observe good results for all three user groups
but especially in the LowMS setting, in which we are faced
with users with a low interest in mainstream music.

5According to a t-test with α = .001.
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Figure 6: Recall/precision plot of our ACTu ,a approach for
k = 1 . . . 10 predicted genres for the three user groups
LowMS, MedMS, and HighMS. We observe good prediction
accuracy results for ACTu ,a in all settings but especially
for LowMS. This shows that our approach based on human
memory processes is especially useful for predicting the mu-
sic genre preferences of users with low interest in main-
stream music.

This shows that the proposed ACTu ,a algorithm can pro-
vide accurate predictions of music genres listened to in the
future for all user groups and, thus, treats all users in our
experiment in a fair manner. Moreover, since our approach
utilizes human memory processes, it is based on psycholog-
ical principles of human intelligence rather than artificial
intelligence. We believe that this theoretical underpinning
contributes to the explanation effectiveness of our approach
as we can fully understand why a specific genre was pre-
dicted for a target user in a given context. To further illustrate
this with an example, we would like to refer back to Figure 3.
In this figure, we have shown the differences between BLLu
and ACTu ,a for two predicted genres д1 and д2. Let us as-
sume that these are the top-2 predicted genres for a target
user u. According to BLLu , we know that these genres got
the highest activation levels because u has listened to them
very frequently and recently. When looking at the activation
levels calculated by ACTu ,a , we also take the current context
into account and, thus, get an indication for the similarity of
д1 and д2 to the genres assigned to the most recently listened
artist a of user u. In our example, genre д2 is strongly related
to the current context, while genre д1 only has a weak re-
lation to it. Taken together, with our ACTu ,a approach, we
can easily explain genre prediction results according to three
simple factors that are relevant for human memory processes
according to the cognitive architecture ACT-R: (i) past us-
age frequency, (ii) past usage recency, and (iii) similarity to
current context.

4 CONCLUSION AND FUTURE WORK
In this paper, we presented BLLu and ACTu ,a , two music
genre preference modeling, and prediction approaches based
on the human memory module of the cognitive architec-
ture ACT-R. While BLLu utilizes the BLL equation of ACT-R
in order to model the factors of past usage frequency (i.e.,
popularity) and recency (i.e., time), ACTu ,a integrates the
activation equation of ACT-R to also incorporate the current
context. We defined this context as the genres assigned to
the most recently listened artist of the target user.

Using a dataset gathered from the music platform Last.fm,
we evaluated BLLu and ACTu ,a against a mainstream-based
approachTOP , a user-based CF approachCFu , an item-based
CF approachCFi , a popularity-based approach POPu as well
as a time-based approach T IMEu . We used six evaluation
metrics (i.e., recall, precision, F1-score, MRR, MAP, and nDCG)
in three evaluation settings in which the evaluated users dif-
fered in terms of their inclination to mainstream music (i.e.,
LowMS, MedMS, and HighMS user groups). Our evaluation
results show that both BLLu and ACTu ,a outperform the five
baseline methods in all three settings;ACTu ,a even does so in
a statistically significant manner. Furthermore, we find that
especially the current context is of high importance when
aiming for accurate genre predictions.

Summed up, in this work, we have shown that human
memory processes in the form of ACT-R’s activation equa-
tion can be effectively utilized for modeling and predicting
music genres. By following such a psychology-inspired ap-
proach, we also believe that we can model a user’s prefer-
ences transparently, in contrast to, e.g., deep learning-based
approaches based on latent user representations. Therefore,
our approach could be useful to realize more transparent and
explainable music recommender systems.

Limitations and future work. In the present work, we
only considered the genres assigned to the most recently
listened artist of the target user as contextual information.
However, related work on music preference modeling has
shown that music listening habits depend on the time of
the day, the current activity of a user or the mood a user is
currently experiencing (see, e.g., [11]).

For future work, we also plan to utilize the procedural
memory processes of ACT-R in addition to the activation
equation. As, for instance, done in the SNIF-ACT model [8,
19], we could define so-called production rules in order to
transfer the user’s preferences into actual music recommen-
dation strategies. By making these rules transparent to the
user, we aim to contribute to research on transparent recom-
mender systems that create explainable recommendations.

Reproducibility. To foster the reproducibility of our re-
search, we use the publicly available LFM-1b dataset (see
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Section 2). Furthermore, we provide the source code of our
approach as part of our TagRec framework [12].
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ABSTRACT
Personalized recommender systems have become indispensable in to-
day’s online world. Most of today’s recommendation algorithms are
data-driven and based on behavioral data. While such systems can
produce useful recommendations, they are often uninterpretable, black-
box models, which do not incorporate the underlying cognitive reasons
for user behavior in the algorithms’ design. The aim of this survey is
to present a thorough review of the state of the art of recommender
systems that leverage psychological constructs and theories to model
and predict user behavior and improve the recommendation process.
We call such systems psychology-informed recommender systems. The
survey identifies three categories of psychology-informed recommender
systems: cognition-inspired, personality-aware, and affect-aware recom-
mender systems. Moreover, for each category, we highlight domains,
in which psychological theory plays a key role and is therefore con-
sidered in the recommendation process. As recommender systems are
fundamental tools to support human decision making, we also discuss
selected decision-psychological phenomena that impact the interac-
tion between a user and a recommender. Besides, we discuss related
work that investigates the evaluation of recommender systems from
the user perspective and highlight user-centric evaluation frameworks.
We discuss potential research tasks for future work at the end of this
survey.
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1
Introduction

1.1 Motivation

In the past twenty years, research on recommender systems has emerged as a
growing field within computer science (Ricci et al., 2011). The emergence of online
marketplaces, online social networks, online collaboration platforms, and online social
information systems (Caverlee et al., 2010) has created a need to support users with
recommendations to help them cope with the increase of information and items
online (Liu et al., 2014).

A large amount of work exists that has tackled recommender systems research
from a broad range of perspectives. Resources like the Recommender Systems Hand-
book (Ricci et al., 2015) or Recommender systems: An Introduction (Jannach et
al., 2010) give a comprehensive overview of the field. So do review articles such
as (Jannach et al., 2012). Recent surveys provide a concise overview of explainable
recommendations (Zhang, Chen, et al., 2020), deep learning in recommender sys-
tems (Xu et al., 2020), adversarial recommender systems (Deldjoo et al., 2021b) or
conversational recommender systems (Jannach et al., 2020).

Early work on recommender systems was motivated by the observation that
humans tend to base their decisions on the recommendations provided by their social
surrounding (Ricci et al., 2011). Correspondingly, the first algorithms developed as
recommender systems aimed to mimic this behavior (Resnick and Varian, 1997; Ricci
et al., 2011). In the early 2000s, the use of psychological models in recommender
systems research has gained traction. Pioneering work was carried out by Gustavo
Gonzalez, Timo Saari, and Judith Masthoff, which exploited the psychological
characteristics of users to improve the recommendation process. To that end, Gonzales
et al. (González et al., 2002; González et al., 2004) considered emotional aspects of
the user to generate personalized recommendations. Saari et al. (Saari et al., 2004b;
Turpeinen and Saari, 2004; Saari et al., 2004a; Saari et al., 2004a; Saari et al., 2005)
designed recommender systems that incorporate a user’s emotion and attention, as
well as other related constructs, to deliver recommendations (Nunes, 2008). Masthoff
et al. (Masthoff, 2004b; Masthoff, 2004a; Masthoff, 2005; Masthoff and Gatt, 2006),
assessed the user satisfaction of individual users and predicted group satisfaction
when recommending sequences of items to user groups. Their intuition was that the
first few recommendations in a list of recommendations influence the mood of the
user. That mood, in turn, can impact the views the user has about the next items in
the recommendation list (Nunes, 2008). Felfernig et al. (2007) used insights from
decision psychology to gain a deeper understanding of online buyer behavior and to
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improve knowledge-based recommender systems.
In the present survey article, we provide a review of research strands in the

recommender systems community that enrich data-driven recommendation techniques
with psychological constructs to design or improve recommender systems. We call
such systems psychology-informed recommender systems.

This survey is organized as follows. We first give an introduction into common
recommender systems methods in Section 1.2, and then, in Section 1.4, briefly describe
our survey method and research scope. Next, in Section 2, we review related work
on psychology-informed recommender systems, which we categorize into cognition-
inspired, personality-aware, and affect-aware recommender systems. Also, in Section 3,
we review works that investigate various decision-psychological phenomena that come
into play when users interact with a recommender system. Besides, in Section 4,
we discuss works that investigate recommender systems’ evaluation from the user
perspective. We conclude in Section 5 with key findings and possible directions for
future work.

1.2 Main Approaches to Recommender Systems

The most prominent recommendation approaches are collaborative filtering (CF),
content-based filtering (CBF), hybrid combinations of both (Ricci et al., 2015), as
well as knowledge-based recommmender systems (Burke, 2000b). CF (Schafer et al.,
2007) exploits interactions between users and items such as ratings and creates a user–
item matrix that is then used to predict missing ratings for pairs of users and items.
CF then recommends the items with the highest predicted ratings, with which the
target user has not yet interacted. One can distinguish between model-based CF and
memory-based CF (Koren and Bell, 2015). In the case of model-based CF (Aggarwal,
2016), the algorithm first projects users and items into a low-dimensional space and
then, finds similar users/items in this space. In the case of memory-based CF (Sarwar
et al., 2001), CF computes similarities between users/items directly from the user–
item matrix. Memory-based CF can be further divided into user-based CF and
item-based CF, depending on whether recommendations are produced based on user
or item similarity.

CBF exploits characteristic properties of items (e.g., movie genres) to recommend
items with similar attributes as items the target user has liked in the past (Ricci et al.,
2015). For a recent overview of new trends in CBF, please refer to Lops et al., 2019.
Correspondingly, hybrid recommender systems (Burke, 2002) are, most commonly, a
combination of collaborative and content-based methods. For example, when using
CF in a cold-start scenario, a hybrid approach can incorporate CBF to predict items
based on their features (Cremonesi et al., 2011b; Ricci et al., 2011).

In contrast to CF and CBF, knowledge-based recommender systems (Burke,
2000b) do not require a user history. Instead, they make use of pre-existing knowl-
edge about the user and the application domain to reason about potentially relevant
items. One can distinguish between two main types of knowledge-based recommender
systems, namely, constraint-based recommender systems (Felfernig and Burke, 2008;
Atas et al., 2019) and case-based recommender systems (Lorenzi and Ricci, 2003;
Burke, 2000a). In constraint-based recommender systems, explicitly defined con-
straints govern which items should be recommended to a user in a given context,
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Name URL Comments
LKPy https://github.com/lenskit/lkpy Python; classical models

Surprise https://github.com/NicolasHug/Surprise Python; classical models
pyRecLab https://github.com/gasevi/pyreclab Python; classical models

LibRec https://github.com/guoguibing/librec Java; classical models
Elliot https://github.com/sisinflab/elliot Python; classical and deep models

NeuRec https://github.com/wubinzzu/NeuRec Python; deep models
Spotlight https://github.com/maciejkula/spotlight Python; classical and deep models
Implicit https://github.com/benfred/implicit Python; for implicit-feedback datasets
TagRec https://github.com/learning-layers/TagRec Java; cognition-inspired and classical

models

Table 1.1: Overview of selected software for recommender systems.

whereas the constraints refer to the user and/or the item domain. Case-based recom-
mender systems are early examples of psychology-informed recommender systems,
which model reasoning as primarily memory-based (Leake, 2015). In this paper, they
are, therefore, reviewed in more detail (see Section 2.1.4).

1.3 Selected Recommender Systems Software and Datasets

To facilitate getting started with recommender systems experiments, we provide
an overview of relevant resources. Tables 1.1 and 1.2 give a non-exhaustive list of
software1 (libraries and open-source code repositories) and datasets, respectively.2
We focus on the most popular resources as well as on those that provide code and
data relevant to psychology-informed recommendation.

1.4 Survey Method and Research Scope

For this survey, we investigated research articles that appeared in relevant publication
outlets in the fields of computer science, psychology, and human-computer-interaction.
Regarding the scope of our review, we focus on papers that describe algorithms,
techniques, and systems that exploit psychological features of the user for improving
the recommendation process (see Table 1.5, Table 1.6, Table 1.8, and Table 1.9). Also,
we visualize the reviewed papers as a timeline in Table 1.3, and Table 1.4 to show the
evolution of techniques over time. Please note that we split the timeline visualization
into periods from 1885 to 2010 and 2011 to 2021 due to space constraints.

The identification of papers for our survey was done according to the following
strategy. We first considered the proceedings and volumes of a set of relevant confer-
ence series (e.g., User Modelling, Adaptation and Personalization, ACM Recommender
Systems Conference, The Web Conference, ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM CHI Conference on Human Factors in

1See also https://github.com/grahamjenson/list_of_recommender_systems & https://
recommender-systems.com/resources/

2GroupLens’ list of datasets: https://grouplens.org/datasets/, Julian McAuley’s list: https:
//cseweb.ucsd.edu/~jmcauley/datasets.html
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Computing Systems, ACM Hypertext, IEEE/WIC/ACM International Conference on
Web Intelligence) and journals (e.g., User Modeling and User-Adapted Interaction,
Transaction on Intelligent Information Systems, Cognitive Science, Journal of Con-
sumer Research, IEEE Transactions on Affective Computing, Computers in Human
Behavior, Journal of Personality and Social Psychology, ACM Transactions on In-
telligent Information Systems) for articles that fall into the above-described scope.
Additionally, we used the keywords “psychology recommender systems”, “psychol-
ogy informed recommender”, “cognition recommender”, “stereotypes recommender”,
“case-based recommender”, “affective recommender”, “emotion recommender”, “per-
sonality recommender”, “decision making recommender”, “user-centric recommender”,
“user evaluation recommender”, “user experience recommender”, “nudging recom-
mender systems”, “persuasion recommender”, “cognitive dissonance recommender”,
“interaction recommender”, and “interfaces recommender” to search for papers in
Google Scholar. Using the resulting set of articles as a starting point, we followed
the references of the retrieved articles to find additional papers.

A few survey works on the topic of psychological models in the context of
recommendations already exist. When looking at these existing works, we find
that some works on psychology-informed recommender systems are also summarized
by Tkalcic and Chen (2015a) with respect to personality-based recommender systems,
personality and learning styles (Graus and Ferwerda, 2019), and in (Tkalcic et al.,
2011) in terms of affective-based systems. Additionally, Buder and Schwind (2012)
discuss personalized recommender systems as well as psychological theories and
models that describe learning processes and mechanisms in educational contexts.
They, however, focus only on learning as a domain. Yoo et al. (2012), and in
earlier work, Gretzel and Fesenmaier (2006), discuss recommender systems and
their persuasive role in decision-making processes; Felfernig et al. (2008b) outline
persuasion in knowledge-based recommendation. These works also shed light on
psychological constructs that play a role in persuasion, which corresponds to a
mechanism that can be used in recommender systems to influence choices. For a
detailed overview of persuasive recommender systems, please refer to Yoo et al. (2012).
Jesse and Jannach (2021) review related work on nudging with recommender systems.
They also discuss 58 psychological mechanisms that are described in the reviewed
works. Pu et al. (2012) present a survey on evaluating recommender systems from
the user perspective, including preference elicitation and refinement, presentation
of recommendations, and user-centric evaluation frameworks. Also, the authors
summarize the most important results in the form of design guidelines for effective
recommender systems.

Explanations of algorithmic decisions made by artificial intelligence help making
algorithms more transparent. The recent survey on explainable recommendations
by Zhang, Chen, et al. (2020) discusses related work on explainable recommenda-
tion models. For an overview of the body of research on explanations in artificial
intelligence in light of the social sciences, please refer to Miller (2019).

In Zhang, Chen, et al. (2020) explanations in recommender systems are related
to cognitive science and human decision making. As the authors describe, humans
sometimes decide using rational and careful reasoning, while in other cases, they first
decide and find explanations for their decisions later. This is in line with the typical
approaches to designing explainable recommendation models: either, such models
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are already designed with transparency and explainability in mind, or post-hoc
explanations are used to explain decisions made by black box models (Lipton, 2018;
Miller, 2019). Tran et al. (2019a) and Tran et al. (2020) take into account findings
from social choice theory, i.e., the study of collective choices that impact groups (Sen,
1986), to introduce explanations to increase fairness, consensus, and satisfaction of
users with group recommendations.

Given the rich body of work on explainability in recommender systems, which
is already presented in the survey by Zhang, Chen, et al. (2020), we do not focus
on this topic in the paper at hand, instead refer the reader to Zhang, Chen, et al.
(2020) as well as to the respective chapter in the recommender systems handbook
by Tintarev and Masthoff (2015).

The field of group recommender systems also uses social psychology constructs to
produce recommendations that are helpful for groups. In this paper, we touch upon
them when we discuss relevant work on personality in group recommender systems.
For an overview of group recommender systems and mechanisms to model group
behavior, please also refer to Felfernig et al. (2018c) and Masthoff (2015).

Summing up, with this article, we aim to close the gap between a computer
science perspective (in particular, a technical recommendation systems point of view)
and a psychological perspective. We hope to appeal to researchers in the information
retrieval and recommendation systems communities who want to delve deeper into
the psychological foundations of recommendation systems research. In addition,
we also address an audience with psychological background who strives to deepen
their knowledge on how psychological constructs and models can be incorporated
into recommendation systems. Please note that basic knowledge of recommendation
systems and psychology is sufficient to understand the article.
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Cognition Sec. References
Stereotypes 2.1 Elaine Rich, 1979; Rich, 1989; Blanco-Fernández et al., 2011;

Beel et al., 2014; Beel and Langer, 2015; Beel et al., 2015;
Beel, 2015; ALRossais and Kudenko, 2018; ALRossais, 2018

Cogn. Models 2.1.1 Anderson, 2005; Fum et al., 2007; Farrell and Lewandowsky,
2018; Neisser, 1967; Ormerod, 1990; Psychology, 2012; Jones,
2016; Glushko et al., 2008; Fu, 2008; Fu et al., 2010; Fu and
Kannampallil, 2010; Fu and Dong, 2012; Anderson et al.,
1997

Memory 2.1.2 Seitlinger and Ley, 2016; Kahana, 2020; Ingwersen, 1984;
Rutledge-Taylor and West, 2007; Rutledge-Taylor et al., 2008;
Anderson, 1974; Bollen et al., 2012; Matlin and Stang, 1978;
Ebbinghaus, 1885; Ebbinghaus, 2013; Yu and Li, 2010; Ren,
2015; Chmiel and Schubert, 2018; Yang et al., 2019; Sabater-
mir et al., 2013; Maanen and Marewski, 2009; Kowald et al.,
2014; Trattner et al., 2016; Kowald et al., 2013; Kowald et
al., 2017b; Kowald and Lex, 2016; Kowald and Lex, 2015;
Stanley and Byrne, 2016; Kowald et al., 2020a; Kopeinik
et al., 2016; Kopeinik et al., 2017b; Kowald et al., 2019; Lex
et al., 2020; Zhao et al., 2014; Missier, 2014; Schnabel et al.,
2016; Elsweiler et al., 2007; Harvey et al., 2016; Doherty
et al., 2012; Gemmell et al., 2002; Lamming and Flynn, 1994

Attention 2.1.3 Seitlinger et al., 2013; Kowald et al., 2013; Kopeinik et al.,
2017a

CBR 2.1.4 Hammond, 2012; Kolodner, 2014; Riesbeck and Schank, 2013;
Kolodner, 1992; Tversky, 1977; Burke et al., 1996; Burke,
1999; Ricci and Werthner, 2001; Ricci et al., 2002; Ricci et
al., 2006; Aguzzoli et al., 2002; Gong, 2009; Yang and Wang,
2009; Wang and Yang, 2012; Musto et al., 2015; Bousbahi
and Chorfi, 2015; McSherry, 2005; Sharma and Ray, 2016;
Muhammad et al., 2015; Jorro-Aragoneses et al., 2019; Pu
et al., 2012; McGinty and Reilly, 2011; Contreras and Salamó,
2020; Contreras and Salamó, 2020; Güell et al., 2020

Competence 2.1.5 Fehling, 1993; Bellandi et al., 2012; Chavarriaga et al., 2014;
Prins et al., 2008; Yago et al., 2018; Mozer and Lindsey, 2016;
Thaker et al., 2018

Table 1.5: Overview of surveyed papers that implement cognitive models to design and improve
recommendation techniques.
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Personality-aware Rec. Sys. Sec. References
Personality 2.2 Tkalcic and Chen, 2015a; Ferwerda et al.,

2017b; Golbeck and Norris, 2013; Rentfrow
et al., 2011; Chen et al., 2013b; Wu et al.,
2013; Nguyen et al., 2018; Karumur et al.,
2018; Karumur et al., 2016

Personality Elicitation 2.2.1 McCrae and John, 1992; Thomas, 1992; Felfer-
nig et al., 2018d; Holland, 1997; Bologna et
al., 2013; Stewart, 2011; Konert et al., 2013;
Paiva et al., 2015; Goldberg et al., 2006;
Gosling et al., 2003; John and Srivastava,
1999; Berkovsky et al., 2019; Wu et al., 2019;
Ferwerda and Tkalcic, 2018; Golbeck et al.,
2011a; Golbeck et al., 2011b; Golbeck, 2016

Personality Traits in RecSys 2.2.2 Asabere et al., 2018; Yang and Huang, 2019;
Adaji et al., 2018; Nalmpantis and Tjortjis,
2017; Cantador et al., 2013; Gelli et al., 2017;
Tintarev et al., 2013; Wu et al., 2018; Fer-
werda et al., 2017a; Lu and Tintarev, 2018;
Fernandez-Tobias et al., 2016; Beheshti et al.,
2020; Sertkan et al., 2019

Personality in Group RecSys 2.2.3 Recio-Garcia et al., 2009; Felfernig et al.,
2018a; Masthoff, 2011; Quijano-Sanchez et al.,
2010; Rossi and Cervone, 2016; Costa and Mc-
Crae, 1995; Charness and Rabin, 2002; Delic
et al., 2017; Nguyen et al., 2019

Table 1.6: Overview of our surveyed papers describing personality-aware recommendation
algorithms and systems.

Affect-aware RecSys Sec. References
Affect 2.3 Shiv and Fedorikhin, 1999; Orellana-Rodriguez et al.,

2015; Piazza et al., 2017; Ferwerda et al., 2017b; Gol-
beck and Norris, 2013; Rentfrow et al., 2011; Chen
et al., 2013b; Wu et al., 2013; Mizgajski and Morzy,
2019; Schäfer, 2016; Schedl et al., 2018; Zheng, 2013

Modeling Affect 2.3.1 Russell, 1980; Mehrabian, 1980; Fontaine et al., 2007
Affect in RecSys 2.3.2 Tkalcic et al., 2011; Ravi and Vairavasundaram, 2017;

Deng et al., 2015; Ayata et al., 2018

Table 1.7: Overview of the surveyed papers describing affect-aware recommendation algorithms
and systems.
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Human Decision Making Sec. References
Decision Making 3 Yoo et al., 2012; Chen et al., 2013a; Bettman

et al., 1998; Jameson et al., 2015; Adomavicius
et al., 2013; Tversky and Kahneman, 1974;
Chapman and Johnson, 2002; Karimi et al.,
2015; Jugovac et al., 2018

Decoy Items 3.1 Payne et al., 1993; Huber et al., 1982; Teppan
and Felfernig, 2012; Teppan and Zanker, 2015

Serial Position Effects 3.2 Deese and Kaufman, 1957; Glanzer and Cu-
nitz, 1966; Ranjith, 2012; Murphy et al., 2012;
Felfernig et al., 2007; Schnabel et al., 2016;
Stettinger et al., 2015a; Tran et al., 2018;
Hofmann et al., 2014; Joachims et al., 2017;
Craswell et al., 2008; Stettinger et al., 2015b;
Dyer, 2005

Framing 3.3 Tversky and Kahneman, 1981; Tversky and
Kahneman, 1992; Mandl et al., 2011

Anchor Effects 3.4 Mojzisch and Schulz-Hardt, 2010; Adomavi-
cius et al., 2011; Zhang, 2011; Köcher et al.,
2019; Adomavicius et al., 2014; Felfernig et
al., 2018b

Nudging 3.5 & 3.6 Thaler and Sunstein, 2009; Thaler et al.,
2013; Tversky and Kahneman, 1974; Jesse
and Jannach, 2021; Karlsen and Andersen,
2019; Caraban et al., 2019; Elsweiler et al.,
2017; Esposito et al., 2017; Turland et al.,
2015; Schneider et al., 2018; Sunstein, 2015

Boosting 3.6 Grüne-Yanoff and Hertwig, 2016; Hertwig and
Grüne-Yanoff, 2017; Grüne-Yanoff et al., 2018;
Zimmerman et al., 2020; Ortloff et al., 2021;
Bateman et al., 2012; Moraveji et al., 2011

Table 1.8: Overview of the surveyed papers describing mechanisms of human decision making in
light of recommender systems research.
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User-centric Evaluation Sec. References
User-centric Evaluation 4.1 Ekstrand and Willemsen, 2016; Knijnenburg et

al., 2012a; McNee et al., 2006b; Nalmpantis and
Tjortjis, 2017; Chen and Pu, 2005; Konstan and
Riedl, 2012; Xiao and Benbasat, 2007; Shin, 2020;
McNee et al., 2003; Ziegler et al., 2005; O’Brien
and Toms, 2008; Pu and Chen, 2006; Cosley et al.,
2003; O’Brien and Toms, 2010

Cognitive Dissonance 4.1.1 Festinger, 1954; Surendren and Bhuvaneswari,
2014; Schwind et al., 2011; Kuan et al., 2007;
Schwind and Buder, 2014; Nguyen et al., 2007

Persuasion 4.1.2 Fogg, 2002; Perloff, 2020; Meske and Potthoff,
2017; Yoo et al., 2012; Gretzel and Fesenmaier,
2006; Jugovac et al., 2018; Yoo and Gretzel, 2011;
Nanou et al., 2010; Cremonesi et al., 2012; Felfer-
nig et al., 2008a; Herlocker et al., 2000; Tintarev
and Masthoff, 2012; Berdichevsky and Neuen-
schwander, 1999; Smids, 2012

Interactions & Interfaces 4.1.3 Knijnenburg et al., 2011; Knijnenburg and Willem-
sen, 2015; Bollen et al., 2010; Chen and Pu, 2010b;
Chen and Pu, 2010a; Hu and Pu, 2011; Ekstrand
et al., 2014; Jugovac and Jannach, 2017

Attitudes & Beliefs 4.1.4 Cremonesi et al., 2011a; Pu et al., 2011; Swearin-
gen and Sinha, 2002; Bollen et al., 2010; Willemsen
et al., 2016; Jin et al., 2019

User Study Design 4.2 Allen and Yen, 2001; McCroskey et al., 1984; Yan-
nakakis and Hallam, 2011; O’Brien and Toms,
2008; O’Brien and Toms, 2010; Goretzko et al.,
2019; Knijnenburg and Willemsen, 2015; Pu et
al., 2011; Knijnenburg et al., 2012b; Ullman and
Bentler, 2003

Table 1.9: Overview of the surveyed papers describing research on user experience and designing
user studies.



2
Psychology-informed Recommendation

Approaches

In this chapter, we review three categories of psychology-informed recommender sys-
tems: (i) cognition-inspired, (ii) personality-aware, and (iii) affect-aware recommender
systems.

2.1 Cognition-inspired Recommender Systems

Cognition-inspired recommender systems employ models from cognitive psychology to
design and improve recommender systems. Cognitive psychology is a field of research
within psychology that investigates human mental processes such as decision-making,
memory, or attention. Early recommender systems research has extensively drawn
on findings from cognitive psychology, among other disciplines (Adomavicius and
Tuzhilin, 2005). In this respect, one of the earliest recommender systems was the
Grundy system (Elaine Rich, 1979; Rich, 1989) that grouped users into stereotypes
to create book recommendations. Stereotype-based recommender systems produce
recommendations based on generalizing assumptions about users, such as that com-
puter scientists like science fiction books and historians like biographies (Beel et al.,
2017). The underlying psychological principle of stereotypes is the representative-
ness heuristic by Kahneman and Tversky (1972), which people apply when making
decisions under uncertainty. It is a mental shortcut that people use when assessing
if an object belongs to a specific category. They make this decision based on how
representative they think the object is for a category.

In the Grundy system, users described their interests based on adjectives, which
were then grouped into stereotypes. The psychological literature describes stereo-
types as a form of categorization that humans apply to reduce complexity. Using
stereotyping, humans group others based on common characteristics. For an overview
of the cognitive mechanisms behind stereotyping, please refer to (Hamilton, 1979;
Hamilton, 2015). Please note stereotyping is a trivial application of psychological
principles to model users.

Later work employed stereotypes in a library reference manager system to produce
book recommendations (Beel et al., 2014; Beel and Langer, 2015) and in (Beel et
al., 2015; Beel, 2015) to recommend research papers to researchers at different
stages of their academic career. In the latter case, stereotypes serve as a fallback
mechanism when classic approaches such as collaborative filtering cannot deliver
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recommendations, e.g., in cold-start scenarios. Blanco-Fernández et al. (2011) use
consumption stereotypes in a knowledge-based recommender systems. Recent work
by Al-Rossais and Kudenko (ALRossais and Kudenko, 2018; ALRossais, 2018)
performs a comparative analysis of the performance of stereotype-based item modeling
and non-stereotype-based item modeling. Specifically, they evaluate the efficacy of
two stereotype-based recommendation approaches: First, they create user-based
stereotypes using demographic data such as age and gender, and second, item-based
stereotypes based on user preferences. They find that incorporating stereotypes can
improve recommendation accuracy and that stereotypes can help with the new item
problem, i.e., an item comes to the system for which no interactions are available.
However, the authors also note that the creation of stereotypes is labor-intensive,
especially in the case of manually created stereotypes. While stereotypes are a simple
technique to model users, in the remainder of this paper, we review works that
exploit more complex psychological constructs in recommender systems research.

In the following, we first briefly outline theories of cognitive processes. Subse-
quently, we review works which use computational cognitive models to generate and
improve personalized recommendations.

2.1.1 Computational Modeling of Cognitive Processes

Cognitive processes and cognition are typically studied in cognitive science, a dis-
cipline in which researchers from neuroscience, artificial intelligence, and cognitive
psychology aim to understand the functioning of the mind (Anderson, 2005). Cognitive
scientists have developed a broad range of empirical methods to study cognition (Fum
et al., 2007). The predominant empirical approach is to conduct experiments and an-
alyze behavioral data using statistical models from mathematical psychology, whose
parameters represent cognitive constructs. A prominent example is the power law of
forgetting (Anderson et al., 1997), which models the rate at which the activation of
memory units decays in time.

An increasingly popular technique is cognitive-computational modeling (Farrell
and Lewandowsky, 2018) – an attempt to specify cognitive assumptions and to
simulate parts of the human mind through computable models (Neisser, 1967;
Ormerod, 1990; Psychology, 2012).

In recent times, cognitive-computational modeling also allowed to complement
experimental studies with more data-driven approaches, which, e.g., make use of
large-scale datasets of social information systems (e.g., (Jones, 2016)). Corresponding
artifacts within these systems, such as tagged bookmarks, can be interpreted as man-
ifestations of cognitive processes (e.g., categorization of Web resources and evolving
information needs) and used to test theories of human cognition (e.g., (Glushko
et al., 2008)). Illustrative examples can be found in the studies of Fu and colleagues
(e.g., (Fu, 2008; Fu et al., 2010; Fu and Kannampallil, 2010; Fu and Dong, 2012)),
who draw on the cognitive architecture ACT-R (Anderson et al., 1997) (see below) to
perform theory-guided analyses and simulations of users’ tagging behavior in social
media, resulting in a socio-cognitive user model of social tagging (Fu, 2008; Fu and
Dong, 2012).
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2.1.2 Cognitive Models of Memory
Memory is a fundamental process of human cognition that supports goal-directed
interactions with our physical and social environment (Seitlinger and Ley, 2016). The
cognitive process memory enables the encoding and storing of information in memory
structures, i.e., short-term, working memory, and long-term memory, so that it can be
later retrieved. When information is recorded into memory (i.e., encoded) it is bound
to temporal and spatial context information in order to later enable a context-guided
search of memory content (i.e., the process of controlled retrieval) (Kahana, 2020).
This makes memory processes closely related to research problems in Information
Retrieval (Ingwersen, 1984) and Recommender Systems. In the following, we provide
a number of examples where recommender systems have been inspired or motivated
by memory models.

Memory models have been used in recommender systems in various forms. Rut-
ledge et al. (Rutledge-Taylor and West, 2007; Rutledge-Taylor et al., 2008) propose a
recommender system that is based on a cognitive model of human long-term memory,
i.e., dynamically structured holographic memory (DSHM) (Rutledge-Taylor and
West, 2007), to resemble how a human expert makes recommendations. This system
can model various human memory effects such as the fan effect (Anderson, 1974), i.e.,
recognition times for a concept increases as more information is available about the
concept. Bollen et al. (2012) exploit positivity effects from human memory theory
to investigate temporal dynamics of ratings in recommender systems. According to
the psychological literature, memories become more positive over time (Matlin and
Stang, 1978). In an offline study, the authors find evidence for the existence of the
positivity effect in ratings, i.e., movies receive higher ratings as time between release
date and rating date increases. However, a corresponding user study shows a decline
in rating score when movies were rated in a larger interval between watching and
rating.

Another memory model from psychology, the Ebbinghaus forgetting curve (Ebbing-
haus, 2013) is used to model changes in the interests of users. The Ebbinghaus
forgetting curve is a psychological theory from 1880 that describes the decrease in
ability of the human brain to retain memory over time. In recommender systems
research, the curve has been used in several works (e.g., (Yu and Li, 2010; Ren, 2015;
Chmiel and Schubert, 2018; Yang et al., 2019)) to account for shifts in user interests
by weighting the user feedback (e.g., ratings) using a nonlinear, time-based memory
decay function. Yu and Li (2010) and Ren (2015) utilize the curve to design a novel
collaborative filtering algorithm that accounts for shifts in user interests. Chmiel
and Schubert (2018) use the Ebbinghaus forgetting curve to model drifts in user
preferences in a music recommender system. Yang et al. (2019) use it to derive item
embeddings in a collaborative filtering approach. They use the curve to divide user
preferences into long-term and short-term preferences where recently rated items are
weighted higher than dated items.

Models of human memory are sometimes part of broader cognitive architectures,
which aim to draw a more holistic picture of how different cognitive domains work
together to generate emergent phenomena, such as a coherent thought. For an
overview of cognitive architectures, please refer to Chong et al. (2007). Sabater-mir
et al. (2013) use the cognitive architecture Belief/Desire/Intention (BDI) as an
intermediate between recommenders and their users. The cognitive architecture
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Figure 2.1: Schematic illustration of ACT-R (Kowald et al., 2020a). Please note that the activation
equation of the declarative memory module is used in a variety of recommender systems.

ACT-R (short for adaptive control of thought-rational) (Anderson et al., 1997) has
been employed in the context of recommender systems in several works (Maanen
and Marewski, 2009; Kowald et al., 2014; Trattner et al., 2016; Kowald et al., 2013;
Kowald et al., 2017b; Kowald and Lex, 2016; Stanley and Byrne, 2016)). ACT-R
defines and formalizes the basic cognitive operations of the human mind.

Figure 2.1 depicts the main architecture of ACT-R. As illustrated in the figure,
ACT-R differentiates between short-term memory modules, such as the working
memory module, and long-term memory modules, such as the declarative and
procedural memory modules. Using a sensory register (i.e., the ultra-short-term
memory), the encoded information is passed to the short-term working memory
module, which interacts with the long-term memory modules. In the case of the
declarative memory, the encoded information can be stored, and already stored
information can be retrieved. In the case of the procedural memory, the information
can be matched against stored rules that can lead to actions (Kowald et al., 2020a).
Thus, declarative memory holds factual knowledge (e.g., what something is), and
procedural memory consists of sequences of actions (e.g., how to do something).
Most works that employ ACT-R in the context of recommender systems focus on
the declarative part, which contains the activation equation of human memory. The
activation equation determines the usefulness, i.e., the activation level of a memory
unit (i.e., in the case of a recommender system, a candidate item) for a user in the
current context.

According to ACT-R, the probability that a piece of information (i.e., a memory
unit) will be needed to achieve a processing goal, i.e., will be activated, depends
on its usefulness in the current context as well as a human’s prior exposure to
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this information. This prior exposure can be quantified by two factors: recency and
frequency of usage. In addition, the current context in which the information occurs
also contributes to its activation. All factors are modeled using ACT-R’s activation
equation, as given in Equation 2.1.

Ai = Bi +
∑

j

Wj · Sj,i (2.1)

where Ai denotes the activation level of a memory unit i, Bi is the base-level
activation of i, j is a cue in the current semantic context, Wj denotes the weighting
of j, and Sj,i is the strength of activation between j and i. Bi can be computed via
the base-level learning (BLL) equation of ACT-R, i.e.:

Bi = ln

(
n∑

j=1

t−d
j

)
(2.2)

where n is the number of times i was activated in the past, tj is the time since the
jth activation of i and d accounts of the time-based decay of activation in memory.

The activation equation of ACT-R has been exploited in several recommender
systems. Maanen and Marewski (2009) use it to provide researchers at scientific
conferences with recommendations of which talk to attend. Here, the recommender
system mimics a researcher’s memory since it recommends a talk if words in the talk’s
abstract have occurred recently and frequently in the scientist’s work. Kowald et al.
(2017b) use the equation to model and explain how Twitter users apply hashtags.
They find that almost two-thirds of Twitter users in their datasets reuse their hashtags
or social hashtags (i.e., from their friends’ network), following a time-based decay in
the form of a power-law function, in line with Equation 2.2. Based on these findings,
they introduce a novel hashtag recommendation approach that adapts the equation
to account for individual and social hashtag reuse and which ranks a user’s hashtags
and the ones of her friends based on frequency and recency. In other works, Kowald et
al. (Kowald et al., 2014; Kowald and Lex, 2016; Kowald and Lex, 2015) and Trattner
et al. (2016) use the BLL equation (i.e., Equation 2.2) to model tag reuse processes and
to recommend items in social tagging systems. Please note that these implementations
of the BLL equation are available in the open source recommender systems framework
TagRec (Kowald et al., 2017a). Stanley and Byrne (2016) combine the equation with
a random permutation vector-based model to describe past tagging behavior in
StackOverflow and Twitter. Kopeinik et al. (2016) use it to recommend learning
resources and support collaborative learning with tag recommendations (Kopeinik
et al., 2017b). Besides, in (Kowald et al., 2019; Lex et al., 2020), the activation
equation is utilized to model music listening behavior and recommend artists and
genres, respectively. The latter works show that the resulting computational model
can alleviate popularity bias in music recommender systems (Kowald et al., 2020b).
Please note that the algorithms based on the activation equation to model music
listening behavior are available in the open-source recommender systems framework
TagRec (Kowald et al., 2017a). Furthermore, Zhao et al. (2014) use the activation
equation to produce context-aware recommendations for mobile applications as they
combine frequency and recency of application use into contextual information.
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Finally, recommender systems can support memory processes, as is described
in (Missier, 2014). Here, Schnabel et al. (2016) propose to support a user’s short-
term memory by creating a digital short-term memory in the form of shortlists,
which contain the items a user is currently considering. Items on the shortlist
represent implicit feedback that is exploited to generate additional training data
for a recommender system. Additionally, Elsweiler et al. (2007) relate the task of
supporting memory in retrieving objects to recovering from memory lapses. They
show that building upon research on how people recover from memory lapses can
help to create better personal information management tools. Other works suggest
augmenting human memory via providing documentation of events gathered from
external tools such as wearable sensors or cameras (Harvey et al., 2016; Doherty
et al., 2012). Related to this, in (Gemmell et al., 2002), the MyLifeBits project
is presented, which aims to fulfill Vannevar Bush’s Memex vision to generate a
system that is capable of reminding users of their stored “bits” (e.g., documents or
images). A similar initiative, the Forget-me-not project, was even already introduced
in 1994 (Lamming and Flynn, 1994). Interestingly, the authors state the importance
of context for retrieving memory cues, which is in line with the recommendation
algorithms mimicking human memory access that have been proposed decades later
(e.g., by Kowald et al. (2017b)).

2.1.3 Cognitive Models of Attention
Attention is a mechanism to selectively process information in an environment in
the face of distraction. Attention is dynamic in nature and hence typically modeled
using connectionist models. Connectionism is a research strand in cognitive science,
which uses artificial neural networks to study cognition and to model cognitive
processes (Buckner and Garson, 2019). In this vein, Seitlinger et al. (2013) use the
connectionist human memory simulation model ALCOVE (Kruschke, 1992) to imple-
ment a novel tag recommendation algorithm termed 3Layers. Kowald et al. (2013)
enhance the 3Layers algorithm with recency effects by combining it with the BLL
equation mentioned before. Another connectionist model is used by Kopeinik et al.
(2017a), who apply SUSTAIN (Love et al., 2004), a connectionist model of human
category learning and successor of ALCOVE, to recommend resources that fit to a
user’s current attentional focus. Please note that the resulting resource recommenda-
tion algorithm is publicly available in the open-source TagRec framework (Kowald
et al., 2017a).

The use of memory or attention mechanisms in deep learning-based recommender
systems (see e.g. (Zheng et al., 2019)) has gained traction in recent years. To the
best of our knowledge, such works typically do not discuss underlying psychological
constructs. Therefore, in the present study, such works are omitted. For an overview
of deep learning-based recommender systems, see (Zhang et al., 2019b), as well as
the recent study by Xu et al. (2020).

2.1.4 Cognition and Case-based Reasoning Recommender Systems
Case-based recommender systems (Hammond, 2012; Kolodner, 2014; Riesbeck and
Schank, 2013) employ case-based reasoning (CBR), a technique pioneered by cognitive
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scientist Janet Kolodner (Kolodner, 1992; Kolodner, 2014) to produce recommenda-
tions. CBR is a technique where a reasoner remembers previous cases that are similar
to the current case and uses them to solve new problems (Kolodner, 1992). Such
systems constitute early examples of psychology-informed recommender systems as
they employ a problem solving architecture designed by psychologists. The similarity
metrics used by CBR systems were inspired by works in psychology on the basic
features of similarity. Here, the similarity between two items is determined based
on their common and distinctive features (Tversky, 1977). Since CBR recommender
systems are based on learning from previous experiences, they require a knowledge
base that contains well-represented examples (Burke et al., 1996).

CBR research examines the CBR process both as a model of human cognition
and as an approach to build intelligent systems (Leake, 2001). In the context of
recommender systems research, Burke employs CBR to generate recommendations in
an e-commerce setting (Burke, 1999), and in Burke et al. (1996) to produce restaurant
recommendations. Ricci et al. (Ricci and Werthner, 2001; Ricci et al., 2002; Ricci
et al., 2006) utilize CBR in the domain of travel recommendations. Aguzzoli et al.
(2002) combine CBR with CF to produce music recommendations, similar to Gong
(2009), who combines CBR with item-based CF by first using CBR to fill missing
entries in the user–item ratings matrix and then predicting items using CF. Yang
and Wang (2009) designed an approach based on CBR to assist project managers in
constructing new project plans based on previous projects. Wang and Yang (2012)
introduce an extension to CBR to enable a hierarchical problem representation.
Their approach considers multiple decision objectives on each level of hierarchical,
multiple-level decision criteria; thus, problems can be identified more precisely. Musto
et al. (2015) employ CBR to recommend personalized investment portfolios as an
assisting tool to financial advisors. Bousbahi and Chorfi (2015) implement a CBR-
based recommendation approach to assist learners in finding massive open online
courses (MOOCs) that meet their personal interests.

CBR has furthermore been used to design explanation strategies for recommen-
dations; see the respective chapter in the Recommender Systems Handbook for a
concise overview of explanations for recommender systems (Tintarev and Masthoff,
2015); the review presented by Doyle et al. (2003) details the use of explanations
in knowledge-based systems. McSherry (2005) explain recommendations along with
the difference between query and case descriptions, whereas the query represents the
user preferences. Sharma and Ray (2016) select the attribute with the highest weight
in the similarity metric to find the similar cases that may be of interest to the user
as an explanation of the recommendation.

Muhammad et al. (2015) describe a case-based recommender system for hotels
whereas cases are extracted from the user-generated, textual reviews of users. In
addition to cases, user profiles are created based on the reviews a user has submitted.
Based on the profiles, a set of hotels are recommended and explanations for the
candidates are produced and used to rank hotels. The explanations consist of hotel
amenities enriched with sentiment extracted from opinions expressed in the reviews.
Jorro-Aragoneses et al. (2019) introduce a CBR strategy to extract explanatory
cases that are similar to recommended items, which are then used to interpret latent
factors produced by matrix factorization recommendation algorithms.

Furthermore, critique-based recommender systems are a form of case-based
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recommender systems (Pu et al., 2012). Critique-based recommenders produce
recommendations by creating a dialogue, in which recommendations are offered and
users give feedback to the recommendations in the form of critiques. A large body of
research exists on critique-based recommender systems; for an overview, please refer to
the respective chapter in the Recommender Systems Handbook (McGinty and Reilly,
2011). In this field, recent work by Contreras and Salamó (2020) introduces a cognitive
user preference model that incorporates an adaptive clustering process into the user
model. The authors use this user model in a critique-based recommender system. Here,
the cognitive user preference model is generated from interactions with the user and
adapts its content to the evolving requirements of the user, which are defined by the
user’s critiques. Also in recent work, Güell et al. (2020) introduce a cognitive-based
assistant for a critique-based recommender system, whose reasoning process when
recommending products employs the same cognitively-inspired clustering algorithm
as Contreras and Salamó (2020).

2.1.5 Competence-based Recommender Systems
Competence can be understood as the body of knowledge that is required to perform
tasks in a particular domain (Fehling, 1993). In the context of recommender systems,
competence is often used in learning and expert seeking scenarios. Bellandi et al.
(2012) outline various design principles for competence-based recommender systems.
The basis for such systems are competence profiles that help recommend expert
advice or design teams. Chavarriaga et al. (2014) introduce a hybrid recommender
system based on collaborative filtering and knowledge-based recommendations for
students, which recommends activities and resources. The goal is to assist students
achieve certain competence levels in the context of an online or blended course. Prins
et al. (2008) propose to support learners with personalized competence-based recom-
mendations. The authors investigate the efficacy of using competence descriptions in
personalized recommender systems. For a systematic review of competence-based
recommender systems, refer to Yago et al. (2018).

Modeling competences also plays an important role in the development of edu-
cational recommender systems (Pavlik and Anderson, 2008). An example is given
by Mozer and Lindsey (2016), who follow a hybrid approach that integrates collab-
orative filtering and computational models of forgetting, such as a variant of the
above described ACT-R activation equation. More specifically, they use collaborative
filtering to infer a student’s latent traits, such as the memory strength for a given
item (e.g., vocabulary) or the individual time-based memory decay rate. They then
exploit the activation equation to predict the student’s knowledge state with respect
to the item.

Thaker et al. (2018) present an approach to model dynamic student knowledge for
online adaptive textbooks. Their model integrates student activities in a knowledge
tracing framework (Corbett and Anderson, 1994), a framework based on ACT-R to
model changes in knowledge states during acquisition of skills. In the work of Thaker
et al., students’ current level of knowledge is derived from behavioral data and quiz
activities.

A mathematically complementary approach can be found in educational recom-
mender systems, which draw on the set-theoretical framework of Knowledge Space
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Theory (e.g., Falmagne et al. (2013)). Based on the observed problem solving be-
havior of a student, e.g., in the domain of mathematics, the probability distribution
over the underlying subset of knowledge states (i.e., problems that can already be
mastered) is estimated. These estimates serve as input for adaptive recommendations
of learning objects, which are neither too easy nor too difficult.

2.1.6 Discussion
Incorporating cognitive models of human cognition to design and improve recom-
mender systems is a promising research direction. In particular, a variety of human
memory models have been applied to model user behavior and to improve recom-
mender systems. The use of parts of the cognitive architecture ACT-R has put
forth effective recommendation systems. The most compelling reason here is that
the BLL equation formalizes fundamental time-based memory decay processes in a
computationally efficient manner; additionally, its underlying psychological model
is intuitive and contributes to a deeper understanding of user behavior. However,
recommender systems based on the BLL equation foster interaction with content
similar to what a user has already interacted with recently and frequently in the past
(e.g., scientific content like in the work of Maanen and Marewski (2009)). Depending
on the use case (e.g., recommending political news) this may lead to confirmation
bias, i.e., the tendency to recall information that mostly confirms one’s existing
beliefs. Understanding the implications of such recommender systems from both the
user and the system perspective is an open challenge for future research. One strand
of research can look into the diversification of recommendation results to mitigate
confirmation bias. For an overview of diversification in recommender systems, please
refer to Castells et al. (2015). The topic of counterfactual reasoning (Hoch, 1985)
can be another strand of research to alleviate confirmation, and in a larger context,
information bias. Counterfactual reasoning is a core concept in human cognition that
corresponds to thinking about a past situation and reflecting on alternative outcomes
that might also have been. Galinsky and Moskowitz (2000) show in a psychological
study that counterfactual reasoning can make study participants explore alternative
explanations in situations in which they typically seek confirmatory information.
Future work can explore how to develop counterfactual recommendations that help
users explore alternative choices and their impact on user behavior.

CBR recommender systems, while being a category of recommender systems
on their own, are also built on principles of cognition. In essence, they mimic how
humans draw on previous learning episodes when solving new problems. One of
their advantages is that they help generate recommendations in a transparent and
explainable fashion. However, they require a knowledge base, whose creation is often
labor intensive. More research is needed to devise efficient techniques to create and
maintain such knowledge bases.

Furthermore, we reviewed works that incorporate a user’s attention into the
recommendation model. While the success of deep learning has spawned a range of
attention-based approaches, we are not aware of any works that discuss underlying
psychological models and theories of attention. Here, we see potential for future
work to investigate attention-based approaches in light of underlying psychological
constructs. That can foster the transparency and interpretability of the inner workings



156 Psychology-informed Recommendation Approaches

of such algorithms.
Finally, there is also untapped potential in the study of the connection between

utilizing human memory processes to design and improve recommender systems
and using recommender systems to support human memory in retrieving objects.
While both strands of research agree on the relevance of context cues for determining
the importance of objects in human memory, to date, research that addresses both
aspects simultaneously is scarce.

2.2 Personality-aware Recommender Systems

Personality is a fundamental human characteristic, which has been studied in psy-
chology for decades. Personality traits are human characteristics that are stable over
the years. In contrast to mood or emotion, which change frequently and are context-
dependent, personality traits do not depend on a particular context or stimulus.
Personality traits are known to be significantly correlated with user characteristics
that recommender systems exploit, such as music preferences (Tkalcic and Chen,
2015a; Ferwerda et al., 2017b), or preferences for movies (Golbeck and Norris, 2013)
or books (Rentfrow et al., 2011); or the need for diversity in recommendation lists
(Chen et al., 2013b; Wu et al., 2013). Nguyen et al. (Nguyen et al., 2018) find, in a
user study with over 1,800 subjects, that personality traits of users can also help infer
the users’ preferences for recommendation diversity, popularity, and serendipity. They
also show that user satisfaction increases when personality traits are incorporated
into the recommendation process. The correlation between user preferences and
personality traits is also confirmed in the work of Karumur et al. (Karumur et al.,
2018). In a user study conducted on the MovieLens dataset,1 the authors identify
user behavior that is related to the recommender system (i.e., user retention and
engagement, preferences, and rating patterns), and show that the personality traits
of the users correlate significantly with their behavior.

The most common motivations for considering personality in the recommendation
process are to alleviate cold-start situations (in particular for new users) and to
improve the level of personalization (e.g., to increase recommendation list diversity).
Karumur et al. (Karumur et al., 2016) go beyond this research as their aim is to
identify specific areas where personality is most likely to provide value in recommender
systems. To that end, they study category-by-category variations in preference (both
rating levels and distribution) across different personality types.

2.2.1 Elicitating Personality Traits
While a variety of models exist to describe human personality traits, the least
disputed and most commonly used model in the context of recommender systems
research is the Five Factor Model (FFM), which is also known as the Big Five model
or the OCEAN model (McCrae and John, 1992). Please note that other personality
models are the Thomas-Kilman conflict mode personality model (Thomas, 1992),
which is used to model dynamics in groups (Felfernig et al., 2018d), or the vocational
RIASEC model (short for Realistic, Investigative, Artistic, Social, Enterprising,

1https://grouplens.org/datasets/movielens
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and Conventional) model (Holland, 1997), which is used to deliver personalized
recommendations in an e-commerce setting (Bologna et al., 2013), as well as the
Bartle model (short for Killers, Achievers, Explorers, and Socializers) (Stewart, 2011),
which is used to provide recommendations in gamified learning settings (Konert
et al., 2013; Paiva et al., 2015).

The most commonly adopted FFM describes personality along the five dimensions
of openness to experience (conventional vs. creative thinking), conscientiousness
(disorganized vs. organized behavior), extraversion (engagement with the external
world), agreeableness (need for social harmony), and neuroticism (emotional sta-
bility). Various instruments have been developed to elicit personality traits, with
questionnaires being a common choice. Each personality dimension is then described
along a given multi-point rating scale, e.g., between 1 and 5. To this end, the re-
sponses/ratings to the questions are linearly combined using a fixed combination for
each trait.

A comprehensive resource for such instruments is the International Personality
Item Pool (IPIP),2, which contains a wealth of measures and scales (Goldberg et al.,
2006).

The most commonly used instruments to elicit personality traits according to the
FFM include the Ten Item Personality Inventory (TIPI) (Gosling et al., 2003) and
the Big Five Inventory (BFI) (John and Srivastava, 1999). The former asks users to
fill in 10 questions on a 7-point scale from “disagree strongly” to “agree strongly”
(e.g., “I see myself as anxious, easily upset.”). The latter, sometimes also referred to
as BFI-44, uses 44 questions. Both linearly combine the answers to result in a final
score for each of the OCEAN dimensions.

Please note that several approaches exist, which infer personality traits not based
on questionnaires; including extracting personality information from eye tracking
data (Berkovsky et al., 2019), communication behavior in Web-based learning Sys-
tems (Wu et al., 2019), visual and content features from Instagram pictures (Ferwerda
and Tkalcic, 2018), or social media content (Golbeck et al., 2011a; Golbeck et al.,
2011b; Golbeck, 2016).

2.2.2 Personality Traits in Recommender Systems
Since personality traits are human characteristics that are stable over years and
do not depend on a certain context or stimulus, in contrast to mood or emotion,
respectively, they can be used to create personalized recommender systems. The
most common motivations for considering personality in the recommendation process
include to alleviate cold-start situations (in particular for new users) and to improve
the level of personalization (e.g., to increase recommendation list diversity). In the
following, we present a selection of very recent work; for a review of earlier research,
please consider (Tkalcic and Chen, 2015b).

Asabere et al. propose a recommender system for conference attendees that
integrates personality traits and social ties of attendees (Asabere et al., 2018).
Personality is described using the OCEAN model, social ties using contact duration
and frequency of conference attendees (they were equipped with smartphones). User

2https://ipip.ori.org
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similarity in terms of personality is computed using Pearson’s correlation between two
persons’ OCEAN scores treated as a vector. The similarity between two attendees
concerning social ties is computed as a product of their contact frequency and
duration. Based on these two kinds of similarity, the authors present a hybrid system
that linearly combines the personality and social tie similarities between users. The
system alleviates cold start for users with low social tie strength (e.g., users who just
arrived at the conference) by resorting to using personality only.

Yang and Huang propose a personality-aware recommender for computer games
(Yang and Huang, 2019). They predict players’ OCEAN traits from their social media
posts employing methods of personality recognition from texts, in particular, natural
language processing techniques. Games are also assigned personality scores based on
the personality of their players and based on results of personality recognition applied
to game reviews. The target user is then recommended games that are played by users
with a similar personality, an approach that resembles memory-based collaborative
filtering where similarities are computed over personality trait vectors rather than
rating vectors. Alternatively, the target user is recommended games similar to the
games the user interacted with, which resembles content-based filtering where game
content is modeled by predicted “personality” of the game.

Adaji et al. present a graph-based approach for recommending recipes using
personality information of users of an online social networking site for cooking (Adaji
et al., 2018). The authors extract OCEAN scores from users’ reviews and describe each
recipe by the dominant personality trait of its reviewers. A graph is then constructed
in which nodes (recipes) are connected by edges indicating that the same user has
reviewed them. Recipes are weighted by the number of reviews received; edges are
weighted by the number of users who reviewed both recipes the edge connects. The
authors propose to alleviate cold start by first creating a recipe subgraph that only
contains the recipes whose dominant “personality” matches that of the new user.
Recipes are then recommended starting at the node with the highest weight and
traversing the graph in decreasing order of edge weight.

Nalmpantis and Tjortjis present a simple method to include personality into a
movie recommender system (Nalmpantis and Tjortjis, 2017). Based on the OCEAN
traits of the target user, the authors compute the Manhattan distance between the
user’s traits and the traits assigned to each genre in a list of movie genres with
personality annotations created by (Cantador et al., 2013). The proposed system,
which is based on a nearest neighbor collaborative filtering approach, then predicts
ratings as a linear combination between the movie ratings predicted by the CF
component and the user’s personality-based genre distance to the movie’s genre
under consideration.

Gelli et al. integrate personality information into an image recommender system,
framed as the task of predicting interactions of users with images shared on Twit-
ter (Gelli et al., 2017). To this end, the authors propose a context-aware factorization
machine that integrates both sparse features (user–item interactions) and dense
feature vectors, such as multimedia content descriptors or user side information. As
dense features, they include the users’ OCEAN scores and visual concept vectors
of the images under consideration into the model, to learn a joint representation.
Personality scores of the Twitter users are extracted from their shared posts using
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the Apply Magic Sauce API.3
Personality information is often considered in recommender systems to tailor the

level of diversification of recommended items to the user’s needs, relying on studies
that show that personality is correlated with a preference for diversity, e.g., (Tintarev
et al., 2013; Wu et al., 2018; Ferwerda et al., 2017a). For instance, Lu and Tintarev
propose a music recommendation system that adapts to users’ personality factors
and their diversity needs on music preferences (Lu and Tintarev, 2018). They rerank
results of a collaborative filtering approach by linearly combining the original rank
of each item (song) produced by collaborative filtering and the degree of diversity
that the item contributes to the recommendation list, integrating personality as a
weighting term into the objective function used for reranking. The authors describe
users’ personality according to the OCEAN model and define diversity as intra-list
diversity, i.e., averaged pairwise distance between all items in the recommendation
list. These distances are computed on item features, namely music key, genre, and
the number of artists. In a pilot study, the authors found these three features to be
most correlated to personality traits. For instance, extraversion was correlated with
diversity in terms of music key, as well as agreeableness and diversity in the number
of artists. Based on such correlations, Lu and Tintarev then map each personality
factor to a desired level of diversity and integrate this as a weighting term into the
objective function used for reranking.

Wu et al. propose an approach for recommending interest groups to join for
users of an online social network (Wu et al., 2018). The approach tackles cold start
and tailoring recommendations to the user’s desired level of diversity by integrating
personality information into a user-based CF system. The authors elicit OCEAN
scores and linearly combine user similarity in terms of item ratings and personality-
based user similarity to alleviate cold start. The personality-based similarity is
defined as the Euclidean distance between two users’ personality scores. Adjusting
diversity is achieved by integrating findings of a pilot study in which the authors use
OCEAN traits to predict diversity preferences of users of a Chinese social network
site. Thereby, diversity of a user is measured as entropy over categories of interest
groups (e.g., sports or culture) the user joined on the site. The recommender system
then adjusts the level of item diversity in the recommendation list so that it best
matches the diversity level desired by the target user (as estimated from his or her
personality traits).

Fernandez-Tobias et al. propose a personality-aware recommender system, which
they evaluate for recommending books, movies, and music (Fernandez-Tobias et
al., 2016). Among other contributions (e.g., on active learning and cross-domain
recommendation), the authors extend the classical matrix factorization approach
commonly used in model-based collaborative filtering by integrating a user latent
factor that describes their personality in terms of the five dimensions of the OCEAN
model. The proposed personality-based matrix factorization approach can deal with
implicit feedback data, i.e., information on user-item interactions beyond explicit
ratings, such as clicks, purchases, or the frequency of item consumption.

3https://applymagicsauce.com
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2.2.3 Personality Traits in Group Recommender Systems
Personality can also be taken into account in group recommendation scenarios to
improve the quality of group decisions and increase user satisfaction. In groups of
users, especially heterogeneous groups, a conflict situation may arise quickly since
group members have different personality traits, which leads to contradicts in terms
of the preferences of group members (Recio-Garcia et al., 2009). Thereby, generating
group recommendations by solely aggregating group members’ preferences, using
standard social choice functions (Felfernig et al., 2018a; Masthoff, 2011), might not
reflect the overall satisfaction of a group (Quijano-Sanchez et al., 2010).

More recently, some novel methods have been proposed to create group recom-
mendations considering different types of group members’ personalities. For instance,
Rossi and Cervone (2016) propose a group recommendation approach that considers
the agreeableness factor. The authors argue that in choosing an item in a group of
close friends, agreeableness, being related to altruistic behavior (Costa and McCrae,
1995), plays a crucial role. An agreeable person tends to compromise and avoid items
that are not in the interest of others. Based on this idea, instead of defining a specific
social choice function that considers the agreeableness factor, the proposed solution
uses the definition of an individual utility function to evaluate the item rating of
each group member. The underlying idea of this function is “the user satisfaction if
the recommender system chooses that item for the group”. This function conforms to
the model proposed by Charness and Rabin (2002) that maximizes the social welfare
and increases the sum of group members’ payoffs. The utility function measures
how much a group member likes to increase social surplus, caring about helping
himself/herself and others with low payoffs. In another work, Delic et al. (2017)
conduct a user study in the travel destination domain to explore the satisfaction
levels of individual group members with the final group decision. The authors find
out that group members are highly satisfied with the outcome of group negotiations
when the final group decision matches their initial preferences. Besides, they indicate
that individual satisfaction is correlated with the Big Five personality traits of group
members. The satisfaction with the final group decision is positively correlated with
the traits agreeableness and conscientiousness and negatively correlated with the
trait neuroticism.

Personality traits of group members can also be exploited in group recommender
systems to resolve conflict situations in group decisions. Nguyen et al. (2019), Quijano-
Sanchez et al. (2010), and Recio-Garcia et al. (2009) characterize the personality of
group members using the Thomas-Kilmann Conflict Mode Instrument (TKI) model
(Thomas and Kilmann, 1974). This model describes a group member’s behavior in
conflict situations according to two dimensions: assertiveness and cooperativeness.
These dimensions are the extent to which an individual attempts to satisfy his/her
own (assertiveness) and other people’s preferences (cooperativeness) (Nguyen et
al., 2019). The dimensions can be used to define five personality modes of conflict
resolution: (i) competing (assertive and uncooperative), (ii) collaborating (assertive
and cooperative), (iii) avoiding (unassertive and uncooperative), (iv) accommodating
(unassertive and cooperative), and (v) compromising (moderately assertive and
cooperative) (Nguyen et al., 2019; Recio-Garcia et al., 2009). Although these studies
share the common idea of exploiting the personality of group members for conflict
resolution, they show different points of view in modeling the dimensions assertiveness
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and cooperativeness. Nguyen et al. (2019) model assertiveness as the probability
that group members propose items to the discussion that are highly related to
their preferences. Thereby, the probability increases if a group member is assertive
and decreases otherwise. In contrast, the authors model cooperativeness with the
probability that a group member gives positive and negative evaluations to items
proposed by other group members. A group member with a high cooperativeness
tends to have a higher probability of giving positive feedback and a lower probability
of giving negative feedback. Quijano-Sanchez et al. (2010) and Recio-Garcia et al.
(2009) estimate the assertiveness and cooperativeness of a group member based on
the sum of the coefficients of his/her personality modes specified by the TKI model
(i.e., competing, collaborating, avoiding, accommodating and compromising). These
two dimensions are combined to estimate a Conflict Mode Weight (CMW) indicating
how selfish or cooperative a group member is. The CMW value is in the range of
[0..1], where “0” reflects a very cooperative person and “1” reflects a very selfish
one. The rating of a group member u for a specific item can then be predicted by
considering the difference between CMW (u) and any other user v in the group
(CMW (v)), e.g., in a simple user-based CF fashion. Recio-Garcia et al. (2009) also
apply a CF approach to first recommend the best items for each group member (we
assume Bestu consists of the best items recommended to a group member u using
the CF approach). After that, the preferences of individual group members for each
item in Bestu are merged using the minimization misery procedure (O’Connor et al.,
2001). The general idea of this procedure is to minimize as much as possible the
misery within the group. For further details of this recommendation approach, we
refer to (Recio-Garcia et al., 2009).

2.2.4 Discussion
As illustrated by the reviewed works, personality has a significant impact on user
preferences and behavior. The use of personality traits in personalized recommender
systems helps alleviate cold-start problems and bears the potential to improve the
level of personalization, also in terms of diversification of recommendation results.
However, to date, it is not well understood to which extent personality influences
perceived recommendation quality; neither is the variability of this extent between
users. For some users and domains, tailoring recommendations to personality traits
might be valuable to recommend items that fit their personality; for others, personality
could be an irrelevant signal, which could even be perceived as invasive concerning
privacy and ethics. Incorporating personality in a privacy-aware fashion is an open
issue.

Also, current approaches integrate personality in quite simplistic ways, e.g., by
linearly combining a content-based similarity with a personality/user-based similarity
metric. Only in a very recent article, Beheshti et al. (2020) incorporate personality
information as features in a neural embedding framework in the larger context of a
so-called cognitive recommender system.

Furthermore, manifold instruments and frameworks exist to elicit personality
traits. However, the question of when to use which and what quality can be achieved
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is still the subject of more detailed investigation. The same holds for the willingness
of users to fill out a questionnaire containing tens or even hundreds of questions.

Finally, how to model the “personality” of an item is still an under researched
question. More sophisticated methods to derive personality traits on the item level
are required. One recent example in this vein is the approach by Sertkan et al. (2019).

2.3 Affect-aware Recommender Systems

Affect plays a crucial role in human life. Human affect is commonly categorized
into mood and emotion. Mood refers to an affective experience of longer duration
(minutes to hours) but lower intensity, emotion to an affective response of shorter
duration (seconds to minutes) to a particular stimulus. Like personality, both mood
and emotion are fundamental human characteristics and have been in the focus of
psychological research for a long time. They are known to influence our decision
making and preferences (Shiv and Fedorikhin, 1999), for example in the domain of
videos (Orellana-Rodriguez et al., 2015), fashion (Piazza et al., 2017), music (Ferwerda
et al., 2017b), movies (Golbeck and Norris, 2013), or books (Rentfrow et al., 2011);
or the need for diversity in recommendation lists (Chen et al., 2013b; Wu et al.,
2013) and reading choices in online news (Mizgajski and Morzy, 2019). In addition,
consumption of media items plays a vital role for human mood regulation. In the
context of music, mood regulation was even identified as one of the main purposes
why people listen to music (Schäfer, 2016).

It has also been shown that humans with different personality traits perceive
different emotions when listening to the same piece of music (Schedl et al., 2018).
Emotion is a well-explored contextual factor in context-aware recommender systems
(e.g., (Zheng, 2013)).

2.3.1 Modeling Affect

Focusing on describing emotions, we can distinguish between categorical models and
dimensional models. The former describes emotions using a predefined vocabulary
of basic emotion terms (e.g., happy, sad, angry, or relaxed) or secondary emotions
that are reactions to primary ones (e.g., energetic, lonely, confused, or hopeful).
Dimensional models, in contrast, describe emotions by assigning them values in a
continuous space, which is most commonly spanned by the two dimensions valence (V)
and arousal (A), according to Russell (Russell, 1980). Valence refers to the level
of the pleasantness of emotion (positive vs. negative), while arousal refers to the
emotion’s intensity (high vs. low). The V/A space is sometimes complemented by
a third dimension that describes how much in control of the respective emotion a
person is (dominant vs. submissive). This dimension is commonly called dominance
by Mehrabian (Mehrabian, 1980), potency, or control according to Fontaine et
al. (Fontaine et al., 2007). An illustration of the valence–arousal plane with several
affective terms mapped to it can be found in Figure 2.2.
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Figure 2.2: Some categorical affective terms mapped to valence–arousal plane (Knees et al.,
2019).

2.3.2 Affect in Recommender Systems

To create affect-aware recommender systems, we need to infer the mood or emotion of
the user, identify relationships between the user’s affective state and item preferences,
and finally match users and items constrained to some function that describes
affective relationships (Tkalcic et al., 2011). Most often, both users and items are
represented in the same affective space to enable direct computation of similarities
between users and items.

Ravi and Vairavasundaram (2017) present a recommender system for locations
that leverages users’ emotions, and their locations shared in a location-based social
network. To establish associations between locations and emotions as well as users
and emotions, the authors adopt a lexicon-based approach to identify emotion
words in user posts shared at a particular location. Emotions are described using
a categorical model of positive emotion categories (happy, like, and surprised) and
negative categories (angry, sad, fear, and hate). As a result, each user and each
location is described by an emotion vector, which allows computing emotion similarity
between users and items. The authors propose adaptations of user-based and item-
based collaborative filtering to make recommendations. The user-based collaborative
filtering model recommends locations to the target user u based on the product of two
components: overall emotional similarity to other users v (irrespective of location) and
similarity between u’s current emotion and the emotion v expressed when visiting the
location under consideration. The proposed item-based collaborative filtering model
uses the emotionally most similar locations to those locations l already visited by the
target user u and weighs them with the similarity between u’s current emotion and
u’s emotion when visiting l. Cosine similarity is used for all similarity calculations.
A hybrid system is also proposed, as a simple linear combination of the user-based
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and items-based prediction scores.
Deng et al. (2015) propose a similar approach while using other resources and

targeting another recommendation domain, i.e., music. The authors extract emotion
information and music listening information from a popular Chinese microblogging
service. They adopt a lexicon-based approach using various Chinese text resources
and emoticons to infer emotions of microblogs. Emotions are described using different
categorical models of varying granularity (from 2 to 21 emotion categories). To
be able to compute similarities, a user’s emotional context is then defined by a
vector representation over the dimensions of the applied emotion model, where
each dimension contains the frequency of terms belonging to the respective emotion
category in the user’s most recent microblogs. Contextual relationships between
emotions and songs for a given user are established by considering the emotions
reflected in the user’s posts directly before his or her posting of a music listening event.
This way, each pair of user and song (listened to by the user) is assigned an emotion
vector. For recommending songs, the authors define a user-based collaborative filtering
model, an item-based collaborative filtering model, a hybrid of the two, and a random
walk model. The former three are almost identical to Ravi and Vairavasundaram
(2017), but use songs instead of locations as items. For the random walk approach,
the authors construct a bipartite graph of users, emotional contexts (merged by
clustering), and songs. They adapt a variant of PageRank to traverse the graph and
effect recommendations.

Ayata et al. (2018) propose a framework for emotion recognition that can be
integrated into music recommender systems. The authors gather various physiological
signals through wearable sensors (measuring, for instance, skin conductance or heart
rate). From the sensor data, several features are computed using different statistical
summaries of the physiological measurements (e.g., min, max, mean, variance, median,
skewness, and kurtosis) within time windows. These features are used to predict
the user’s emotional state, where emotions are described using the V/A model. The
authors then conceptualize a music recommendation architecture that integrates the
affective response of the previous recommended song on the user and adapts future
recommendations based on this response.

2.3.3 Discussion
The discussed works show that both emotion and mood are beneficial in context-
aware recommendation scenarios, such as location-based recommendations, and in
scenarios in which recommended items have a strong affective impact on users, such
as music recommender systems. As shown by the literature, users’ affective states
can be exploited to tailor recommendations to the needs of an individual.

A shortcoming of current research is that it largely neglects dynamic changes in
mood or emotion during item consumption. We see further potential to research on
detecting such changes and integrating affect dynamics into recommender systems.
Besides, as in the case of personality, to which extent a user’s mood or emotion
influences the perceived recommendation quality is not well understood either and
another challenge for future research.

An additional limitation of current work on affect-aware recommenders is that they
assign one affective state to the user, neglecting the differences between expressed,
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perceived, and induced emotion. This is in contrast to psychological literature,
which makes a clear distinction between those kinds of emotions. This distinction is
particularly important for recommenders in the entertainment domain, with typical
strong emotional attachment of users. Expressed emotion refers to the emotion the
creator of an item, such as a photographer or composer, intended to express when
creating the item. Perceived emotion refers to the emotion the user (e.g., viewer
or listener) perceives when exposed to the item. Induced emotion is the emotion
truly experienced or felt by the user. Since these three categories of emotions may
be very different (Juslin and Laukka, 2004; Schedl et al., 2018), an emotion-aware
recommender system should be able to distinguish between them and incorporate
them in multifaceted ways.

Finally, mood and emotion constitute sensitive information. Therefore, more
research is needed to make emotion detection and inclusion of emotion as a contextual
factor in recommender systems privacy-aware.
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So far, in this survey, we focused on recommendation techniques and systems
that use psychological features of the user in the recommendation process. In this
section, we discuss works that investigate how recommender systems influence human
decision making. In addition to helping users make decisions, recommender systems
also persuade users (Yoo et al., 2012) and influence human choices. Here, several
psychological mechanisms should be taken into account. In the following, we review
works that discuss such mechanisms in light of recommender systems research.

When users interact with a recommender system, they make decisions; for instance,
they choose an item from the recommendation list (Chen et al., 2013a). Decision
making is a fundamental cognitive process that has been studied for decades by
renowned psychologists such as Kahneman (Kahneman, 2011), Stanovich (Stanovich
and West, 1998), Loewenstein (Loewenstein and Lerner, 2003), Gigerenzer (Gigeren-
zer and Gaissmaier, 2011), Thaler (Thaler, 1980), or Tversky (Tversky and Kah-
neman, 1974), who describe the process of users’ decision making as being not
completely rational (Stanovich and West, 1998; Kahneman, 2003), in cases guided by
affect (Loewenstein and Lerner, 2003), influenced by biases and heuristics (Tversky
and Kahneman, 1974), and anchor effects (Tversky and Kahneman, 1974), or subject
to bounded rationality (Simon, 1966), which means that cognitive limitations of the
decision maker impact rational decisions.

Such factors can lead to sub-optimal decision outcomes. The reason for this is
that users frequently do not try to optimize a decision outcome, but instead apply
decision heuristics (Payne et al., 1993). Bettman et al. (1998) describe that while
users’ preferences evolve in the course of a decision process, they typically cannot
state these from the very beginning. Thus, human decision making is more focused
on constructing preferences than on eliciting preferences. Correspondingly, in the
case of recommender systems, users often do not know their preferences beforehand
but construct and frequently adapt these within the scope of the recommendation
process (Mandl et al., 2011). Please note that the Recommender Systems Handbook
dedicates a chapter to human decision making and recommender systems (Jameson
et al., 2015). Besides, Teppan and Zanker (2015) present an empirical study of several
decision biases in recommender systems. They investigate three types of biases, i.e.,
decoy effects (Teppan and Felfernig, 2009a; Teppan and Felfernig, 2009b), serial
position effects (Felfernig et al., 2007), and framing (Tversky and Kahneman, 1981).
Adomavicius et al. (2013) discuss anchoring effects (Tversky and Kahneman, 1974;
Chapman and Johnson, 2002), which influence the decisions of users if they are
presented with an initial proposed value for available options.

Furthermore, decision making behavior varies between users. The work of Jameson
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et al. (2015) describes a variety of choice patterns observed in users and outlines how
recommender systems can support such patterns. Karimi et al. (2015) investigate the
variance of user decision making behaviors on the basis of analyzing four archetypes
of online customers. The authors find that the decision making behavior of users
significantly differs depending on the nature of the decisions (i.e., number of cycles,
duration, number of alternatives and number of criteria). Jugovac et al. (2018) present
a study on how to adapt recommender systems to such different decision-making
styles.

In the next sections, we summarize research efforts on relevant factors that
influence decision making and which can impact the likelihood of recommended items
being selected by a user. Besides, we discuss further aspects of counteracting decision
biases. Please note that, we focus on approaches to mitigate decision biases that
occurred in users’ interactions with recommender systems. The discussed solutions
are user-interface oriented, which help to minimize the impact of decision biases at
the rating collection time. In the current literature, there exist various approaches to
eliminate biases in datasets, algorithms, and recommendation results; however, they
are not our primary focus. For further related details of these approaches, we refer
to Chen et al. (2020) and Huang et al. (2020).

3.1 Decoy Items

One decision bias results from users making decisions depending on the way decision
alternatives are presented to them. A frequent decision heuristic in this context is
an attribute-wise comparison between items (Payne et al., 1993). For example, the
inclusion of items that are entirely inferior to other items in a list of alternatives can
trigger changes in choice behaviors. Such inferior items are denoted as decoy items
(D) (Huber et al., 1982), which can be used to increase the selection probability of a
target item (T) and potentially decrease the selection probability of the competitor
item (C). Such an effect is called context effect (or decoy effect). An illustration is
provided in Figure 3.1. A target item T is regarded as a compromise between D and
C if it is, for example, significantly less expensive than the decoy item and only has
a slightly lower quality. Asymmetric dominance is given if the target item dominates
the decoy item in all dimensions, whereas the competitor item dominates the decoy
item in only one dimension. Finally, an attraction effect is triggered if the target
item, for example, has a significantly higher quality and is only marginally more
expensive.

A detailed analysis of different types of context effects in recommender systems
is given in Teppan and Felfernig (2012) and Teppan and Zanker (2015). Here, the
authors show that decoy items can be applied to increase the selection share of target
items, which raises several ethical issues. Being able to identify decoy items in a
result set also enables to de-bias the result set by simply omitting decoy items. Decoy
items can also be used to generate explanations in knowledge-based recommendation
scenarios, e.g., via an attribute-wise comparison that led to the recommendation of
specific items.
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Figure 3.1: An overview of decoy effects. Figure from (Felfernig, 2014).

3.2 Serial Position Effects

Serial position effects can occur in settings where humans are presented with a
list of items. These effects have been observed in the context of human memory
research (Deese and Kaufman, 1957; Glanzer and Cunitz, 1966) to describe a person’s
tendency to more likely remember items at the beginning and end of a list (Ranjith,
2012). Figure 3.2 illustrates the effect.

Figure 3.2: This plot (Commons, 2020) shows a U-shaped serial position curve that results from
a serial position effect. The effect occurs when a list of words is recalled and words from the start
and the end of the list are more likely recalled than words in the middle of the list (Ranjith, 2012).

Murphy et al. (2012) show such effects in the context of user link clicking behavior.
In their study, links at the beginning of a list were clicked more often than items
in the middle of a list, which is called primacy effect. Furthermore, there was an
increased tendency to click on the links at the end of the list. That is described as the
recency effect. Primacy and recency effects can also be observed in human memory.
Cognitive psychologists showed in memory tests that items at the beginning of a list
(primacy) are more easily memorized (Crowder, 2014) since first items having an
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advantage over later items because memory capacity is limited (Waugh and Norman,
1965). The last items in a list (recency) are also more easily remembered since
they may be still in the short-term memory during the memory test. Felfernig et al.
(2007) discuss primacy/recency effects in the context of dialogs in knowledge-based
recommendation scenarios. They found that product attributes presented to a user
at the beginning and the end of a dialog are recalled more often than items in the
middle of a list. These attributes are also the preferred criteria when selecting items
from a recommendation list. This still holds in situations where unfamiliar product
properties are presented at the beginning and the end of a recommendation dialog.
Schnabel et al. (2016) present a recommendation interface that enables the user to
create shortlists of items that the user is currently considering. A user study reveals
that the interface helps users memorize and compare choices and that many users
explore more instead of being satisfied with the first good item.

Stettinger et al. (2015a) analyze the existence of serial position effects in the
context of restaurant reviews. The authors show that the same arguments arranged
in different orders can lead to significantly different perceptions of restaurant at-
tractiveness. Similar to decoy effects, serial position effects can be used to influence
the selection behavior of users. Serial position effects are also investigated in the
context of group decision making. Tran et al. (2018) investigate serial position effects
in scenarios where the same group of users has to solve a series of decision making
tasks in different item domains (low- and high-involvement item domains). The
authors examine whether the order of decision tasks result in different decision
making behaviors of group members. Related empirical results show that the group
recommendation strategy applied in decisions with high related decision efforts tends
to be re-used by group members in the follow-up decision with low related decision
effort.

Hofmann et al. (2014) explore position bias (Joachims et al., 2017) in light of
click-based recommender systems evaluation. Position bias is a problem in click-based
evaluation, since the probability that an item will be clicked is influenced by its
relevancy and its position in the recommendation list. Related work finds that the
probability that an item of a top-N list is clicked decays with its rank (Craswell
et al., 2008). Hofmann et al. (2014) find that if no position bias is present, user
behavior (i.e., items a user will click) can be predicted based on historic rating data
and using error-based metrics such as precision. However, if position biases exist, the
performance of the recommender systems can be wrongly estimated if a performance
metric is chosen that does not well reflect the actual user behavior.

In order to counteract serial position effects in group decision making, Stettinger
et al. (2015b) proposed a solution that allows group members to evaluate items
based on MAUT (Multi-Attribute Utility Theory) dimensions (Dyer, 2005). With
this approach, a group member evaluates an item by articulating his/her preferences
for different dimensions that describe the item. The authors conducted a user study
in the restaurant domain, where a restaurant was evaluated based on the following
dimensions: “ambience”, “price”, “quality”, and “location”. A MAUT-based group
recommendation for a specific item is the sum of individual MAUT values of group
members in the group decision task. The individual MAUT value of a group member
is a weighted average of all personal ratings of an item’s dimensions. In the user
study, participants were shown a list of restaurants. Each restaurant was described
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by a list of arguments describing the restaurants. The arguments were tailored in
two types: (1) the negative salient description where the negative arguments of the
restaurant were placed at the beginning and the end of the description, and (2)
the positive salient description where the positive arguments of the restaurant were
placed at the beginning and the end of the description. The participants were asked
to evaluate the restaurant based on the aforementioned dimensions. The user study
aimed to examine if the participants’ item evaluations were different according to the
description type. The experimental results show no significant differences in terms of
evaluation values between the two description types. In other words, adopting the
MAUT strategy in the item evaluation phase can help to counteract position effects
in group decision making.

3.3 Framing Effects

Framing corresponds to the principle that human decisions are influenced by the way
options are presented through different wordings, settings, and situations (Tversky
and Kahneman, 1981). Framing often comes in the form of gains or losses, as in
prospect theory (Tversky and Kahneman, 1992). This theory demonstrates that a
loss is perceived as more significant and more worthy of avoiding than an equivalent
gain. In the hierarchy of choice architecture, a sure gain is preferred to a probable
one, and a probable loss is preferred to a sure loss. Choices can also be worded in a
way that highlights the positive or negative aspects of the same decision, and thus
prompting affective user responses. The paper by Mandl et al. (2011) gives a concise
overview of the use of different types of framing effects in recommender systems.

3.4 Anchoring Effects

Anchoring effects are a cognitive bias that makes users rely on the first piece of
information (i.e., the anchor) they receive when making subsequent decisions. As
pointed out in different social psychology studies, early preference visibility can harm
the quality of a decision outcome (Mojzisch and Schulz-Hardt, 2010). Adomavicius
et al. (2011) find evidence for the anchoring effect in a collaborative filtering scenario.
Specifically, they show that anchoring effects can be triggered by disclosing the
average rating of similar users. This is verified in a user study presented by Zhang
(2011). Köcher et al. (2019) provide evidence for a so-called attribute-level anchoring
effect that can bias the choices of users towards numerical attributes of product
recommendations. Adomavicius et al. (2014) also present an approach to de-bias
ratings to mitigate anchoring effects using a post-hoc algorithm, as well as a user
interface to minimize anchoring biases already when ratings are collected.

Anchoring effects can also be triggered in group recommendation scenarios when
one group member’s evaluations for items are influenced by the evaluations articulated
earlier by other group members. Social-psychological studies point out the correlation
between anchoring biases with confirmation biases, in which group members tend
to focus on discussing available information rather than exploring and sharing new
decision-relevant information (Felfernig et al., 2018b). To investigate the impact
of anchoring effects in group decision making, Stettinger et al. (2015a) conducted



3.5. Nudging 171

a user study in the requirements engineering where groups of stakeholders had to
decide on which requirements should be implemented in their software project. The
authors showed that the occurrence probability of an anchoring effect increases if
individual group members’ preferences are disclosed to others in the early phase of
the group decision making process. This brings the idea of counteracting anchoring
effects that the preference disclosure should be performed after group members
have articulated their preferences for items. The authors also proved that a late
preference disclosure helps to increase the group decision performance in terms of user
satisfaction, the perceived degree of decision support, the understandability of group
recommendations, and the consideration of individual group members’ preferences.

3.5 Nudging

Nudging is a concept from behavioral economics to influence human behavior via
suggestions towards choices in the users’ and societies’ long-term interests (Thaler and
Sunstein, 2009). Nudges are interventions that aim to predictably influence human
behavior without limiting any options or significantly changing people’s economic
incentives (Thaler et al., 2013). Several psychological effects are exploited in nudging
that impact decision making, such as those discussed in this chapter, including
decision heuristics, the anchoring effect, decoy effects, framing, or the availability
and similarity heuristics (Tversky and Kahneman, 1974). Given such effects, a
choice architecture, i.e., an environment in which people make decisions (Thaler and
Sunstein, 2009), is designed that guides people to decisions that are to their and
society’s advantage (Jesse and Jannach, 2021). Various such effects are described,
and the survey paper by Jesse and Jannach (2021) gives a comprehensive overview
of the underlying psychological phenomena of nudging.

Recommendations can be seen as a form of nudging, where the aim is to recom-
mend items that support the nudging goal (Karlsen and Andersen, 2019). Please
note that the paper by Jesse and Jannach (2021) gives a structured review of the
state-of-the-art of nudging with recommender systems, for a review of nudging in
human-computer interaction research, see Caraban et al. (2019).

Karlsen and Andersen (2019) present an architecture for nudging recommender
systems. As an illustrative example, the authors define the use of nudges to convince
people to use environmentally friendly transportation. They introduce a nudge-
driven filtering technique that recommends activities to a nudging goal (e.g., use
environmentally friendly transportation). The activity is recommended based on a
user profile that contains user characteristics and their history of previous activities
and behaviors, the user’s current context, and the next planned activities. To present
the nudges to the user, the authors exploit several decision biases, i.e., framing,
anchors, reminders, or social norms (e.g., showing how many others have chosen a
particular option (Starke et al., 2020)). Elsweiler et al. (2017) aim to nudge people to
make better health decisions by recommending them healthy content. In this work,
the authors investigate if food recommender systems can nudge users of an online
recipe platform towards selecting healthier meals. First, they study if meals in the
platform can be replaced with similar but healthier options (in terms of fat content)
that also receive high ratings. Then, they conduct a user study to identify if users can
distinguish between unhealthy and healthy dishes and find that many cannot tell the
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difference, still users tend to select the unhealthier option. In addition, they examine
how cues such as recipe title, an image of the meal, and a list of ingredients influence
users when selecting recipes and show that users can be nudged to choose healthy over
unhealthy recipes; this works particularly well based on visual cues. Esposito et al.
(2017) introduce nudges to prevent customers in a digital marketplace to purchase
incompatible products. In a user study, they evaluate different types of nudges
and find that nudges in the form of emotive warning messages and incompatibility
information at the checkout page reduce the number of incompatibility purchases.
Turland et al. (2015) aim to nudge users towards selecting more secure public wireless
networks by recommending more secure network alternatives. They found evidence
for a decoy effect that nudged users in choosing a secure network.

3.6 Discussion

As pointed out by Teppan and Zanker (Teppan and Zanker, 2015), current rec-
ommender systems typically cannot control decision biases, and more research is
needed in this direction. From a user perspective, the awareness of the existence of
decision biases is essential to make more informed decisions when interacting with a
recommender system. Psychology-informed recommender systems that are aware of
decision biases can help educate users and make them aware of their own biases in
decision making, e.g., via explanations. Another possibility for future research is to
study how biases change over time and how these changes impact a user’s preferences
and behavior.

System-induced biases such as popularity biases (Cremonesi et al., 2010) can be
reinforced when already popular items are always put on top of a recommendation
list (i.e., exploiting serial position effects). Future research can investigate whether
different user groups experience different recommendation utility due to biases such
as popularity and demographic biases (Ekstrand et al., 2018). Also, while most
related work has been on detecting decision biases in recommendation scenarios, we
need more research on proactively preventing or minimizing such biases.

Furthermore, commercial recommendation platforms often actively exploit deci-
sion biases of humans to nudge users to adopt a specific behavior or to persuade users
to make particular decisions, e.g., what to buy or what to read. This can be beneficial
to the user, e.g., when a relevant recommended item is presented prominently. How-
ever, it can also be harmful, e.g., in case of decision manipulation (Tran et al., 2019b)
and since not all nudges and persuasive mechanisms are helpful and to the user’s
advantage. For example, marketers may employ nudges to guide consumers towards
non-essential options (Schneider et al., 2018). Consequently, ethical concerns and
discussions around the concept of nudging and persuasion have emerged (Sunstein,
2015). These discussions gave room for a competing framework termed boosting
by Grüne-Yanoff and Hertwig (2016). Boosting attempts to help users improve their
competencies in decision making instead of nudging them (Hertwig and Grüne-Yanoff,
2017). Grüne-Yanoff et al. (2018) distinguishes between boosting and nudging in two
aspects: firstly, boosting aims to expand people’s competencies by overcoming hu-
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man cognitive limitations rather than exploiting them. Secondly, a nudge intervenes
in a person’s choice environment and exploits specific decision heuristics to guide
behavioral change, boosting intervenes on people’s decision heuristics and expands
their decision competencies to foster a specific behavioral change. While, to the best
of our knowledge, boosting has not yet been explicitly employed in recommender
systems research, there exist related examples in the information retrieval commu-
nity - e.g., Zimmerman et al. (2020) and Ortloff et al. (2021) employ boosting to
boost users’ competencies in searching while preserving their privacy. Bateman et al.
(2012) provide a search dashboard to make users reflect on their search behavior
by comparing it to the behavior of expert searchers. Moraveji et al. (2011) boost
the search skills of participants in a user study by offering them tips on conducting
optimal searches. In a follow-up study, the authors find that the study participants
retain their improved search skills compared to a control group also in the absence
of search tips.

We believe that boosting is a promising research area for the recommender systems
community. For example, boosting can be applied to improve user knowledge about
decision biases and underlying mechanisms of the recommender systems, including
the implications of users’ behavior on the prediction quality. An advantage would
be that some of the ethical concerns that come with nudging and persuasion in
recommender systems could be alleviated as well.
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This chapter discusses research works that investigate recommender systems’ evalua-
tion with a particular focus on the user perspective. In addition, we review factors
that influence how users experience and engage with recommender systems. In
the next paragraphs, we, nevertheless, briefly summarize core concepts of classic
evaluation metrics and strategies.

Recommendation evaluation has traditionally centered on the accuracy of al-
gorithms (Pu et al., 2012) by quantifying the relevance of recommendations to a
user’s preferences. To that end, typically, metrics of accuracy are employed such as
precision, recall, or normalized discounted cumulative gain (Herlocker et al., 2004).
Please note that the survey of Gunawardana and Shani (2009) provides a detailed
discussion of accuracy metrics in recommender systems research.

Classic recommender systems evaluation employs either offline, online evaluation
(i.e., A/B testing), user studies, or a combination of these methods. In offline
evaluation, a pre-collected dataset consisting of user-item interactions is leveraged
to simulate users’ behavior interacting with a recommender system (Shani and
Gunawardana, 2011). Online evaluation corresponds to observing user behavior in
real-world, deployed systems (Shani and Gunawardana, 2011). User studies denote
an evaluation scenario where small groups of users interact with the recommender
system and report their experience (Shani and Gunawardana, 2011). Please note
that the respective chapter on evaluation in the Recommender Systems Handbook
gives a concise overview of both recommendation evaluation metrics and commonly
adopted evaluation strategies (Shani and Gunawardana, 2011).

Related work has discussed that accuracy as a sole metric is not sufficient to
assess a recommender system’s quality as accurate recommendations might not be
perceived as the most useful recommendations (McNee et al., 2006a; Herlocker et al.,
2004; Konstan and Riedl, 2012). As a remedy, a variety of so-called beyond-accuracy
metrics have been introduced to quantify aspects beyond algorithmic performance.
These metrics include diversity (Ziegler et al., 2005), coverage (Herlocker et al.,
2017), or novelty and serendipity (Herlocker et al., 2004). The latter quantifies how
interesting, yet unexpected recommendations are for a user (McNee et al., 2006a).
Please note that the survey by Kaminskas and Bridge (2016) gives a concise overview
of standard beyond-accuracy metrics used in recommender systems research.
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4.1 Psychological Aspects of User Experience

Recommender system evaluation from the user perspective requires a systemic
approach beyond the investigation of single actors such as algorithms or users and
aims to capture the actors’ inter-relations and emerging phenomena, such as user
experiences (Ekstrand and Willemsen, 2016; Knijnenburg et al., 2012a; McNee et al.,
2006b). Given that recommender systems’ providers aim to motivate users to return
to the system, users must build trust and have a positive perception of the system and
its outcomes (Chen and Pu, 2005). Hence, the user experience with a recommender
system has become the subject of research. User experience is defined by Konstan
and Riedl (2012) as the delivery of recommender system outputs to users and the
interactions of users with recommendations. In studying the user experience, crucial
aspects of recommender systems can be unveiled, such as recommender systems’ use
and perceived value, and factors related to items, users, user-item interactions, which
influence the users’ decision-making processes (Xiao and Benbasat, 2007). Such factors
include users’ attitudes and motivations, their perceived trust in the algorithms, and
issues related to the perception of recommender systems in general (Shin, 2020).

Related work investigates the user experience of recommender systems in light of
various tasks, e.g., to improve preference elicitation (McNee et al., 2003), increase
user satisfaction (Ziegler et al., 2005), study user engagement (O’Brien and Toms,
2008), inspire trust in the system (Pu and Chen, 2006), improve recommendation in-
terfaces (Cosley et al., 2003), or quantify how likely a user will return and recommend
a novel system (O’Brien and Toms, 2010).

From a psychological perspective, several factors influence how users experience
and engage with recommender systems, such as cognitive dissonance (Festinger,
1954), the persuasiveness of the systems (Fogg, 2002; O’keefe, 2015), perceived
system qualities related to interaction and interfaces (Pu et al., 2011; Jugovac and
Jannach, 2017), or several attitudes and beliefs (Pu et al., 2011). In the following,
we discuss these factors in more detail.

4.1.1 Cognitive Dissonance
Cognitive dissonance denotes a cognitive-affective response to being exposed to
information that contradicts one’s beliefs and values (Festinger, 1954). Users of
recommender systems may experience dissonance after reevaluating a choice they
made because they followed a recommendation (Surendren and Bhuvaneswari, 2014)
or when being confronted with a recommendation inconsistent with their prefer-
ences (Schwind et al., 2011). Dissonance is an aversive cognitive-affective state that
users attempt to avoid (Surendren and Bhuvaneswari, 2014) and may make them
lose trust in the system (Kuan et al., 2007). Schwind et al. (2011), however, explore
potential benefits of dissonant recommendations. Concretely, they study if recom-
mending dissonant information for controversial issues helps mitigate confirmation
bias. In an online user study conducted on Mechanical Turk, they investigate if users
select dissonant or consonant recommendations and assess cognitive and affective
reactions to these recommendations. In the first experimental condition, the study
participants are recommended an argument on a specific topic that is consonant
with the participant’s view. In the second condition, they receive a recommendation
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with an argument that is inconsistent with their belief. The results show that when a
consonant argument is recommended, more users select the consonant argument, and
a confirmation bias can be observed. When a dissonant argument is recommended,
however, users less frequently select the argument. Also, the consonant recommenda-
tions receive better evaluations in terms of cognitive and affective states. In later
work, Schwind and Buder (2014) show that dissonant recommendations can help
de-bias information selection. However, offering dissonant recommendations might
also strengthen people’s initial beliefs, mainly when the recommendation falls outside
the boundaries of what users consider acceptable (Nguyen et al., 2007). Here, future
work can investigate the relationship between cognitive dissonance, boosting (see
Section 3.6), and counterfactual thinking (Roese, 1997). In the case of counterfactual
thinking, consumers reflect on how outcomes could have been different if they had
made different decisions (Wang et al., 2017).

4.1.2 Persuasion
Persuasion is a communication process in which a person seeks to convince other
people to adapt their behavior and attitudes (Fogg, 2002; Perloff, 2020). Persuasion
and the earlier described communicative process of nudging (see Section 3.5) are
related concepts, which have originated in different communities, persuasion in social
psychology (McGuire, 1969), and nudging in economics (Thaler and Sunstein, 2009),
and with slightly different aims. While nudging aims to influence a user’s behavior
in a particular setting, persuasion aims to influence a person’s attitude or behavior;
for a more detailed comparison of both concepts, please refer to Meske and Potthoff
(2017).

Yoo et al. (2012) describe a recommendation as being persuasive when it results
in a change of the user’s behavior or attitude. The authors elaborate that user
interactions with a recommender system correspond to a communication process,
in which the extent to which a user is influenced depends on four components: (i)
the recommender system itself (source), (ii) the recommendation (message), (iii) the
user (target), and (iv) the context, in which the recommendation is offered. These
components are integral in the communication-persuasion paradigm, and multiple
factors in the components impact if a user is persuaded and changes their behavior
or attitude. As Gretzel and Fesenmaier (2006) show, persuasion can happen already
during preference elicitation since transparent and short elicitation phases positively
influence user satisfaction and perceived fit of later recommendations (Jugovac et al.,
2018).

Many studies investigate what makes a recommender persuasive. Related work
finds the credibility of recommender systems (Yoo and Gretzel, 2011) is a decisive
factor in a recommender system’s persuasiveness. Nanou et al. (2010) observe that
the presentation of recommendation lists in the context of movie recommendations
influences persuasiveness. They compare top-N recommendation lists with a struc-
tured overview of recommendations, in which recommendations are organized by
movie genre, and are presented either as purely textual recommendation lists or as
multimodal representation of recommendations (text, images, video). The authors
measure persuasiveness in terms of users selecting a recommendation. A small-scale
user study with 20 users gives evidence that a structured overview of multimodal
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recommendations is more persuasive and results in higher user satisfaction in their
domain than a textual recommendation list. Cremonesi et al. (2012) observe that the
perceived novelty of recommendations has higher persuasive power than the perceived
accuracy of recommendations (Jugovac et al., 2018). Felfernig et al. (2008a) report
that the attractiveness of items contributes to a recommender system’s persuasiveness
and that the use of attraction decoy items can influence a user’s decision-making
process. Related work also shows that offering explanations to recommendations can
make recommendations persuasive (Herlocker et al., 2000; Tintarev and Masthoff,
2012).

From an ethical perspective, persuasive technology raises several questions
(Berdichevsky and Neuenschwander, 1999), naturally, also if applied to recommender
systems (Milano et al., 2020). Recommender systems providers may offer persuasive
recommendations to maximize some business value, which, from a consumer perspec-
tive, might be less transparent (Jesse and Jannach, 2021) and hard to resist (Smids,
2012). According to a standard definition of persuasive technology (Fogg, 2002),
persuasion is about voluntary change and needs to function without deceiving the
user.

4.1.3 Interaction Methods
Several perceived system qualities related to interaction and interfaces influence
the user experience of recommendations. Knijnenburg and Willemsen (2015) find
that the way lists of recommendations are composed and presented to the user
strongly impacts user experience. Knijnenburg et al. (2011) construct five interaction
methods: (i) a top-N recommendation list, (ii) a sort method that lets users sort
recommendations by their preferred attribute, (iii) an explicit method that allows
users to assign weights to attributes and thus, directly express their preferences,
(iv) an implicit method that automatically weights attributes based on the user’s
browsing history, and (v) a hybrid combination of the explicit and implicit method.
In a user study, the authors compare the five interaction methods and assess user
interface satisfaction, trust in the system, system effectiveness, understandability,
perceived control, and choice satisfaction. They find that most users are most satisfied
with a hybrid recommender that combines implicit and explicit preference elicitation,
which gives them some control over the system.

Bollen et al. (2010) finds that users, when presented a list of recommendations,
tend to inspect only the first few items on the list due to the earlier mentioned primacy
effect (see Section 3.2). Chen and Pu (2010b) find that presenting recommendations
in the form of a grid can mitigate this issue; however, the authors do not discuss
the underlying reasons for that. Another work by Chen and Pu (2010a) suggests a
category-based interface, in which a user’s top-N recommendations are shown as
the main category, while other categories contain items that help find trade-offs. As
shown by Hu and Pu (2011), an interface where recommendations are grouped into
categories, which represent trade-off properties among items, can increase perceived
recommendation diversity and improve user satisfaction. Ekstrand et al. (2014)
present a user study in which each user is provided a recommendation list produced
by three variants of collaborative filtering (i.e., item-based, user-based, and an SVD-
based variant). The users are asked about their perceptions along five dimensions
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of interest, i.e., accuracy, personalization, diversity, novelty, and overall satisfaction
with the recommendations. Then, they pairwise compare algorithms based on a
first-impression preference and a subjective assessment of the recommendation lists
for the five dimensions. Also, the users select their preferred algorithm for future
use. The authors find that novelty of recommended items negatively influences the
perceived usefulness of the recommendations. The diversity of recommendations
positively influences if a user chooses a recommendation algorithm. Please note
that Jugovac and Jannach (2017) give a detailed overview of relevant work on user
interaction in recommender systems.

4.1.4 Attitudes and Beliefs

User-centric factors such as attitudes and beliefs also influence how users evaluate
recommendations. Attitudes correspond to the perceived overall perception of the
recommender system in terms of user satisfaction and trust, while beliefs describe the
user’s perception of the usefulness, ease of use, and control of the system (Cremonesi
et al., 2011a; Pu et al., 2011). Swearingen and Sinha (2002) find that showing
familiar recommendations can increase users’ trust in the system. The familiarity
principle (Zajonc, 1968) is a psychological effect that makes users establish positive
preferences for items to which they are frequently and consistently exposed. Bollen
et al. (2010) present a user study to understand users’ perception of recommendation
set attractiveness, choice difficulty, and satisfaction with the selected recommendation.
Participants answer 29 questions on a 7-point scale, and in addition, their clicks are
logged. The authors fit a structural equation model (Ullman and Bentler, 2003) to the
data to understand the interplay between recommendation set attractiveness, choice
difficulty, and satisfaction with the chosen item. Please note that structural equation
modeling techniques are statistical methods that enable to study relationships
between independent variables and dependent variables. Bollen et al. (2010) find
that user satisfaction depends on the attractiveness of the recommendation set and
on the difficulty of choosing from this set. Attractiveness is high if the items in the
set vary. A low choice difficulty positively influences satisfaction. However, if the
user is presented with more attractive sets, the choice difficulty becomes higher.
Willemsen et al. (2016) investigate the influence of diversity of the item set on choice
overload that arises when users have to select from many items. They find that
small but diverse item sets help reduce choice overload and result in similar user
satisfaction as top-N recommendations. Jin et al. (2019) examine the influence of
user control over contextual factors incorporated in the recommendation process
on perceived quality, diversity, effectiveness, and users’ cognitive load. In a user
study, they test two conditions: either the participants have no control over a music
recommendation algorithm, or they can choose a particular context, i.e., mood,
weather, and location, to which recommendations should be tailored. The study
results show that users perceive the utility of recommendations differently when
they can select a context. In particular, tailoring recommendations to a user’s mood
positively impacts recommendation quality and diversity.
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4.2 Designing User Studies for Recommender Systems and Existing
Evaluation Frameworks

Many research works in recommender systems employ offline evaluation studies,
which retrospectively analyze available datasets for certain model-based predictions.
While offline evaluation helps assess the internal validity of the recommendation
model, it only allows for speculations about the actual user experience. Thus, offline
evaluation needs to be complemented by methods that also enable insights into (i)
latent user states (e.g., a user’s perception of the system) and (ii) the ecological
validity of the evaluation results. Both aspects can be addressed by user studies,
which we outline next.

When running user studies, it is essential to consider principles of psychological
measurement theory (Allen and Yen, 2001) and its application to construct reliable
and valid self-report scales (McCroskey et al., 1984; Yannakakis and Hallam, 2011).
Self-reports are tests and measures that require individuals to report on their behavior,
beliefs, or attitudes. Self-reports are beneficial to elicit key aspects of user experiences,
such as engagement (e.g., O’Brien and Toms, 2008), which has been shown to reliably
predict perceived usability and endurability, i.e., how likely a user is to return to and
recommend a novel system (O’Brien and Toms, 2010). The construction of self-report
scales requires representative samples of participants and latent factor analysis. Here,
a classic choice is to perform an Exploratory Factor Analysis (EFA) (Goretzko et al.,
2019) to group inter-item correlations into distinct dimensions (for a review and
guideline of how to apply an EFA in the context of recommender systems, see, e.g.,
O’Brien and Toms, 2010). Subsequently, a Confirmatory Factor Analysis can be run
on an independent dataset (gathered from additional user studies) to validate the
previously explored factor structure.

For the systematic planning of user studies of recommender systems, Knijnenburg
and Willemsen (2015) present a framework that facilitates the design of user studies.
In particular, the framework describes how objective system aspects such as the
algorithm or a presentation layout are perceived by the user and how the user’s
perception – denoted subjective system aspects (e.g., perceived recommendation
quality and variety), in combination with personal and situational characteristics,
influence the user experience and interaction with the recommender system. The
situational and personal characteristics help account for context-relevant information
(e.g., the user’s current information goal) and individual variables (e.g., personality
traits; see Section 2.2.2).

Similarly, Pu et al. (2011) introduce the ResQue framework to assess the per-
ceived recommendation quality (e.g., attractiveness, novelty, diversity, and perceived
accuracy of recommended items), usability, interface adequacy (e.g., information
sufficiency and layout clarity), interaction quality (e.g., preference elicitation and
revision), and the overall user satisfaction with the recommender system, as well as
the influence of these aspects on the user’s intention to buy recommended products
and to revisit the system.

To conclusively explain observed effects such as perceived quality differences
between algorithms, behavioral data such as user’s interactions with recommenda-
tions can be triangulated with self-report data. For example, Knijnenburg et al.
(2012b) demonstrate that two types of matrix factorization algorithms have the same
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effects on certain experience variables (e.g., perceived system effectiveness) but are
mediated by different subjective system aspects (e.g., different dynamics between
perceived diversity and quality). Such study outcomes are essential for the design
and improvement of user interfaces, but can only result from the triangulation of
behavioral and self-report data.

Due to its high degree of abstraction, the Knijnenburg et al. framework can help
guide the systematic planning of research designs. Also, the framework provides
a scheme for the formulation of experimentally testable research questions, and it
provides guiding information for implementing and analyzing the planned research
design, including the operationalization and measurement of the variables to be inves-
tigated (e.g., constructing new or using existing questionnaires) and a comprehensive
data analysis (e.g., applying structural equation modeling techniques (Ullman and
Bentler, 2003)).

4.3 Discussion

The reviewed works show that many factors influence how users experience and
engage with recommender systems. One of them is cognitive dissonance. While
dissonant recommendations that are inconsistent with the users’ attitude could
make them lose trust in the system, Schwind and Buder (2014) find that dissonant
recommendations can help de-bias information selection. Future work can take a
cognitive-computational perspective on biased information behavior (e.g., inspired
by self-directed search (Dubey and Griffiths, 2020)) to design recommender systems
that help explore non-confirmatory information. Here, the relationship between
experienced novelty and curiosity can be explored (e.g., Dubey and Griffiths (2020)):
If novelty is perceived as either very high or rather low, an information seeker’s
curiosity drops; the optimal level of novelty – the sweet spot on the continuum
– arises primarily at a moderate level (see also Berlyne (1966)). Future work can
therefore investigate, whether a recommender system, drawing on these cognitive-
computational accounts of information behavior, can identify the sweet spot of
novelty for a given user-subject combination and help identify resources that make
the user curious about and willing to tap into them. Another strand for future
research lies in exploring boosting in recommender systems to foster counterfactual
thinking to de-bias information selection.

Jannach et al. (2019) state that research in recommender systems should strive
towards impact-oriented algorithms that address the intended purpose of a system.
The impact can be, e.g., to help users make better decisions and to increase user
satisfaction. As the authors describe, persuasion can help achieve this goal. However,
persuasion in recommender systems can decrease the user’s possibility to develop
their taste since humans tend to take the default setting if one is offered (Knijnenburg
et al., 2016).

In their work, Knijnenburg et al. (2016) call for personalized systems that aim to
not just recommend the most relevant items to the user but to help users develop,
explore, and understand their personal preferences. To that end, they suggest several
recommendation lists that contain only items unrelated to the top-N, which means
they are not "good" recommendations (e.g., items that the algorithm predicts a user
will dislike or unrated items). Their intuition is that such recommendations will help
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the user learn about their taste and preferences. Including unrelated recommendations
to increase the user’s awareness of their preferences can lead to effective feedback
mechanisms for recommender systems. On a more general note, such mechanisms
can help users understand what assumptions the algorithm makes about them and
enable them to correct such assumptions.

The way recommendations are presented also influences whether users are satisfied
with a recommender system and the level of control users have in the process. Studying
these questions in the context of psychological theories is still a largely unexplored
field and requires more interdisciplinary research efforts.

In this chapter, we also discussed the design of studies for user-centric evaluation.
From a methodological perspective, user-centric evaluation entails designing ques-
tionnaires and conducting user studies that help uncover intrinsic properties and
characteristics of subjective user experiences. User studies are a standard evaluation
methodology in psychology that help investigate the impact of system changes under
natural conditions and access (latent) user states.

Conducting such studies can be challenging, though. In particular, it can be
difficult to gather a sufficiently large sample of participants that allows for drawing
significant and meaningful conclusions with a high ecological validity. Ecological
validity, in psychology, measures whether we can generalize from behavior observed
in an experiment to behavior in real-world settings (Schmuckler, 2001). One issue
in recommender systems research is that ecological validity can be low (Sinha,
Swearingen, et al., 2001), particularly in field studies, where filling out questionnaires
can be time-consuming and a burden for the respondents. The challenge is to design
the study so that enough reliable data can be collected and respondents participate,
which often requires tending towards simplicity in the user-centric evaluation (Fazeli
et al., 2017).

To facilitate the design and conduction of user studies, the research community
has introduced several evaluation frameworks, as well as beyond-accuracy metrics
that quantify more user-centric aspects of recommender systems, such as novelty,
serendipity, or diversity. Optimizing a recommendation system for such metrics can
help increase user satisfaction, as in the case of diversification of recommendations.

Furthermore, investigating user experience requires access to a deployed system
and users interacting with the system over some time (Konstan and Riedl, 2012).
That is particularly challenging as academic research often has limited access to
such systems. As a remedy, the research community has put notable efforts to help
academics build real-world systems via initiatives such as GroupLens (Resnick et al.,
1994), or LensKit (Ekstrand et al., 2011).



5
Conclusion- and Suggestions for Future

Research

A substantial amount of research on psychology-informed recommender systems has
been conducted in the past years. In this paper, we reviewed such recommender
systems along three categories: i.e., cognition-inspired, personality-aware, and affect-
aware recommender systems.

As shown by the reviewed works on cognition-inspired recommender sys-
tems, cognitive models help design and improve recommender systems in various
domains. One advantage is that these algorithms are interpretable and transparent.
Also, they can give further insights into user behavior grounded in human cognition.

While many works in cognition-inspired recommender systems utilize human
memory processes to model and predict user behavior, there is untapped potential in
the study of the connection between utilizing human memory processes to design and
improve recommender systems and using recommender systems to support human
memory in retrieving objects. While both strands of research agree on the relevance
of context cues for determining the importance of objects in human memory, to date,
research that addresses both aspects simultaneously is scarce.

Furthermore, we reviewed works that incorporate a user’s attention into the
recommendation model. While the success of deep learning has spawned a range of
attention-based approaches, we are not aware of any works that discuss underlying
psychological models and theories of attention. Here, we see potential for future
work to investigate attention-based approaches in light of underlying psychological
constructs.

As illustrated by the reviewed works on personality-aware recommender
systems, personality has a significant impact on user preferences and behavior.
The use of personality traits in personalized recommender systems helps alleviate
cold-start problems and can improve the level of personalization and diversification
of recommendation results both in single-user and group recommendation scenarios.

However, it is not well understood to which extent personality influences perceived
recommendation quality; neither is the variability of this extent between users. For
some users and domains, tailoring recommendations to personality traits might be
valuable to recommend items that fit their personality; for others, personality could
be an irrelevant signal, which could be perceived as invasive concerning privacy
and ethics. Incorporating personality in a privacy-aware fashion is an open issue.
Also, current approaches integrate personality using quite simplistic ways, e.g., by
linearly combining a content-based similarity with a personality/user-based similarity
metric. Only in a very recent article, Beheshti et al. (2020) incorporate personality
information as features in a neural embedding framework in the larger context of a
so-called cognitive recommender system. Furthermore, how to model the “personality”
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of an item is still an under-researched question. More sophisticated methods to derive
personality traits on the item level are required. One related example is the approach
by Sertkan et al. (2019).

In the context of affect-aware recommender systems, our survey shows
that incorporating users’ affective states can help improve personalization. Both
emotion and mood are beneficial in context-aware recommendation scenarios, such as
location-based recommendations, and in scenarios in which recommended items have
a strong affective impact on users, such as music recommender systems. As in the
case of personality, to which extent a user’s mood or emotion influences the perceived
recommendation quality is, to date, not well understood. Nor is the importance of
mood or emotion changes during item consumption. We see further potential to
research detecting such changes and integrating affect dynamics into recommender
systems. Finally, mood and emotion constitute sensitive information. Therefore,
more research is needed to make emotion detection and inclusion of emotion as a
contextual factor in recommender systems privacy-aware.

On a more general note, existing methods in personality- and affect-aware recom-
mender systems are relatively simple extensions of standard collaborative filtering or
content-based filtering algorithms. We see further potential to study how information
about personality, mood, and emotion can be integrated into current state-of-the-art
deep learning methods (e.g., (Zhang et al., 2019a; Schedl, 2019)).

Finally, most works discussed in this paper employ standard performance metrics
from information retrieval and machine learning for evaluation. Future work can
explore what metrics psychology-informed recommender systems can improve beyond
accuracy, such as algorithmic fairness or transparency. Here, frameworks like the
one presented by Deldjoo et al. (2021a) could be applied to evaluate user and item
fairness and to devise suitable metrics. More research is also needed on the online
performance of psychology-informed recommender systems to better understand
whether their recommendations result in higher user satisfaction.

In this paper, we have also discussed the relationship between human decision
making and recommender systems. A range of decision biases are described
in the literature, which influence how users interact with a recommender system.
Recommender systems can exploit and strengthen such biases to provide more useful
recommendations, or to nudge and persuade users. Such effects require a level of
control, in particular when they lead to sub-optimal outcomes. While most related
work has focused on detecting decision biases in recommendation scenarios, we need
more research on proactively preventing or minimizing such biases.

Also, the ethical concerns and discussions around the concept of nudging and
persuasion gave room for boosting as a competing framework. Since the aim of boosting
is to help users improve their competencies in decision making and overcome human
cognitive limitations, we believe that boosting is a promising research area for the
recommender systems community. For example, boosting can be applied to improve
user knowledge about decision biases and underlying mechanisms of the recommender
systems, including the implications of users’ behavior on the prediction quality.

In this paper, we also discuss the user-centric evaluation of recommender
systems and factors that influence how users experience and engage with recom-
mender systems. One of them is cognitive dissonance, which, on the one hand,
recommender systems designers should avoid as it can make users lose trust in the
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system. On the other hand, it can help de-bias information selection. We see potential
for future work to take a cognitive-computational perspective on biased information
behavior to design recommender systems that help explore non-confirmatory infor-
mation. Here, the earlier mentioned boosting could help foster such exploration via
dissonant recommendations that spark counterfactual reasoning.

Finally, in this paper, we discussed the design of user studies for recommender
systems evaluation. Here, psychology has strongly influenced recommender systems
research since methodologically, user-centric evaluation employs questionnaires and
other instruments to uncover intrinsic properties and characteristics of subjective
user experiences.

Conducting such studies with ecological validity in mind can be challenging, in
particular, to gather a sufficiently large sample of participants that allows for drawing
significant and meaningful conclusions. Here, the community could benefit from
increased interdisciplinary cooperation between computer science and psychology to
benefit from the rich knowledge in the psychological community on designing user
studies that do not overburden users and still result in sufficiently large amounts of
data.

To facilitate the design and execution of user studies, the research community has
introduced several evaluation frameworks. Nevertheless, such user-centric evaluations
require access to real-world systems and the ability to observe long-term user behavior.
To mitigate this issue, the research community has put notable efforts to help
academics build real-world systems via initiatives such as GroupLens (Resnick et al.,
1994).

All in all, even though the past few years have witnessed an increasing awareness
of psychological considerations in recommender systems research, we are still far away
from considering the recommendation task as a multi-perspective endeavor. While
historically, recommender systems research has been tied to business (informatics) and
computer science, we argue that it should be similarly intertwined with sociological
and psychological research.

Our vision for future recommender systems research is, therefore, to draw from the
decent knowledge of these disciplines in the entire workflow of creating and evaluating
recommender systems. Corresponding systems should, as a result, holistically consider
extrinsic and intrinsic human factors; corresponding research should adopt a genuinely
user-centric perspective.
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ABSTRACT
Music listening sessions often consist of sequences including re-
peating tracks. Modeling such relistening behavior with models of
human memory has been proven effective in predicting the next
track of a session. However, these models intrinsically lack the ca-
pability of recommending novel tracks that the target user has not
listened to in the past. Collaborative filtering strategies, on the con-
trary, provide novel recommendations by leveraging past collective
behaviors but are often limited in their ability to provide expla-
nations. To narrow this gap, we propose four hybrid algorithms
that integrate collaborative filtering with the cognitive architecture
ACT-R. We compare their performance in terms of accuracy, novelty,
diversity, and popularity bias, to baselines of different types, includ-
ing pure ACT-R, kNN-based, and neural-networks-based approaches.
We show that the proposed algorithms are able to achieve the best
performances in terms of novelty and diversity, and simultaneously
achieve a higher accuracy of recommendation with respect to pure
ACT-R models. Furthermore, we illustrate how the proposed models
can provide explainable recommendations.
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1 INTRODUCTION
Music is often consumed sequentially. Therefore, music recommen-
dation [46, 48] is often formulated as a session completion task:
tracks should be recommended to a user according to their interac-
tions in the recent past, i.e., those within the current session. The
most effective recommender systems (RSs) for sequential recom-
mendation are based on collaborative filtering (CF) [11, 14, 32, 33].
These algorithms provide recommendations according to past col-
lective user behavior. Although effective, the recommendations
provided by CF algorithms are often hard to justify, either due to
the model architecture or the complexity of the data they base their
recommendations on. Another major distinguishing characteristic
of music RSs compared to general RSs is that music listeners often
listen to tracks they already listened to in the past [7, 42, 48]. This
observation served as a basis for translating cognitive architec-
tures, i.e., models of the structure of human mind, to the domain of
RSs, and evaluate their effectiveness in predicting users’ relisten-
ing behaviors. In particular, the memory module of the Adaptive
Control of Thought—Rational (ACT-R) cognitive architecture [6, 44]
has been proven effective in predicting which tracks the user will
relisten to, based on the tracks listened to in the past [40]. However,
despite their effectiveness in modeling user’s relistening behavior,
leveraging these models based on ACT-R for sequential music rec-
ommendation does not allow recommending novel tracks, i.e., tracks
the target user has never interacted with before. To compensate
for these shortcomings, we design four algorithms that integrate
ACT-R with CF. Since each component of the memory module of
ACT-R is designed to model a different aspect of human memory,
the recommendations provided by the proposed algorithms are
explainable. We measure the performance of the proposed RSs in
terms of accuracy, novelty, diversity, and popularity bias of the rec-
ommended tracks since these are all aspects that affect the user’s
satisfaction with the system [16, 48]. Additionally, we show how the
explainability of the proposed algorithms can be advantageous in a
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multistakeholder RS [1], concerning end users, platform providers,
and content producers.

In summary, this work provides the following contributions to
the RS domain: (1) We propose four algorithms that integrate vari-
ous components of the cognitive architecture ACT-R with CF for
sequential recommendation. (2) We provide an extensive analysis
of the performance of these algorithms by performing experiments
on the LFM-2b dataset [45] of Last.fm listening logs. We compare
the performance of the algorithms with well-established baselines,
including algorithms that solely rely on the cognitive architecture
ACT-R, on 𝑘-nearest-neighbors (kNN), and on deep neural networks
(DNNs). Our experiments show that the proposed algorithms in-
crease the novelty and diversity of recommendations compared
to the baselines. Moreover, we find that the hybrid approaches
outperform pure ACT-R models in terms of accuracy. (3) We exem-
plify how the proposed algorithms can be used to explain music
recommendations.

2 BACKGROUND AND RELATED WORK
In the following, we briefly present work on sequential recom-
mendation and on RSs based on cognitive architectures, thereby
introducing the fundamentals for the proposed algorithms.
2.1 Sequential Recommendation
Some of the most successful sequential RSs leverage the similarity of
the initial segment of the session to be completed to other sessions.
Extensions of these algorithms also introduce temporal reweighting,
i.e. they consider factors that model the position and recency of the
interactions with the items [11, 31, 34, 41]. For instance, Ludewig
et al. [34] reweight the recommendation score as follows: if an item
𝑖 appeared at position 𝑡𝑖 , its relevance as a recommendation for
position 𝑡ref is weighted by a factor given by 𝑤𝑖 = (𝑡ref − 𝑡𝑖 )−𝑑 ,
where 𝑡ref stands for the timestamp of the next track, i.e., the one the
algorithm is aiming to predict. Some effective approaches use DNN
architectures for sequential recommendation [8, 13, 17, 27, 30, 49,
50]. Finally, other works model the sessions by representing them
as graphs, and leverage graph neural networks [5, 12, 38, 50–52].
2.2 Music Recommender Systems
Sequential RSs are particularly relevant in the context of music
recommendation [47, 48] since they address tasks such as next-
track recommendation or automatic playlist continuation. For an
overview of the approaches used for sequential music recommenda-
tion we refer the reader to Quadrana et al. [39]. Additionally, since
providing explanations for the recommendations can positively
impact the users’ trust and engagement, the interest in addressing
explainability in the context of music RSs has been increasing in
the last years; for an overview of the topic we refer the reader to
Afchar et al. [4].
2.3 Cognition-inspired Recommender Systems
Cognition-inspired RSs use models from the domain of cognitive
psychology to create RSs, often using theories of human mem-
ory [26, 28]. Our work focuses on ACT-R [6, 44]. Several studies
leveraged the memory module of ACT-R for tasks such as hashtag
recommendation [19], item recommendation in social tagging sys-
tems [21], next genre prediction [25], next artist prediction [18],
job recommendation [20, 22], or predicting mobile app usages [53].

In particular, Reiter-Haas et al. [40] use ACT-R’s memory module
for completing music streaming sessions. The components of the
module are described in the remainder of this section.
Base-Level Learning (BLL): The BLL component captures the
tendency of human memory of favoring instances that occurred
frequently and recently in the past. Similar to Reiter-Haas et al. [40],
given the timestamp 𝑡ref of the next track in the session, i.e., the one
the algorithm is aiming to predict, and given an item 𝑖 , we define
its BLL activation as 𝐵𝑖 =

∑𝑛
𝑗=1 (𝑡ref − 𝑡𝑖 𝑗 )−𝑑 . The sum extends to

all the 𝑛 past interactions of the user with item 𝑖 , and 𝑡𝑖 𝑗 stands for
the timestamp of the 𝑗 th interaction with item 𝑖 .
Spreading (S): The spreading component favors items that occur
frequently in the current context. In agreement with how context
is defined within the ACT-R cognitive architecture, Reiter-Haas
et al. [40] define the context as the last item the user interacted
with. This component hence tends to favor items that the user
often interacted with in sessions that contain the most recent item
in the sequence. The corresponding activation is given by 𝑆𝑖 =
𝑃 (𝑖∈𝐶𝑘 )
𝑃 (𝑖 ) [10, 40], where item 𝑘 is the last item of the sequence, and

𝑃 (𝑖) and 𝑃 (𝑖 ∈ 𝐶𝑘 ) stand for the probabilities that track 𝑖 appears
in any session, and in a session containing item 𝑘 , respectively.
Partial Matching (PM): The PM component [40] aims at favoring
items that are similar to the context item 𝑘 , i.e., the last item the
user interacted with. The corresponding activation is given by
𝑃𝑖 = sim(𝑖, 𝑘), where sim(𝑖, 𝑘) represents the similarity between
item 𝑖 and the context item 𝑘 . Assuming an item 𝑖 to be represented
by a feature vector f𝑖 , the similarity sim(𝑖, 𝑘) between 𝑖 and 𝑘 is
defined as the scalar product of the corresponding feature vectors,
sim(𝑖, 𝑘) = f𝑖 · f𝑘 .
Valuation (V): The valuation component [15, 40] aims at measur-
ing the value attributed by a user to an item. The corresponding
activation for an item 𝑖 with which the user interacted 𝑛 times
is defined iteratively as 𝑉𝑖 (𝑛) = 𝑉𝑖 (𝑛 − 1) + 𝛼 (𝑅𝑖 (𝑛) −𝑉𝑖 (𝑛 − 1)),
where 𝑅𝑖 (𝑛) is the reward assigned to item 𝑖 for the 𝑛th interaction.
The starting valuation is set to 𝑉𝑖 (0) = 0 for all tracks, and the
learning rate 𝛼 is considered as a hyperparameter. In the context
of sequential music recommendation [40], the reward 𝑅𝑖 ( 𝑗) is typ-
ically either binary, i.e., 𝑅𝑖 ( 𝑗) = 1∀𝑗 ∈ [1, . . . , 𝑛], or given by the
duration of the 𝑗 th interaction with respect to the total track length.
Noise (N): The noise component models aspects of randomness
in the user’s behavior. The corresponding activation is given by
𝜖𝑖 = rng(), where rng() is a random number generator.

Reiter-Haas et al. [40] show that ACT-R-based approaches out-
perform baselines such as algorithms selecting the most recent
track, in terms of accuracy of predictions. Compared to their work,
we integrate ACT-R and CF, extend the analysis to beyond-accuracy
metrics, and provide a comparison with more recent baselines. Fi-
nally, we also leverage ACT-R for explaining the recommendations.

3 METHODS
To integrate ACT-R and CF for sequential music recommendation,
we propose the following hybrid algorithms.
Social ACT-R Kowald et al. [19] propose an algorithm for hashtag
recommendation that combines the ACT-R activations of the target
user’s past hashtags with the ACT-R activations of the target user’s
followees.
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We adapt this strategy to the music domain. In order to include
the listening behavior of other users, we first define the target
user’s “followees” as the set of 𝑘 users that are most similar to the
target user. The similarity simACT-R (𝑢, 𝑗) between the target user 𝑢
and another user 𝑗 is computed as cosine similarity between the
vector representing their listening events, i.e., their interactions
with tracks, reweighted with the ACT-R activations. The value of
the social component (SC) assigned to track 𝑖 for session 𝑢 is then
defined as a similarity-weighted average of the ACT-R activations
of the 𝑘 followees, 𝑆𝐶𝑖 =

∑
𝑗≤𝑘 ACT-R( 𝑗, 𝑖) · simACT-R (𝑢, 𝑗). The SC

and the target user’s ACT-R activation of the track are normalized
by applying softmax over all tracks and added up to obtain the final
recommendation score.
ACT-R + BPR This model extends ACT-R with a component that
favors tracks that have a similar interaction history to the one
of the context track, i.e., the last track the user listened to. For
this purpose, we pretrain a matrix factorization RS with Bayesian
personalized ranking (BPR) [43]. Each track is mapped to their BPR
embedding 𝑣𝑖 . We then compute the similarity simBPR (𝑖, 𝑗) between
two tracks 𝑖, 𝑗 as cosine similarity between their BPR embeddings
𝑣𝑖 , 𝑣 𝑗 . The recommendation score of a track 𝑖 is obtained by adding
up the softmax-normalized BPR similarity simBPR (𝑖, 𝑘) with the
context item 𝑘 and the softmax-normalized target user’s ACT-R
activation of 𝑖 . In addition, we consider a version of this model in
which only the similarity simBPR (𝑖, 𝑘) between the BPR embeddings
is considered when computing the recommendation score. This
model is referred to as Item BPR.
Weighted MultVAE: We integrate ACT-R with MultVAE [29], since
this model allows providing recommendations to users that are not
in the train set, and since it provides accurate recommendations in
several domains, including music [9, 36]. We pretrain and optimize
an instance of MultVAE. We then reweight the components of the
vector representing the listening events of the target user 𝑢 either
with the ACT-R activations or with the temporal reweighting factor
𝑤𝑖 (see Section 2.1), converting it to a vector of ratings. We feed
this vector to the pretrained MultVAE and perform a forward pass
of MultVAE to select the tracks to recommend.
Weighted UserkNN: Similar to Weighted MultVAE, we first train
an instance of MultVAE and then perform a forward pass on the
temporally reweighed vector representing the listening events of
the target user, extracting the latent representations 𝑙𝑢 of the target
user 𝑢 encoded by MultVAE. We encode the binarized1 profile of
the other users in the dataset and select the 𝑘 users with latent rep-
resentations having the largest cosine similarity simMultVAE (𝑢, 𝑗) to
the latent representation 𝑙𝑢 of the target user. We take the weighted
average of the binarized profiles of the 𝑘 nearest users, using the
similarity of the latent representations as weights for the weighted
average, as recommendation score. The score of track 𝑖 is therefore
given by

∑
𝑗≤𝑘 𝑟 ( 𝑗, 𝑖) · simMultVAE (𝑢, 𝑗), where 𝑟 ( 𝑗, 𝑖) represents the

binarized interaction of user 𝑗 with item 𝑖 .

1In agreement with the reweighing proposed by Ludewig et al. [34], we do not apply
temporal reweighing to the profile of the non-target users.

4 EXPERIMENTAL SETUP
In this section, we describe the setup for our experiments, i.e., the
baseline models, the evaluation metrics, the dataset, as well as the
training and hyperparameter selection.
4.1 Baselines and underlying models
We compare the performance of the approaches introduced in Sec-
tion 3 to those of two models effective in the task of sequential
recommendation – GRU4Rec [49] and temporal UserkNN [32, 33]
– and two models effective in predicting relistening behavior –
MostRecent [40] and ACT-R [40].
GRU4Rec: This algorithm makes use of recurrent neural networks
for sequential recommendation [49]. We take it as DNN-based
baseline since it is among the DNN approaches achieving high
accuracy, large dataset coverage, and low popularity bias, simulta-
neously [33].
Temporal UserkNN: Models including a temporal reweighting (see
Section 2.1) are competitive with DNN-based approaches in terms of
accuracy [33, 34]. In including this class of models as baselines, we
reweight the vectors representing the listening events of the target
user, as well as those representing the other users, as described in
Section 2.1. We then compute the cosine similarity of the resulting
vectors. The reweighted interactions of the 𝑘 nearest users are
averaged according to the similarity to the target user and used as
recommendation scores.
MostRecent: This algorithm recommends the most recent tracks
in the sequence, and has been proven effective in predicting users’
relistening behavior [40], especially in accurately predicting the
next track in the session (see discussion of Next-HR in Section 4.2).
ACT-R: This model corresponds to the one used by Reiter-Haas et
al. in [40] for modeling the users’ music relistening behavior; we
refer the reader to Section 2.3 for the description of the individual
components.2

4.2 Evaluation metrics
The performance of the algorithms is evaluated on the task of
rolling session completion. Similar to Reiter-Haas et al. [40], for
each target user we shift a sliding window of one week with a
hop size of one listening eventand define sessions as sequences of
listening events without gaps of more than 30 minutes between
consecutive tracks. Given a target user’s session of 𝑁 tracks and
the target user’s listening events of the previous seven days, we
assume a session segment of length 𝑙 < 𝑁 to be known and predict
the remaining 𝑁 − 𝑙 tracks in the session. For each session, we
consider all possible initial segment lengths, 𝑙 = 1, . . . , 𝑁 − 1.
Accuracy: We include two metrics for the accuracy of recommen-
dations. Since ACT-R can only recommend items that the user
already listened to, if the number of past interactions is less than
the number of tracks in the remainder of the sessions, i.e., those
to provide recommendations for, the algorithm will not be able
to provide recommendations for the full session. This results in
a higher precision and a lower recall. To mitigate this effect, we
2Similar to Reiter-Haas et al. [40], we normalize each component by applying softmax
over all tracks and add up the results to obtain the ACT-R activation of a track. For all
ACT-R-based models, preliminary experiments showed that including 𝜖 and PM based
on different versions of the features provided by Spotify reduces the performance of
the algorithms. We, therefore, omit them. Based on preliminary experiments, we also
set 𝑑 = 0.5.
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combine the precision and recall of recommendations into the F1
score. Similar to Reiter-Haas et al. [40], we also evaluate the next hit
rate (Next-HR), i.e., the ability of the algorithm to correctly predict
the next track of the session.
Novelty: The novelty of recommendations is measured as the frac-
tion of recommended tracks that have not been listened to by the
target user. In addition, to evaluate the quality of novel recommen-
dations, we also report the precision of novel recommendations,
P-Novelty.
Diversity: The diversity of the recommendations is measured with
respect to the genres.3 Since a higher diversity should indicate
that the recommended tracks belong to different genres, we define
diversity as the Shannon entropy of the distribution of genres over
the recommended tracks.
Popularity bias: To evaluate the tendency of the algorithms to
overrepresent popular tracks compared to the ones in the user’s
past listening events, we compute the Jensen-Shannon divergence
between the popularity distribution of tracks in the user’s past
listening events, and over the recommended tracks [23]. A high
popularity bias thus indicates that recommended tracks are more
popular than those already listened to by the target user. 4

4.3 Dataset, training, and evaluation
Similar to Melchiorre et al. [35], we conduct our experiments on the
extract of the large LFM-2b dataset [45]5 corresponding to the last
month (20/02/2020 - 19/03/2020) and remove users that listened to
more tracks than the 99th percentile of all users. We apply 10-core
filtering to users and items and split each user’s listening events
temporally in a 60% train, 20% validation, and a 20% test set. The
resulting dataset consists of 2 889 028 listening events, 12 679 users
and 101 837 items. The 60% train set is used to determine the similar-
ity for approaches relying on kNN, and for training and selecting the
best hyperparameters of GRU4Rec, BPR, and MultVAE. For GRU4Rec,
the most recent 20% interactions of each user in the 60% train set
are used for selecting the best hyperparameter configuration on a
grid space based on that reported by Ludewig et al. [33, 34]. The
optimization of the BPR and MultVAE instances required by ACT-R
+ BPR, Weighted MultVAE, and Weighted MultVAE-UserkNN is per-
formed previously to the optimization of the algorithms that rely
on them, and therefore on a separate set: the 60% train set is con-
verted to a binarized version (i.e., 𝑏𝑢𝑖 = 1 ⇐⇒ 𝑢 listened to 𝑖
at least once) and 20% randomly selected binarized interactions of
each user are used for selecting thehyperparameter configuration
achieving the highest NDCG@10 on a grid space based on that
reported by Melchiorre et al. [36]. The 20% validation set is used to
select the best configuration of kNN-, temporal, and ACT-R-based
algorithms described in Sections 3 and 4.1, on a grid space based on
that reported by Ludewig et al. [33, 34] and Reiter-Haas et al. [40],

3The track genre is assigned based on the Last.fm tags of the track, selecting the
genre with the highest tag weight. We use the list of Discogs genres, available at
https://mtg.github.io/acousticbrainz-genre-dataset/data_stats/ as possible genres of a
track.
4The popularity of a track is defined as the ratio of the total number of listening
events it accounts for [3, 24]. The distributions are computed over popularity classes,
each defined in terms of percentiles: after sorting tracks according to the number of
listening events, popular-, mid-, and niche-tracks account for 20, 60, and 20% of all
events, respectively.
5http://www.cp.jku.at/datasets/LFM-2b/

selecting the configuration achieving the highest F1 score. Since the
average number of session completion tasks per user is 67, providing
recommendations for the sessions of all 12 679 users would result
in roughly 850 000 session recommendations, i.e., roughly 850 000
test users in a standard recommendation scenario. Therefore, to
reduce computational costs, we randomly sample 100 users and
evaluate the algorithms’ performances reported in Section 5 on the
corresponding test sessions, for a total of 6 697 session completion
tasks.6

5 PERFORMANCE COMPARISON
Table 1 reports the performance of the algorithms in terms of ac-
curacy, novelty, diversity, and popularity bias on the 6 697 test
session completions of the 100 randomly sampled users. In terms
of accuracy (F1 and Next-HR), GRU4Rec outperforms the proposed
algorithms, as well as the other baselines. In terms of F1, GRU4Rec
is followed by Temporal UserkNN; this confirms the results from
previous work [14, 33], showing that these two algorithms are com-
petitive in the task of sequential recommendation. Interestingly,
however, when looking at Next-HR the performance of Temporal
UserkNN displays a substantial drop, and is clearly outperformed by
MostRecent. This confirms the results reported by Reiter-Haas et
al. [40], indicating that recommending the last track of the session is
a strong baseline with respect to Next-HR. The fact that approaches
based on recurrent neural networks achieve high accuracy of recom-
mendation, and that simply recommending the last track achieves
a high Next-HR, indicate that listening sessions tend to display re-
curring temporal patterns (in the extreme case, repetitions of single
tracks). With respect to P-Novelty, two of our proposed algorithms
achieve the best performances: ACT-R + BPR and Social ACT-R.
Social ACT-R achieves the highest values of diversity, indicating
that it is able to recommend tracks of various genres for completing
a session. It is interesting to observe that both diversity and accu-
racy of Social ACT-R recommendations are higher compared to
ACT-R: The inclusion of collaborative information in Social ACT-R
hence increases diversity and F1 simultaneously. Finally, we observe
that simple temporal- or memory-based approaches, i.e., MostRe-
cent and ACT-R, are less biased towards popular tracks. This pattern
could be explained by the fact that, since they only consider the
listening events of the target user, they do not rely on collaborative
data, which is a common source of popularity bias [2, 3, 24, 37].

In summary, we observe that the proposed algorithms – although
not outperforming the accuracy of DNN-based algorithms – achieve
the highest performance in terms of beyond-accuracy metrics, such
as novelty and diversity, are able to provide more accurate novel
recommendations (P-Novelty), and outperform pure ACT-R models
in terms of accuracy and beyond-accuracy metrics.

6 EXPLAINABLE MUSIC RECOMMENDATION
Since the proposed algorithms are based on a well-defined psycho-
logical model, their recommendations are intrinsically explainable.
This is advantageous for different RS stakeholders, as we discuss in
this section.
6For reproducibility purposes, we share the code, dataset, details on the dataset han-
dling and splits, hyperparameter optimization, and pretrained instances of BPR and
MultVAE required by the algorithms described in Section 3 at https://github.com/hcai-
mms/actr.
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Table 1: Performance of the models in the session-completion task. Models are sorted in order of descending F1 score. All values
are averaged over the 6 697 test session completions of the 100 randomly sampled users, as described in Section 4.3 New models
are highlighted in blue . Best performances are highlighted in bold, second best are underlined.

F1 Next-HR Novelty P-Novelty Diversity PopBias
GRU4Rec 0.142 0.198 0.716 0.126 0.929 0.099
Temporal UserkNN 0.122 0.024 0.631 0.146 0.786 0.122
Item BPR 0.114 0.051 0.846 0.130 0.658 0.151
Weighted MultVAE 0.111 0.045 0.554 0.136 0.941 0.194
ACT-R + BPR 0.104 0.037 0.056 0.239 0.923 0.065
Social ACT-R 0.101 0.037 0.056 0.155 0.945 0.066

MostRecent 0.094 0.069 0.000 0.000 0.891 0.060
ACT-R 0.093 0.037 0.000 0.000 0.889 0.060
Weighted MultVAE UserkNN 0.064 0.010 0.831 0.064 0.833 0.176

Figure 1a shows an example of an initial segment of length 𝑙 = 6,
of a session of total length 𝑁 = 12. The initial segment consists of
five unique tracks, one of them listened to twice. Figure 1b shows
the list of 𝑁 − 𝑙 = 6 tracks with the highest recommendation score
according to Social ACT-R. The columns show the relative con-
tribution of the components of Social ACT-R, also reflected as
a color gradient. Each component captures a different aspect of
relevance for Social ACT-R’s recommendations, and can therefore
be translated in a way that can easily be understood by the end
user. Current obsession corresponds to BLL, which captures the re-
cency (Current) and frequency (obsession) of interactions with the
track. Current vibes corresponds to S since this component favors
tracks that often occurred together with the last one. Evergreens
corresponds to V which, with a binary reward, favors tracks that
were often listened to by the target user, irrespective of when in the
past. Finally, From similar listeners corresponds to SC, which reflects
collaborative information. Figure 1 hence gives a clear indication of
why each song was recommended to the user. The top-5 recommen-
dations all belong to the target user’s current session. The 6th is a
track that the target user never listened to, as it is evident from the
vanishing ACT-R components. In this particular case, the ACT-R
scores all vanish for other elements of the catalog, indicating that
in the one-week window used to evaluate the ACT-R scores, only
the current session is present. Therefore, in this example ACT-R
alone would not allow recommending more than five tracks, while
this can be achieved with Social ACT-R. For instance, the track at
the top of the recommendation list (From the Past comes the Storms)
appeared in the target user’s past interactions recently (BLL), often
(V and BLL), and in sessions that included the most recent track
the user listened to (S). For the last track in the list, the situation is
different: this track is not part of the target user’s past interactions;
therefore it was recommended since users with a similar listening
profile (according to the ACT-R activations) also listened to it. The
possibility to investigate the contributions of the different compo-
nents to the final recommendation score may also provide useful
information to the platform providers. In the example provided in
Figure 1, for instance, we see that the ACT-R components entirely
contribute to the recommendation scores at the top of the list, while
SC only becomes relevant once all the tracks of the initial segment
of the current session have been recommended. We attribute this to

the fact that the ACT-R activations are nonvanishing for a limited
set of tracks (all tracks the target user listened to in the last seven
days), while SC does not vanish for a larger set of tracks (all tracks
listened to by the 𝑘 most similar users). Aggregating the individual
ACT-R activations and SC as described in Section 3 hence results in
a very peaked individual ACT-R distribution over items, and a more
spread and almost negligible SC. Therefore, if a platform provider
wants to favor the CF component, for instance for providing more
novel recommendations, they might consider rank-based aggrega-
tion techniques, or consider assigning a higher weight to SC. The
explainability of RSs that integrate ACT-R with CF can also be used
to discover patterns in recommendations, which can be useful both
to platform providers and content producers. To give an example,
we analyze how often each of the Social ACT-R components is
the salient one, i.e., how often the score of this component is larger
than the score of the other components. Figure 2 shows the salience
of each component, in percentage over all recommendations, and
for specific genres. By looking at the salience over all genres, we see
that taken together, the ACT-R components are salient for about
90% of all recommendations, with S being the dominant component
for more than half of them. Hence, context, i.e., the last track the
user listened to, often plays the largest role in selecting which track
to recommend. This tendency can change when looking at specific
genres. For instance, while for tracks of the genre non-music – often
corresponding to spoken words – the salience of S is even increased,
the situation is inverted for stage and screen – e.g., tracks that are
part of movie soundtracks. For stage and screen, BLL is often the
salient component, and together with V is the salient component in
above 75% of recommendations. This indicates that for recommen-
dations of non-music tracks, the last track listened to is particularly
relevant, while for stage and screen frequency of occurrence in the
past listening events is more important. This information can be
further leveraged by the platform providers to weight the relative
importance of each component in a genre-specific way, in order to
design ACT-R- and content-based RSs, whose recommendations are
tailored to genres. Finally, investigating the components’ salience
may help content producers to gain insight into the behavior of
listeners of specific genres. For instance, reggae artists might ob-
serve that for this genre V is often the most salient contribution
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Session Listened

Position Track

1 The Abyss

2 R.I.P. (Rest in Pain)

3 From the Past Comes the Storms

4 From the Past Comes the Storms

5 To the Wall

6 Escape the Void

(a) Initial segment of length 𝑙 = 6.

Recommended Track Current obsession (BLL) Current vibes (S) Evergreens (V) From similar listeners (SC)

From the Past Comes the Storms 0.471 0.248 0.281 0.000

Escape to the Void 0.306 0.353 0.341 0.000

To the Wall 0.294 0.359 0.347 0.000

R.I.P. (Rest in Pain) 0.264 0.374 0.362 0.000

The Abyss 0.263 0.375 0.362 0.000

Troops of Doom 0.000 0.000 0.000 1.000

(b) Recommendations for the remaining 𝑁 − 𝑙 = 6 tracks in the session.

Figure 1: Left: Example of initial segment of length 6 of a target session of total length 12. The column “Session Position”
displays the position of the track in the initial segment of the target session. Right: Heatmap of the relative contribution of
the used Social ACT-R components to the total recommendation score of each of the 6 recommendations (remaining session
length). The more intense the color, the higher the contribution.

From similar users (SC)Evergreens (V)Current vibes (S)Current obsession (BLL)

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

rock

electronic

folk, world, and country

pop

funk / soul

hip hop

jazz

reggae

classical

latin

stage and screen

non-music

no genre available

all genres

Figure 2: Component salience over all Social ACT-R recommendations and over Social ACT-R recommendations of a specific
genre. A component is considered salient if its score is higher than the scores of the other components of the same track.
Investigating the components’ salience may help content producers to understand their listeners’ behaviour.

and conclude that their fans have a higher tendency to relisten to
the same tracks, irrespective of the last track they listened to.

7 CONCLUSION AND FUTURE WORK
In this work, we proposed four new RS algorithms that integrate
the ACT-R cognitive architecture with CF for sequential music rec-
ommendation: Social ACT-R, ACT-R + BPR, Weighted MultVAE,
and Weighted MultVAE UserkNN. We showed that although the pro-
posed algorithms do not outperform the accuracy of DNN-based
recommenders, they achieve the highest performance in terms of
beyond-accuracy metrics. In particular, integrating CF with ACT-R
in Social ACT-R achieves the highest diversity and simultaneously
increases F1 with respect to ACT-R. More importantly, the proposed
algorithms can be used for providing explainable recommendations,
which can enhance the users’ engagement with the platform, pro-
vide insight to platform providers on the RSs, and to artists on
the listening behaviors of their listeners. One of the limitations
of this work is that it exclusively considers one perspective from
cognitive psychology, i.e., that of the ACT-R model. Additionally,
the definition of context for the spreading and partial matching
components is given in terms of the last item of the session. While
this agrees with the way context is defined in the ACT-R cognitive

architecture, it would be interesting to extend the work with defini-
tions of context that are more common in the RS community, such
as location or time of the day. Moreover, we optimized the RSs for
achieving the highest F1 score. Due to the structure of the proposed
algorithms, including beyond-accuracy metrics in the optimization
process would allow analyzing how each component impacts the
different aspects of recommendation. This could be translated to
more detailed explanations and be leveraged for the design of a
hybrid RS that can be tuned by each user according to their needs.
We leave these extensions of our work for future research. Finally,
the explainability of the algorithms proposed in this work opens up
the possibility to evaluate the quality, user acceptance and under-
stanability of the explanations by means of user studies; we leave
this evaluation for future work.
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ABSTRACT
User-based Collaborative Filtering (CF) is one of the most pop-
ular approaches to create recommender systems. �is approach
is based on �nding the most relevant k users from whose rating
history we can extract items to recommend. CF, however, su�ers
from data sparsity and the cold-start problem since users o�en rate
only a small fraction of available items. One solution is to incor-
porate additional information into the recommendation process
such as explicit trust scores that are assigned by users to others
or implicit trust relationships that result from social connections
between users. Such relationships typically form a very sparse
trust network, which can be utilized to generate recommendations
for users based on people they trust. In our work, we explore the
use of regular equivalence applied to a trust network to generate
a similarity matrix that is used to select the k-nearest neighbors
for recommending items. We evaluate our approach on Epinions
and we �nd that we can outperform related methods for tackling
cold-start users in terms of recommendation accuracy.

KEYWORDS
Trust; Recommender Systems; Collaborative Filtering; Cold-start;
Network Science; Regular Equivalence; Katz similarity

1 INTRODUCTION
Ever since their introduction, user-based Collaborative Filtering
(CF) approaches have been one of the most widely adopted and
studied algorithms in the recommender systems literature [21]. CF
is based on the intuition that those users, who have shown similar
item rating behavior in the past, will likely give similar ratings to
items in the future. Typically, CF comprises of three steps: �rst, we
retrieve the k-nearest neighbors to the target user for whom the
recommendations are generated. Second, we employ the ratings
from these k neighbors to determine items, which were rated highly
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by them but have not yet been rated by the target user. �ird, these
items are weighted or ranked by applying an appropriate algorithm.

In practice, each user’s ratings are stored in a rating vector. �ese
rating vectors are then used to calculate the correlation between the
target user’s vector and rating vectors of the rest of the users. �e
higher the correlation between the rating vectors of two users, the
higher their similarity. �is can be assessed, e.g., via the Pearson’s
correlation coe�cient, Cosine similarity, Jaccard index or Mean
Squared Di�erence (MSD) [16, 20]. However, such an approach to
neighbor selection su�ers from a cold-start user problem. �is term
refers to novel users which have rated a small number of items or
have not yet rated any items at all [14, 22]. �is means that we
cannot use their rating vectors for �nding similar users based on
the pairwise vector correlation measure.

Apart from popularity-based or location-based approaches [11,
13, 19], trust-based CF methods have been suggested to mitigate
cold-start user problems. �eir basis are trust statements expressed
on platforms such as, e.g., Epinions [17]. Trust statements can
either be expressed explicitly by, for example, assigning trust scores
or implicitly by engaging in social connections with trusted users.
Based on such trust statements, trust networks can be created
with the aim to generate recommendations for users based on
people they trust [15]. Since trust networks are o�en also sparse, a
particular property of trust, namely transitivity [2], can be exploited
to propagate trust in the network. In this way, new connections
are established between users, who are not directly connected,
but are connected via intermediary users. Previous work in this
respect proposed to perform a modi�ed breadth �rst search in the
trust network to compute a prediction. For example, TidalTrust [4]
aggregates and weights the trust values between direct neighbors
of two users. MoleTrust [17] works in a similar fashion, but does
a backward exploration while considering all users up to a pre-
de�ned maximum depth. In order to e�ciently avoid the impact
of noisy data while still considering enough ratings, the authors of
[10] proposed TrustWalker. �ey combined trust-based and item-
based recommendations, where a random walk model is utilized to
compute the con�dence in the predictions.

Present work. In this work, we focus on the �rst step of CF, i.e.,
�nding the k-nearest neighbors. For this purpose, we explore the
use of a similarity measure from network science referred to as
“Katz similarity” (KS) by the author of [18]. Although Katz himself
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never discussed it, KS captures regular equivalence of nodes in a
network and can be applied in many di�erent se�ings [6, 7]. As
such, in this work, we explore how to use KS in a trust-based CF
approach.

Firstly, we utilize the trust connections to create an adjacency
matrix where each entry represents a directed trust link between
two users. Secondly, we apply the KS measure on the created trust
adjacency matrix. More speci�cally, we calculate the pairwise simi-
larities between users by using the iterative approach on calculating
KS. �e iterative approach does not only allow us to calculate the
similarity between two nodes in the network, but additionally pro-
vides the possibility to choose the maximum used path length in
doing so. �is approach e�ectively gives us the ability to decide
how far do we want to propagate trust in the network. Lastly, we
use the resulting similarity matrix and apply various normaliza-
tion techniques in order to get a be�er distribution of similarity
values and be�er evaluation results in return. We evaluate these
approaches on the Epinions dataset.

Contributions and �ndings. �e contributions of this work are
three-fold: (i) we explore the application of KS measure in the
neighbor selection step of the trust-based CF approach for cold-
start users, (ii) we evaluate di�erent normalization techniques on
the resulting similarity matrix to achieve be�er recommendation
accuracy, and (iii) we introduce an adapted KS measure that gives
higher similarity values to node pairs with path lengths of 2. In the
trust-based CF se�ing, this means that propagated trust connec-
tions are given a higher importance than by using the standard KS
measure.

Taken together, this study may help researchers to get an in-
sight on how to apply KS on trust networks in combination with
di�erent normalization techniques to address the cold-start user
problem in CF-based recommender systems. Moreover, we show
that our approach for boosting the propagated trust values can
result in increasing the impact of newly created trust connections
on recommendation accuracy.

2 APPROACH
Our approach utilizes Katz similarity, which is a measure of regular
equivalence, i.e., a measure of the extent to which two nodes share
the same neighbors but also the extent to which their neighbors
are similar. As described in [3], two nodes may have few or no
neighbors in common, but they may still be similar in an indirect,
global way. �e idea behind KS is that paths of any length are
contributing to the value of similarity between two nodes in the
network, with shorter paths having a stronger impact. KS can be
mathematically expressed in a matrix form as follows:

σ =
∞∑

l=0
(αA)l = (I − αA)−1 (1)

where σ represents the similarity matrix and each value σi,j is a
similarity value between nodes i and j, A represents the adjacency
matrix of the network, I is the identity matrix which is necessary
to make sure that each node is similar to itself, α is the a�enuation
factor which weights the contribution of a path of length l . In our
trust-based se�ing, the adjacency matrix A is asymmetric and it

represents an unweighted directed trust network, in which each
node corresponds to a single user and each link represents a trust
statement issued by one user to another:

Ai,j =


1, if user j expressed a trust statement to user i
0, otherwise

(2)

�is also makes the similarity matrix σ asymmetric, which means
that σi,j does not have to be equal to σj,i , which is of advantage
because in this way, the asymmetric property of trust is preserved.
Furthermore, one important thing to note is that for (1) to converge,
the a�enuation factor has to satisfy the following condition:

α <
1
λA

(3)

where λA is the largest eigenvalue of A. �e largest eigenvalue
for the Epinions trust network (see Section 3) is 120.54, hence α
needs to be less than 0.0083 and we set it to 0.008 throughout
all of our experiments.1 Since calculating the matrix inverse is
computationally expensive, we can evaluate the above summation
expression starting from l = 0 for a �xed maximum l (i.e., lmax )
and get the following:

σ (0) = 0

σ (1) = I

σ (2) = αA + I

σ (3) = α2A2 + αA + I
. . .

σ (lmax+1) =
lmax∑

l=0
(αA)l (4)

Step 1: Setting lmax. By using this approach and se�ing lmax to
a positive integer value, we can de�ne how far down the network
do we want to propagate similarity or in this case, trust. In the
conducted experiments, we used values 1 and 2 as lmax , which
means that we either have not propagated similarities through the
network at all or that we propagated them through the network
using a maximum path length of 2.

Step 2: Degree normalization. As described in [18], σ as de�ned
in (1), tends to give high similarity to nodes that have a high degree.
In some cases this might be desirable but if we want to get rid of
this bias, we could apply a degree normalization on σ , which would
give higher similarity values to pairs of nodes that, independently
of their degrees, are similar, while lower values would correspond
to pairs of nodes that are dissimilar. Mathematically, for a given
lmax , this step can be wri�en as follows:

σ
(lmax+1)
Dnorm = D−1 (

lmax∑

l=0
(αA)l )D−1 (5)

1Although we used the iterative approach to calculate KS where lmax was set
to a small integer value and α could have been set to any value between 0 and 1, we
investigate the impact of α when the condition in Eq. 3 is also satis�ed.
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where D represents a degree matrix of a network. In the conducted
experiments, we evaluated approaches with an in-degree normal-
ization, a combined-degree normalization and without a degree
normalization.2

Step 3: Row normalization. A�er applying degree normalization,
we found that all of the values in the degree normalized similarity
matrix are very close to 0, including the maximum value. �erefore,
we introduced an additional step where we individually scale rows
of the �nal resulting matrix using one of the three vector norms:
l1, l2 ormax .3

Step 4: Boosting propagated similarities. As already mentioned,
the a�enuation factor α is used to decrease similarity the further
it gets propagated in the network. Since we set the α to 0.008,
similarity decays fast with each propagation step. �erefore, prop-
agated similarity values become much smaller already in the �rst
propagation step, i.e., for l = 2. �is would mean that trust con-
nections created through propagation in comparison with direct
trust connections have an almost insigni�cant impact on the result-
ing recommendations, and therefore, this additional boosting step
would increase the impact of propagated similarities with respect
to the recommendation accuracy.

Largest value for lmax in the conducted experiments was set to
2. �is could be interpreted as using user’s neighbors and their
neighbors for generating item recommendations. One of the contri-
butions of this paper was to increase the impact of propagated trust
values generated with KS for lmax = 2. Our proposed approach for
doing so consists of the following four steps: (i) calculate σ (3) as de-
scribed above using trust network as A, (ii) create a new similarity
matrix σ̂ such that:

σ̂i,j =

σ
(3)
i,j , if Ai,j = 0

0, otherwise
(6)

(iii) create σ̂norm matrix by individually scaling rows of σ̂ using
l1, l2 or max vector norm and lastly, (iv) create a similarity matrix
σboost such that:

σboost = A + σ̂norm (7)
With this approach, we achieve that each entry in σboost has a
similarity value of 1 between pairs of nodes for which there exists
an explicit trust connection inA and for pairs of nodes for which the
similarity has been calculated through propagation, the similarity
values are not exclusively small values close to zero increasing their
impact on the resulting recommendations.

Recommendation strategy. As already outlined in Section 1, in
this work, we focus on user-based CF. We �rst create a similarity
matrix using the above mentioned four steps: (i) calculate σ using
Eq. (4) with lmax ∈ {1,2}, (ii) normalize the similarity matrix us-
ing in-degree or combined-degree normalization, (iii) normalize
similarity matrix rows using l1, l2 or max vector norm, and (iv)
apply boosting of propagated similarities. Steps (ii), (iii) and (iv)

2Combined-degree matrix is a diagonal matrix where each value on the diagonal
corresponds to the sum of in-degree and out-degree of a particular node.

3For example, by utilizing the scikit-learn library in Python: h�p://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.normalize.html.

are optional and can be skipped. Utilizing the created trust-based
similarity matrix, we �rst �nd the k-nearest similar users and a�er-
wards recommend the items of those users as a ranked list of top-n
items to the target user. According to the literature, the maximum
number of nearest neighbors should be a value between 20 and 60
[8], we used 60 in all of our experiments. �e �nal ranking of the
items to recommend is calculated by summing up the similarities
of neighboring users as done in [11, 23].

3 EXPERIMENTAL SETUP
Dataset. To evaluate the performance of our trust-based CF ap-
proaches for cold-start users, the well-known Epinions dataset has
been used [17]. �is dataset was crawled from the consumer review-
ing platform Epinions.com. Here, registered users can rate items
available on the Epinions platform on a scale of 1 − 5. Additionally,
users can issue trust statements to other users on the platform, i.e.,
they can express how much they trust other users. In this dataset,
there are only positive values for trust statements, meaning there
are no negative trust statements (i.e., distrust).

Taken together, there is a total number of 49,290 users in our
dataset, which rated 139,738 di�erent items with 664,824 ratings.
Moreover, users have issued a total number of 487,181 trust connec-
tions. We utilized the trust connections issued by the users to create
an unweighted trust network, in which each node represents a user
and each directed link represents a trust statement expressed by
one user to another. �e resulting trust network provides a graph
density value of 0.0002, making the trust network adjacency matrix
very sparse.

Baseline algorithms. We compare our proposed approach to
three baselines algorithms from the literature, which were shown
to be useful methods in cold-start se�ings:

MP . MostPopular is a classic approach in recommender systems,
which recommends the most frequently used items in the dataset
to every user. �us, it can be also applied in a cold-start se�ing.

Trustexp . �is naive trust-based approach uses explicit trust
values in order to create the neighborhood of a user. Basically, adja-
cency matrix A created from a trust network is used as a similarity
matrix which does not allow for ranking of similar users because
similarity values are binary, i.e., either 0 or 1.

Trustjac . �is is a trust-based approach using Jaccard coe�cient
on explicit trust values and was also used by the authors of [1]. �e
idea behind this approach is that two users are more similar the
more trusted users they have in common. Jaccard coe�cient is a
statistic used to measure the similarity and diversity of sample sets
and it can be wri�en as:

J (A∗,a ,A∗,b ) =
|A∗,a ∩ A∗,b |
|A∗,a ∪ A∗,b |

(8)

where J (A∗,a ,A∗,b ) is used to calculate similarity between users a
and b, A∗,a corresponds to explicit values given to other users in
the trust network by user a and the same applies to A∗,b for user b.

Evaluation method and metrics. In order to compare our pro-
posed approach to these baseline algorithms in a cold-start se�ing,
we extracted all users with no more than 10 rated items from the
dataset. �is resulted in 25,393 users, for which we put all of their
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Approach lmax
Degree Row

Boost nDCG R P
norm. norm.

Trustexp .0224 .0296 .0110
Trustjac .0176 .0219 .0087

MP .0134 .0202 .0070

KSPCMB 2 Combined Max Yes .0303 .0425 .0117
KSPCMN 2 Combined Max No .0295 .0422 .0113
KSPCL1B 2 Combined L1 Yes .0273 .0358 .0106
KSPNL2B 2 No degree L2 Yes .0257 .0340 .0106
KSNCMN 1 Combined Max No .0213 .0289 .0106
KSN INN 1 In degree N/A No .0161 .0243 .0087
KSPNNN 2 No degree N/A No .0036 .0057 .0020

Table 1: Evaluation results for n = 10. �e reported subset
of the 33 evaluated KS-based approaches are additionally la-
beled for an easier result comparison between di�erent step
combinations (i.e., columns 2 to 5).

rated items into the test set. To �nally quantify the performance of
our evaluated algorithms, we used the well-established accuracy
metrics nDCG, Precision and Recall for n = 1 − 10 recommended
items [9, 24].

4 RESULTS
In our study, we evaluated 33 approaches for all possible step com-
binations when creating the similarity matrix (i.e., as de�ned in
Section 2). However, for the sake of space, in Table 1, we only report
the results for a subset of these approaches that provide the most
insightful �ndings. All of the evaluation results are reported for
n = 10, i.e., for 10 recommended items. As it can be seen in Table
1, the best performing approach in terms of all accuracy measures
was KSPCMB , where we used trust propagation (lmax = 2) with
combined degree normalization, row normalization withmax norm
as well as boosting of the propagated similarity values.

One interesting �nding was that if similarity propagation was
not used, i.e., lmax was set to 1, be�er results were achieved if
degree and row normalization were not applied (i.e., basically the
Trustexp baseline). However, if lmax was set to 2, we noticed
result improvements in almost all of the cases except when no row
normalization was applied, e.g., in the case of KSPNNN .

Additionally, similarity propagation with lmax = 2 increased
the similarity matrix density from 0.0002 to 0.008. It turned out
that row normalization was a very important step in using KS
with similarity propagation for neighbor selection. Another impor-
tant �nding was that the combined-degree normalization provided
be�er results than in-degree normalization in most of the cases.
Also, with respect to row normalization, max norm provided bet-
ter results than l1 and l2 norms in most of the cases. Lastly, with
degree normalization and row normalization unchanged, boosting
of propagated similarities o�en provided be�er results.

Finally, in Figure 1, we show the performance of all approaches
listed in Table 1 in form of Recall-Precision plots for di�erent num-
ber of recommended items (i.e., n = 1 − 10). �e results clearly
show that the best performing algorithm (i.e., KSPCMB ) again out-
performs all of the other approaches also for a smaller number of
recommended items (i.e., for n < 10).
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Figure 1: Recall-Precision plots of the described approaches
for n = 1 − 10 recommended items. Again, we can observe
that the approach labeled as KSPCMB outperforms all three
baselines as well as the other KS-based approaches.

5 CONCLUSION & FUTURE WORK
In this paper, we explored the use of Katz similarity (KS), a sim-
ilarity measure of regular equivalence in networks, for selecting
k-nearest neighbors in a Collaborative Filtering (CF) algorithm for
cold-start users. We used an iterative approach for calculating KS
since it provides the ability to restrict the length of paths in the
network used for similarity calculation. We found that KS can
be a very useful measure for neighbor selection if it is used with
degree-normalization and row normalization, especially when us-
ing similarity propagation. When these techniques are properly
combined with KS, we managed to outperform related approaches
for tackling the cold-start problem. Our results also indicate that
trust propagation is a very important feature when using trust net-
works in a CF se�ing as well as that KS is a useful technique for
e�ciently propagating trust in a network. Summed up, our study
may help researchers to get an insight on how to apply KS on trust
networks in combination with di�erent normalization techniques
to address the cold-start user problem in recommender systems.

One limitation of this study was that we only evaluated our
approaches using recommender accuracy, although optimizing on
non-accuracy measures has been closely tied to user satisfaction
[12, 25]. As such, in the future we plan to investigate the impact of
trust-based networks on beyond accuracy metrics such as novelty,
diversity and coverage. Additionally, we would like to evaluate
our approach not only on cold-start users, but rather to run the
experiments on the complete dataset. We would also like to run
additional experiments using di�erent values for α and lmax . More-
over, we also plan to explore the use of recently popularized node
embeddings (e.g., Node2Vec [5]) for trust networks to further im-
prove our results. And �nally, we plan to conduct a more extensive
evaluation to see how our method compares with other popular
approaches which support trust propagation [4, 10, 17].

Acknowledgments. �is work was supported by the Know-Center
(Austrian COMET program) and the AFEL project (GA: 687916).
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Abstract
In this work, we address the problem of providing job recommendations in an online 
session setting, in which we do not have full user histories. We propose a recom-
mendation approach, which uses different autoencoder architectures to encode ses-
sions from the job domain. The inferred latent session representations are then used 
in a k-nearest neighbor manner to recommend jobs within a session. We evaluate our 
approach on three datasets, (1) a proprietary dataset we gathered from the Austrian 
student job portal Studo Jobs, (2) a dataset released by XING after the RecSys 2017 
Challenge and (3) anonymized job applications released by CareerBuilder in 2012. 
Our results show that autoencoders provide relevant job recommendations as well 
as maintain a high coverage and, at the same time, can outperform state-of-the-art 
session-based recommendation techniques in terms of system-based and session-
based novelty.

Keywords Job recommendations · Session-based recommendation · Autoencoders · 
Session embeddings · Accuracy · Novelty

1 Introduction

People increasingly use business-oriented social networks such as LinkedIn1 or 
XING2 to attract recruiters and to look for jobs (Kenthapadi et al. 2017). Users of 
such networks make an effort to create personal profiles that best describe their 
skills, interests, and previous work experience. Even with such carefully structured 
content, it remains a non-trivial task to find relevant jobs (Abel 2015). As a conse-
quence, the field of job recommender systems has gained much traction in academia 

 * Elisabeth Lex 
 elisabeth.lex@tugraz.at

Extended author information available on the last page of the article

1 http://linke din.com.
2 http://xing.com.
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and the industry (Lacic et al. 2019; Siting et al. 2012). The main challenge that job 
recommender systems tackle is to retrieve a list of jobs for a user based on her pref-
erences or to generate a list of potential candidates for recruiters based on the job’s 
requirements (Hong et al. 2013).

Besides, most online job portals offer the option to browse the available jobs 
anonymously in order to attract users to the portal. As a consequence, the only data 
a recommender system can exploit are anonymous user interactions with job post-
ings during a session. In other words, the problem of recommending jobs is a ses-
sion-based recommendation problem (Jannach and Ludewig 2017). That is, the aim 
is to recommend the next relevant job in an anonymous session.

In our ongoing work with the Austrian start-up Studo,3 we have started to address 
the problem of recommending jobs in a session-based environment. In their student 
job portal Studo Jobs,4 we have observed an increasing volume of anonymous user 
sessions that look for new jobs.5 For example, over the past six months, anonymous 
job-related browsing has doubled from approximately 30,000 to 60,000 job interac-
tions. Therefore, in this paper, we address the problem of recommending jobs in a 
session-based environment.

Recently, neural networks have gained attention in the context of session-based 
recommender systems (e.g., Hidasi et al. 2015; Li et al. 2017; Lin et al. 2018; Wu 
et al. 2018, 2019; Yuan et al. 2019). The idea is to extract latent information about a 
user’s preferences from anonymous, short-lived sessions. For example, autoencoders 
(Kramer 1991) are neural networks designed to learn meaningful representations, 
i.e., embeddings, and to reduce the dimensionality of input data. Example applica-
tions are data compression (Theis et al. 2017), clustering and dimensionality reduc-
tion (Makhzani et al. 2015) as well as recommender systems, where they have been 
used to find latent similarities between users and items and to predict user prefer-
ences (Sedhain et al. 2015; Strub et al. 2016).

Their ability to preserve the most relevant features, while reducing dimension-
ality, inspired our idea to explore the use of autoencoders to infer latent session 
representations in the form of embeddings and to use these embeddings to gener-
ate recommendations in a k-nearest-neighbor manner. To that end, in this paper, 
we introduce a recommendation approach, which employs different autoencoder 
architectures, (1) a classic autoencoder (Kramer 1991), (2) a denoising autoencoder 
(Vincent et al. 2008) and (3) a variational autoencoder (Jordan et al. 1999), to learn 
embeddings of job browsing sessions. The inferred latent session representations 
are then used in a k-nearest neighbor manner to recommend jobs within a session. 
Besides, we use two types of input data to train and test our approach, i.e., interac-
tion data from sessions and content features of job postings, for which interactions 
took place during a session. We assess the performance of our approach in the form 

3 https ://studo .co.
4 The jobs platform in Studo, which is the predecessor of the Talto career platform (https ://talto .com)
5 We observe this trend independent from the changes in authenticated sessions, which fluctuate heavily 
over the year. The cause of this trend is that both the total number of sessions and the average ratio of 
anonymous sessions to authenticated sessions are growing.
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of offline evaluations on three datasets from the job domain: firstly, a dataset col-
lected from the Austrian online student job portal Studo Jobs; secondly, the job data-
set that was provided by XING after the RecSys Challenge 2017 (Abel et al. 2017); 
and finally, a dataset from a Kaggle competition on job recommendation sponsored 
by CareerBuilder. Our approach is compared to the state-of-the-art session-based 
recommender approaches (Hidasi and Karatzoglou 2018; Hidasi et al. 2015; Jannach 
and Ludewig 2017; Ludewig and Jannach 2018; Rendle et al. 2009) not only with 
respect to accuracy but also in terms of system-based and session-based novelty as 
well as coverage (Zhang et al. 2012). This is grounded in the growing awareness that 
factors other than accuracy contribute to the quality of recommendations (Herlocker 
et al. 2004; McNee et al. 2006). Moreover, novelty is especially an important metric 
for the job domain since applying to popular jobs may decrease a user’s satisfaction 
due to high competition and less chance of getting hired (see e.g., Kenthapadi et al. 
2017).

Contributions and findings The main contributions of this paper and the cor-
responding findings are as follows:

– We present a recommendation approach, which uses different autoencoder archi-
tectures to encode sessions from the job domain. We use the inferred latent ses-
sion representations in a k-nearest neighbor manner to recommend jobs within a 
session.

– We compare our approach to methods from recent work (Hidasi and Karatzo-
glou 2018; Hidasi et al. 2015; Jannach and Ludewig 2017; Ludewig and Jannach 
2018; Rendle et al. 2009) on the state-of-the-art session-based recommendation.

– We evaluate the efficacy of our approach on three datasets: firstly, a proprietary 
dataset collected from the online student job portal Studo Jobs; secondly, a pub-
licly available job dataset that was provided by XING after the RecSys Challenge 
2017; and thirdly, a publicly available job dataset from the job platform Career-
Builder.

– We train and test the autoencoders on two sources of job-related data: (1) interac-
tion data from sessions and (2) content features of job postings, for which inter-
actions took place during a session. Our results show that variational autoencod-
ers provide competitive job recommendations in terms of accuracy compared to 
the state-of-the-art session-based recommendation algorithms.

– We additionally evaluate all session-based job recommender approaches in terms 
of the beyond-accuracy metrics with system-based and session-based novelty as 
well as coverage. We find that autoencoders can produce more novel and surpris-
ing recommendations compared to the baselines and, at the same time, provide 
relevant jobs for the user while maintaining a high coverage.

– We provide the implementation of our approach as well as a more detailed hyper-
parameter description in a public GitHub repository6 in order to foster reproduc-
ible research.

6 https ://githu b.com/lacic /sessi on-knn-ae.
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Organization of the paper The remainder of the paper is structured as follows: In 
Sect. 2, we discuss related work. Section 3 outlines our approach to employ autoen-
coders for session-based job recommendation. Section  4 describes the baseline 
approaches, datasets, evaluation protocol and performance metrics. Section 5 elabo-
rates on the results of our experiments. Finally, in Sect. 6, we conclude the paper 
and provide an outlook on our plans for future work.

2  Related work

At present, we identify two lines of research that are related to our work: (1) job rec-
ommender systems and (2) session-based recommender systems.

Job recommender systems Job recommender systems address a particular rec-
ommendation problem, in that a company might want to hire only a few candidates, 
while classic recommender systems typically recommend items that are relevant for 
a large number of users (Kenthapadi et al. 2017). There are two directions of the rec-
ommendation problem: One is to recommend jobs to a user given her user profile, 
while the other is to recommend candidates for a job posting. The directions of both 
problems can even be combined using a reciprocal recommender (Mine et al. 2013).

Research on recommending jobs to users has mostly focused on improving accu-
racy with methods like collaborative- and content-based filtering or hybrid combina-
tions of both (Al-Otaibi and Ykhlef 2012; Zhang and Cheng 2016). One example 
of a hybrid job recommendation system that uses interaction data as well as content 
data is the work of Liu et al. (2017). Here, the recommendation problem corresponds 
to first searching for matching candidates for a given job and then recommending 
this job to these candidates. In another job recommender system presented in Hong 
et al. (2013), the authors propose to first cluster user profiles based on their charac-
teristics and then to design separate recommendation strategies for each cluster.

In 2016, XING (a career-oriented social networking site based in Europe) organ-
ized a challenge for the ACM RecSys conference to build a job recommendation 
system (Abel et  al. 2016) that recommends a list of job posts with which a user 
might interact in the upcoming week. The winning approach (Xiao et al. 2016) used 
a hierarchical learning-to-rank model to generate the recommendations, which cap-
tures semantic relevance, temporal characteristics of a user’s profile information, 
the content of job postings and the complete log of user activities. The anonymized 
challenge dataset has since been employed, for instance, by Mishra and Reddy 
(2016), who built a gradient boosting classifier to predict if a given user will like a 
particular job posting. In 2017, XING organized another recommender challenge for 
the ACM RecSys conference (Abel et al. 2017). Here, the recommendation problem 
was turned into a search for suitable candidates when a new job posting is added to 
the system (i.e., the task constitutes a cold-start problem (Lacic et al. 2015)). The 
winning approach (Volkovs et  al. 2017) spent considerable effort on feature engi-
neering to train a gradient boosting algorithm, which determines the probability of 
whether or not a given candidate user profile is suited for a target job posting.

In our work, we employ the most recent version of the dataset provided by XING 
after the RecSys challenge 2017 to evaluate a range of approaches to provide job 
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recommendations in anonymous sessions. Besides, in our experiments, we use a 
proprietary dataset gathered from Studo Jobs, an Austrian student job portal, as well 
as a publicly available dataset from the job portal CareerBuilder.

Since in our work, we focus on session-based job recommendations, in the next 
paragraph, we summarize related work on session-based recommender systems.

Session-based recommender systems Most recommender systems require a user 
preference history in the form of explicit or implicit user interactions. Based on the 
user preference history, a user profile is created, which is the basis for approaches 
such as matrix factorization (Koren et al. 2009). However, it is not always possible 
to create such user profiles, e.g., to protect the privacy of users or due to inadequate 
resources. As a remedy, session-based recommender systems (Hidasi et  al. 2015) 
have been proposed, which model a user’s actions within a session, i.e., a short 
period when the user is actively interacting with the system. A simple approach 
toward session-based recommendation is to recommend similar items using 
item–item similarity as proposed by Sarwar et  al. (2001). Hidasi and Tikk (2016) 
propose a general factorization framework that models a session using the average 
of the component latent item representations. Shani et al. (2005) use Markov deci-
sion processes to compute recommendations that incorporate the transition prob-
ability between items. Jannach and Ludewig (2017) use co-occurrence patterns as a 
basis for session-based recommendations. They report comparable and often even a 
superior performance of a heuristics-based nearest neighbor method (KNN) to gen-
erate recommendations in a session-based setting in comparison with competitive, 
state-of-the-art methods based on neural architectures. Hence, in our work, we also 
use two KNN-based methods, i.e., sequential session-based KNN and vector multi-
plication session-based KNN (Ludewig and Jannach 2018) as baseline algorithms 
due to their good performance and scalability as reported in related works (Jannach 
and Ludewig 2017; Kamehkhosh et al. 2017; Ludewig and Jannach 2018).

In general, applying neural networks in session-based recommendation systems 
has gained much attention in recent years. For instance, recent work (Tuan and 
Phuong 2017; Yuan et  al. 2019) uses convolutional networks to produce session-
based item recommendations. Song et al. (2016) proposed a neural architecture that 
combines both long-term and short-term temporal user preferences. They model 
these preferences through different long short-term memory (LSTM) networks in a 
stepwise manner. In this vein, Lin et al. (2018) introduce STAMP (short-term atten-
tion/memory priority) that simultaneously incorporates a user’s general interest (i.e., 
long-term memory) and current interest (i.e., short-term memory). Wu et al. (2018) 
present an architecture for session-based recommendations that is based on graph 
neural networks. Here, using an attention network, each session is also represented 
by a session user’s global preference and their current interest. The authors of Li 
et  al. (2017) propose NARM (neural attentive recommendation machine), which 
uses an attention mechanism in a hybrid encoder to model the sequential behavior 
of a user and to extract the user’s main purpose from the current session. As the 
authors show, this approach is specifically well suited to model long sessions.

Out of the different neural architectures, recurrent neural networks have 
become particularly popular for the task at hand (Chatzis et  al. 2017; Hidasi 
et al. 2015; Smirnova and Vasile 2017). In the earlier mentioned work of Hidasi 
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et  al. (2015), the authors showed that a recurrent neural network (RNN)-based 
approach can model variable-length session data. Other related papers on sequen-
tial data either improve the original algorithm (Hidasi and Karatzoglou 2018; 
Tan et  al. 2016) or extend it by capturing additional information such as con-
text (Twardowski 2016) or attention (Li et al. 2017). In later work, Hidasi et al. 
(2016) introduce an architecture (i.e., pRNN) that combines multiple RNNs to 
model sessions via clicks as well as via features of the clicked items such as con-
tent information. Here, each RNN handles a particular feature, such as the clicked 
item’s textual representation. The authors show that, given the optimal training 
strategy, pRNN architectures can result in higher performance compared to fea-
ture-less session models. Due to its ability to incorporate content features of job 
postings in its model in addition to interactions within sessions, in our work, we 
use pRNN as a baseline approach as we also take into account content features of 
job postings as well as interactions.

In our work, we employ autoencoders, a type of neural network that can reduce 
the dimensionality of data (Kramer 1991), to infer latent session representations 
and to generate recommendations. Specifically, we propose to employ a classic 
autoencoder (Kramer 1991), a denoising autoencoder (Vincent et  al. 2008) and a 
variational autoencoder (Jordan et al. 1999) to model and encode sessions. In this 
vein, we find that collaborative denoising autoencoders (CDAE) (Wu et al. 2016) are 
related to our work. CDAE utilize a denoising autoencoder (Vincent et al. 2008) by 
adding a latent factor for each user to the input. A denoising autoencoder can learn 
representations that are robust to small, irrelevant changes in the input. In CDAE, 
the number of parameters grows linearly with the number of users and items, which 
makes it prone to overfitting (Liang et al. 2018). Also related to our work is neural 
collaborative filtering (He et al. 2017), where a neural architecture, which can learn 
any function from data, replaces the dot product between the latent user and item 
features. However, this model has a similar issue as CDAE and, thus, grows linearly 
with the number of sessions and jobs as the authors of Liang et al. (2018) describe.

Finally, with respect to evaluation, to the best of our knowledge, related work on 
evaluating session-based recommender systems with beyond-accuracy metrics such 
as system-based and session-based novelty, or coverage is scarce. Only in recent 
work, Ludewig and Jannach (2018) evaluate session-based recommender systems 
in light of coverage and popularity bias. With this work, we aim to contribute to this 
sparse line of research as we evaluate all approaches in this work with respect to 
system-based and session-based novelty as well as coverage, in addition to accuracy.

3  Approach

In this section, we describe our approach toward a session-based job recommender 
system using autoencoders. In Sect. 3.1, we first describe how we encode sessions 
with autoencoders. Then, in Sect. 3.2, we outline our method to model the input ses-
sion vectors from interactions and content features. Finally, Sect. 3.3 details how we 
compute session-based job recommendations.
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3.1  Encoding sessions using autoencoders

Autoencoders are a type of neural network, which were popularized by Kramer 
(1991) as a more effective method than principal component analysis (PCA) with 
respect to describing and reducing the dimensionality of data. Autoencoders are 
trained in an unsupervised manner where the network is trying to reconstruct the 
input by passing the information to the output layer through a bottleneck architec-
ture. For our work, we employ three variants of autoencoder architectures to repre-
sent a session: (1) a classical autoencoder (AE), (2) a denoising autoencoder (DAE) 
and (3) a variational autoencoder (VAE).

Autoencoder (AE) The simplest form of an autoencoder has only one hidden 
layer (i.e., the latent layer) between the input and output (Bengio et al. 2007). The 
latent layer takes the vector xs ∈ ℝ

D , which represents the session and maps it to a 
latent representation zs ∈ ℝ

K using a mapping function:

where W is a D × K weight matrix, b ∈ � is an offset vector and � is usually a non-
linear activation function. Using zs , the network provides a reconstructed vector 
x̂s ∈ ℝ

D , which is calculated as:

By adding one or more layers between the input and latent layer, we create an 
encoder and, correspondingly, a decoder by doing the same between the latent and 
output layer, hence the name autoencoder. During inference, we use the output of the 
latent layer (i.e., the information bottleneck) to represent the latent session vector zs.

In our experiments, for � , we use rectified linear units (ReLU7) (Nair and Hinton 
2010) activation function for all layers except the final output layer, where a sigmoid 
activation function is used. Furthermore, we use a Ds − 256 − 100 − 256 − Ds net-
work architecture,8 where Ds is the dimension of the original vector representation 
of the session that is encoded using job interactions with or without the correspond-
ing job content data. To train the network, we use RMSprop (Tieleman and Hinton 
2012) and minimize the Kullback–Leibler divergence (Fischer and Igel 2012).

We also experimented with adding additional encoder/decoder layers as well as 
increasing the layer size (e.g., layers with a size of 1000) but did not see any major 
performance differences besides an increased training complexity. Both Adam and 
RMSProp are two of the most popular adaptive stochastic algorithms for training 
deep neural networks. In our work, we focused on RMSProp.

Denoising Autoencoder (DAE) As shown by Vincent et  al. (2008), extending 
autoencoders by corrupting the input can show surprising advantages. The idea of a 

zs = h(xs) = �(WTxs + b)

x̂s = 𝜎(W �zs + b�)

7 For an input x, relu(x) = max(0, x).
8 We also tested higher values for the dimension of the latent layer (e.g., layers with a size of 1000) as 
well as adding additional encoder/decoder layers, but did not find enough accuracy improvement that 
would justify the additional computation burden when calculating session similarities in real time.
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denoising autoencoder is to learn representations that are robust to small, irrelevant 
changes in the input. Corrupting the input can be done on either one or multiple lay-
ers before we calculate the final output.

In our DAE model, we get a corrupted input x̂ using the commonly employed 
additive Gaussian noise on the input layer with a probability of 0.5. Like earlier, 
we use the same Ds − 256 − 100 − 256 − Ds architecture, ReLU and sigmoid activa-
tion functions, the RMSprop optimization algorithm and the Kullback-Leibler diver-
gence as loss function.

Variational Autoencoder (VAE) Another approach to extract the latent repre-
sentation zs is to use variational inference (Jordan et al. 1999). For that, we approx-
imate the intractable posterior distribution p(zs|xs) with a simpler variational dis-
tribution q�(zs|xs) , for which we assume an approximate Gaussian form with an 
approximately diagonal covariance:

where � and �2 is the encoded output given the input vector representation xs of 
a session. To be more precise, we use additional neural networks as probabilistic 
encoders and decoders. Most commonly, this is done using a multilayered percep-
tron (MLP). For the above-mentioned q�(zs|xs) , we calculate:

where {W1,W2,W3, b1, b2, b3} are weights and biases of the MLP and are part of 
variational parameters � . While decoding, we sample the latent representation and 
produce a probability distribution �(zs) over all features from the input session vec-
tor xs . As we deal with implicit data, to calculate the probabilities, we let p�(xs|zs) 
be a multivariate Bernoulli (Kingma and Welling 2013), whose probabilities in the 
MLP we calculate as:

where f� is an element-wise nonlinear activation function (i.e., in our case a sig-
moid) and � = {W4,W5, b4, b5} are weights and biases of the MLP.

The generative model parameters � are learned jointly with variational parameters 
� by optimizing the marginal likelihood of the data. The objective is thus to mini-
mize the distance between the variational lower bound L(�,�, x) and a certain prior 
(Kingma and Welling 2013; Liang et al. 2018), which in case of VAEs is the Kull-
back–Leibler divergence (Fischer and Igel 2012) of q�(zs|xs) and p(zs|xs) . As we 
are sampling zs from q� in the variational lower bound, in order to learn the model, 
we need to apply the reparametrization trick (Kingma and Welling 2013; Rezende 
et al. 2014) by sampling � ∼ N(0, IK) (also seen later in Fig. 2) and reparametrize 

log q�(zs|xs) = logN(zs;�, �
2I)

� = W2 h + b2

log �2 = W3 h + b3

h = relu (W1 xs + b1)

log p(xs|zs) =
D∑

i=1

xsi log yi + (1 − xsi) ⋅ log(1 − ysi)

ys = f�(W5 relu (W4 zs + b4) + b5 )
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zs = 𝜇𝜙(xs) + 𝜖 ⊙ 𝜎𝜙(xs) . Hence, the gradient with respect to � can be back-propa-
gated through the sampled zs.

In our experiments, we utilize the described VAE model with a similar archi-
tecture as previously mentioned: Ds − 256 − 100 − 256 − Ds (i.e., the encoder and 
decoder MLPs are symmetrical). Furthermore, for all three autoencoder architec-
tures, we experiment on additionally incorporating the self-attention mechanism 
(e.g., as Lin et al. 2017; Parikh et al. 2016; Vaswani et al. 2017 do in their work) on 
the encoder layer.

3.2  Modeling session vectors

The input for any of the three autoencoder variants is a binary-encoded representa-
tion of the session xs . As shown in Fig. 1, we propose the following two variants of 
how to train the autoencoder models that will be used to infer the latent representa-
tion zs.

Variant 1: Modeling from interactions We construct xs by only using the job 
interaction data of a given session. In the remaining paper, we denote the three 
autoencoder models, which only use job interaction data as AEInt , DAEInt and 
VAEInt . We create session vectors of size ns , where ns is the number of jobs in the 
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    in the dataset

Session Representation

Fig. 1  Modeling session vectors. The input of the utilized autoencoder is a session representation, which 
can be binary-encoded using job interactions with or without the corresponding job content data. For 
example, a standard autoencoder that only considers interaction data (denoted as AE

Int
 ) will expect a 

binary encoded vector with a dimension that equals the number of jobs in the underlying dataset. To 
combine this with job content data (denoted as AE

Comb
 ), we use the most recent m job interactions within 

the session and generate a binary encoding of the job content features in descending order
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underlying dataset. Each job is then assigned an index in this vector. The interac-
tions on the corresponding job indices are set to 1, while we set the rest to 0. One 
possible drawback of this approach is that due to the ephemeral nature of job post-
ings, we would need to frequently retrain the utilized model in order to consider new 
jobs coming to the system (Matuszyk et al. 2015). Moreover, this will also impact 
the size of the input vector xs , which will constantly be increasing with every new 
job.9

Variant 2: Modeling from interactions and content In order to mitigate the 
need to retrain the autoencoder models frequently, we also propose to leverage the 
content of job postings, with which anonymous users have interacted during a ses-
sion (i.e., combine interaction data with content data). Given a set of content fea-
tures F = {f1,… , fl} , we first convert each job interaction in a session to a binary 
vector of size nj =

∑l

i=1
dist(fi) , where dist(fi) gives the number of distinct values of 

a job feature fi . Each feature value is then assigned an index in this vector, and the 
existing feature values are set to 1, while the rest are 0. To create the session vector 
xs , starting from the most recent job interaction, we concatenate the last m converted 
job interactions. In case the number of job interactions is less than m, xs is right-pad-
ded with 0-filled job vectors, which results in xs being of size nj × m . We denote the 
three autoencoder models that use the content features of job interactions as AEComb , 
DAEComb and VAEComb . Note also that we introduce the parameter m to end up with 
an input vector xs that has a fixed length and a model that is less sensitive to new job 
postings that are added to the system.

3.3  Computing session‑based job recommendations

We formulate the recommendation problem as follows: Given a target session st , in 
which there was an interaction with at least one job ji from the set of available jobs 
J = {j1,… , jn} , the task is to predict the next jobs this user will likely interact with. 
In order to compute recommendations, as shown in Fig. 2, we first extract the output 
zs for the sessions that are available in the training set. During prediction time, for 
a given target session st , we proceed to infer its latent representation first to find the 
top-k similar past sessions. In order to reduce the computational burden and allow 
for efficient recommendation,10 we extract a subset of all sessions, where the users 
have interacted with the last job in st . Using zs , we compute the cosine similarity 
between the respective target and candidate session and use the top-k similar ses-
sions to recommend jobs. Jobs are then ranked based on the following score:

sKNN(st, ji) =

n∑

i=1

sim(st, si) × 1si(ji)

10 The number of stored sessions can easily pass the million mark and cause for unnecessary calcula-
tions once a recommender system is running for a longer period.

9 This effect can, however, be damped by removing obsolete job postings, but would still result in a con-
stantly changing input dimension.
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where 1si(ji) is 1 if the candidate session si contains the job ji and 0 otherwise (as in 
Bonnin and Jannach 2015; Jannach and Ludewig 2017).

4  Experimental setup

In this section, we present the baseline approaches and the datasets we used for this 
study. We outline the evaluation protocol and the performance measures, which we 
employed to compare all approaches. In our evaluation, we contribute to the limited 
amount of related work (e.g., like Ludewig and Jannach 2018) as we evaluate all 
approaches both concerning accuracy and beyond-accuracy measures (i.e., system-
based and session-based novelty as well as coverage).

4.1  Baseline approaches

We utilize well-known baselines and compare our approach to the following state-
of-the-art methods (Ludewig and Jannach 2018) for session-based recommendation:

Ji

Ji

Ji

Ji

s1

s2

sr

sr+1

sn-1

sn

d1 d2 dn-1 dn

d

d1 d2 dn-1 dn

d1 d2
dn-
1

dn

d1 d2 dn-1 dn

d1 d2 dn-1 dn

d1 d2 dn-1 dn

1. SESSION FILTERING

d1 d2 dn-1 dn

3. CALCULATE SESSION SIMILARITY

4.
 F

IN
D

 T
O

P
-N

 
S

E
S

S
IO

N
S

0. INIT SESSION EMBEDDINGS

2. INFER SESSION EMBEDDING

C
A

N
D

ID
A

T
E

  S
E

S
S

IO
N

S

T
R

A
IN

 D
A

TAF
ILT

E
R

E
D

  S
E

S
S

IO
N

S
A

E
D

A
E

V
A

E
 σµ

x

εz

x

θ

x

ε

z

x

θ

x

z

x

θ

φ

φ

φ

φ

Fig. 2  Computing session-based job recommendations. Using the trained autoencoders, we infer latent 
representation for (1) sessions in the training data and (2) the current target session for which we recom-
mend jobs. Jobs from the top-k similar candidate sessions (filtered by the currently interacted job post-
ing) are recommended to the target session
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POP A simple and yet often strong baseline for session-based recommenda-
tion is the popularity-based approach. As in Hidasi et al. (2015), the results are 
always the same top-k popular items from the training dataset.

iKNN The item-KNN approach recommends jobs that are similar to the actual 
job that is interacted with during the session. As in Hidasi et al. (2015), we use 
the cosine similarity and include regularization to avoid coincidental high simi-
larities between rarely visited jobs.

BPR-MF One of the commonly used matrix factorization methods for implicit 
feedback is Bayesian personalized ranking (Rendle et al. 2009). As in Hidasi et al. 
(2015), we use the average of job feature vectors of the jobs that had occurred 
in the current session as the user feature vector to apply it directly to generate 
a session-based recommendation. That is, similarities of the feature vectors are 
averaged between a candidate job and the jobs of the current session.

Bayes Following the Bayesian rule, we calculate the conditional probability of 
a job xi being clicked based on the previous r interactions of the current session s:

This approach is, from a computational perspective, inexpensive to calculate and run 
in an online setting.

GRU4Rec Recently, Hidasi et  al. (2015) showed that recurrent neural net-
works are excellent models for data generated in anonymous sessions. GRU4Rec 
combines gated recurrent units with a session-parallel mini-batch training pro-
cess, and it incorporates a ranking-based loss function. For our study, we use 
the most recent improvement in GRU4Rec (Hidasi and Karatzoglou 2018). This 
GRU4Rec version employs a new class of loss functions tied together with an 
improved sampling strategy.

pRNN Another recent advancement of Hidasi et  al. (2016) shows how to 
incorporate item features into the representation of neural networks. They pro-
pose several different architectures based on GRU units and ways to train them. 
We use a parallel architecture with simultaneous training for our experiments. 
This approach utilizes both a one-hot encoding of the current item interaction and 
an item representation as inputs for the subnets. The trained model uses the TOP1 
loss function as defined in Hidasi et al. (2015).

sKNN Recent research has shown that computationally simple nearest-neigh-
bor methods can be effective for session-based recommendation Jannach and 
Ludewig (2017). The session-based KNN approach first determines the k most 
similar past sessions in the training data. Sessions are encoded as binary vectors 
of the item space, and a set of k nearest sessions is retrieved for the current ses-
sion using cosine similarity. The final job score is calculated by aggregating the 
session similarity over all the sessions that contain the candidate job.

V-sKNN Vector multiplication session-based KNN (V-sKNN) is a variant of 
sKNN that considers the order of the elements in a session. The idea here is to 
create a real-valued vector by putting more weight on recent interactions, where 

P(xi�xs1 ,… , xsr ) =

∏r

j=1
P(xsj �xi) × P(xi)
∏r

j=1
P(xsj )
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only the very last element of the session obtains a value of “1” (Ludewig and Jan-
nach 2018). For this, a linear decay function is used that depends on the position 
of an element within the session.

S-sKNN Sequential session-based KNN (S-sKNN) puts more weight on ele-
ments that appear later in the session in a similar way as V-sKNN (Ludewig and 
Jannach 2018). This effect is, however, achieved by giving more weight to neigh-
boring sessions which contain recent items of the current session.

4.2  Datasets

For this study, we employ three different datasets from the job domain. The first 
dataset, Studo, is a proprietary dataset collected from the online platform Studo 
Jobs, a job-seeking service for university students. The second dataset RecSys17 
is the latest version of the data provided by XING after the RecSys Challenge 

Table 1  Statistics of the datasets Studo, RecSys Challenge 2017 (i.e., RecSys17) and CareerBuilder12

While Studo has more sessions and job interactions, the RecSys Challenge 2017 dataset has more job 
postings that can be recommended. CareerBuilder12 is the largest dataset, but also has the highest spar-
sity

Dataset # Interactions # Sessions # Jobs Sparsity (%)

Studo 191,259 26,785 1111 99.36
RecSys17 55,380 16,322 15,686 99.98
CareerBuilder12 661,910 120,147 197,590 99.99
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Fig. 3  Number of interactions based on the interaction type (top) and the distribution of session sizes 
(bottom) is shown for the RecSys Challenge 2017 (left) and Studo (middle) and CareerBuilder12 data-
sets. Overall, the distribution of interaction types is similar between the datasets where the click, view 
and apply interactions mostly dominate
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2017 (Abel et al. 2017). The third dataset CareerBuilder12 is from an open Kag-
gle competition, called Job Recommendation Challenge,11 provided by the online 
employment Web site CareerBuilder. The statistics of all three datasets are given 
in Table 1. As seen, all datasets have a high sparsity: 99.36% for Studo, 99.98% 
for RecSys17 and 99.99% for CareerBuilder12. Studo contains a higher num-
ber of sessions when compared to RecSys17 but has a much smaller number of 
available jobs that can we can recommend. CareerBuilder12 is the largest dataset 
of the three, but only contains job applications as interactions. In the next para-
graphs, we describe the three datasets in more detail.

Studo The dataset contains job interactions from anonymous user sessions from a 
period of three months between September 2018 and December 2018. All job inter-
actions in this dataset have an anonymous session id assigned to them. As seen in 
the top row of Fig. 3, the Studo dataset contains four interaction types, i.e., job view, 
show company details, apply and share job. As shown at the bottom row of Fig. 3, 
the log histogram of session sizes follows a skewed pattern, which means that most 
sessions have a small number of interactions. In particular, every session has 6.98 
interactions on average and a median of 5 interactions.

Concerning content features reported in Table 2, in the Studo dataset, we utilize 
seven content features of job postings. The Job State determines 1 out of 9 Austrian 
federal states. Job Country indicates whether the job is in Austria or some other 
country. The Job Begins Now feature specifies whether the job candidate can start 
immediately working on the advertised position. We relate this feature to the Is 
Payed feature from the RecSys17 dataset as companies typically pay for job post-
ings to be shown if they urgently need candidates. Studo’s Job State is similar to the 
Region feature from RecSys17, the same holds true for Studo’s Employment Type, 

Table 2  Binary-encoded content features of our three datasets

For Studo, concatenating all job features results in a job vector with a dimensionality of 60. For the Rec-
Sys17 dataset, this results in a job vector with a dimension of 79. For the CareerBuilder12 dataset, this 
results in 115 dimensionality vectors. We also put the same annotation on content features, which have a 
similar meaning in both datasets. The Job Discipline feature is the only one in Studo, which represents a 
combination of the Discipline Id and Industry Id features from the RecSys17 dataset

Studo RecSys17 CareerBuilder12

Content feature Encoding Content feature Encoding Content feature Encoding

Job state† 10 Region† 17 State† 55
Job country‡ 1 Country‡ 4 Requirement topic 20
Job begins now 1 Is payed 2 Title topic 20
Job effort 1 Career level 6 Description topic 20
Job language 1 Industry Id†† 23
Job discipline†† 40 Discipline Id†† 22

Employment type‡‡ 6 Employment‡‡ 5

11 https ://www.kaggl e.com/c/job-recom menda tion.
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which can be related to the Employment feature from RecSys17. Job Effort indicates 
whether the concrete working hours are specified; otherwise, the default working 
hours are assumed. The Job Language feature specifies whether the job requires the 
usage of either the German or English language. Furthermore, a job posting can also 
be described by a subset of 40 different Job Discipline labels and a subset of 6 dif-
ferent Employment Type labels. The Job Discipline feature can actually be regarded 
as a combination of the Discipline Id and Industry Id features from the RecSys17 
dataset. As described in Sect. 3.2, we use all content features from the Studo dataset 
to create a binary-encoded job vector with a dimensionality of 60. Finally, we have 
77.7% uniquely encoded job vectors, which consist, on average, of 11.8% assigned 
feature values.

RecSys17 The dataset contains six different interaction types that were performed 
on the job items. For this study, we only keep the click, bookmark and apply inter-
actions (as seen on the top of Fig. 3). We remove the delete recommendation and 
recruiter interest interactions as these are irrelevant in our setting. Moreover, we dis-
card impression interactions as they are created when XING shows a job to a user. 
As stated by Bianchi et al. (2017), an impression does not imply that the user has 
interacted with the job. The dataset consists of interactions from a period of three 
months (from November 6, 2016, until February 3, 2017). We manually partition the 
interaction data of the RecSys dataset into sessions using a 30-minute idle threshold 
(as in Quadrana et al. 2017). The resulting sessions have, on average, 3.62 interac-
tions per session and a median of 3 interactions.

Also, the RecSys17 dataset contains content features about the job postings, such 
as career level or type of employment. From this set, we select seven features as con-
tent-based input for our approaches and discarded the numeric IDs of title and tags, 
since those would lead to very big encodings. The chosen features closely resemble 
the features that are present in the Studo dataset. More specifically, from RecSys17, 
we use the following features, as shown in Table 2: Region, Employment, Is Payed, 
Discipline Id, Career Level, Industry Id and Country. The Region content feature is 
a categorical feature with 17 possible value, like the Employment feature with 5 val-
ues. The Is Payed content feature indicates if the posting is a paid for by a company. 
The Discipline Id is a categorical feature with 22 different values that represent 
disciplines such as consulting or human resources. The categorical feature Career 
Level can take 7 values, Industry Id represents industries such as finance, and Coun-
try denotes the code of the country in which the job is offered.12 Overall, we end up 
with a job vector that has dimensionality of 79. We find that only 33.58% of the job 
vectors are unique and have on average 8.86% assigned feature values.

CareerBuilder12 The dataset contains job applications from a period of almost 
three months. No other interaction types are present in this dataset. The sessions 
are created via a time-based split of 30 min. Due to the nature of job applications, 
most sessions contain very few interactions. The interactions in the dataset happen 
over 13 weeks. Thus, similar to the other two datasets, it happens over almost three 

12 https ://www.recsy schal lenge .com/2017.
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months, i.e., from April 2012 to June 2012. The sessions have, on average, 5.64 job 
applications per session, whereas the median is 4 applications per session.

Regarding content features, the CareerBuilder12 dataset contains textual descrip-
tions of the jobs as well as categorical data for the location. From the content data, 
the 55 different states are used in the form of one-hot encodings. Since in our work, 
we utilize categorical job features as input to our models, we additionally inferred 
categorical topics for each of the 3 textual features (i.e., title, description and 
requirements). That is, for every textual feature, we trained a separate latent Dir-
ichlet allocation (LDA) model from which we extracted 20 distinct topics. This pro-
cedure resulted in every job posting having a requirement, title and description topic 
assigned to them. Thus, the resulting feature vector of a job posting is of size 115. 
For this largest dataset, 13.46% of vectors are unique, and those vectors have only 
2.58% assigned feature values.

4.3  Evaluation protocol

We employ a time-based split on all three datasets to create train and test sets. For 
this, we put the sessions from the last 14 days (i.e., 2 weeks) in the test set of the 
respective dataset and use the remaining sessions for training. For each set, we 
keep only sessions with a minimal number of 3 interactions.13 Like (Quadrana et al. 
2017), we filter items in the test set that do not belong to the train set as this ena-
bles a better comparison with model-based approaches (e.g., RNNs), which can only 
recommend items that have been used to train the model. In Studo, this procedure 
results in 23, 738 sessions to train and 3047 to test the approaches. For the RecSys17 
dataset, this results in 12, 712 sessions for training and 3610 sessions for testing. In 
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Fig. 4  Our evaluation protocol for one exemplary session consisting of four jobs. We distinguish between 
(1) comparing the recommended jobs with the remainder of the interactions in a session (left) and (2) 
comparing the recommended jobs with the next job interaction (right)

13 We chose 3 for the minimum amount of interaction as it is the lowest median of interactions in a ses-
sion across all three datasets, as reported in Sect. 4.2.
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the case of the much larger CarrerBuilder12 dataset, the train set contains 108, 783 
sessions, whereas the test set has 11, 364 sessions.

Training and testing the algorithms We first train all approaches on the respec-
tive training data. In order to evaluate the performance of the utilized session-based 
recommendation algorithms, for each session in the test data, we iteratively subsam-
ple its interactions. That is, after each session interaction, we recommend 20 jobs 
for the current target session state and compare the predictions with the remaining 
interactions. We start this procedure for every session after the first interaction and 
end before the last one. In this setting, as shown in Fig. 4, we explore two evaluation 
cases: comparing the recommended jobs with (1) the remainder of the interactions 
in the session and (2) with the next job interaction (i.e., next item prediction; same 
as in Hidasi and Karatzoglou 2018; Hidasi et al. 2015).

For our proposed method, that uses content features in combination with user 
interactions to encode the input for the autoencoders (i.e., as described in Sect. 3.2), 
we use the top 25 recent job interactions to infer the session representation. That is, 
we set the parameter m = 25 as more than 98% of all sessions in Studo, and almost 
all sessions in the RecSys17 dataset do not have more than 25 job interactions (i.e., 
as shown in Fig. 3).

Hyperparameter optimization To optimize hyperparameters, we further split 
the train sets by the same time-based split to generate validation sets. Thus, we use 
the last 2 weeks of the train set as a separate validation set and the remaining ses-
sions to train our models. The resulting split for the Studo dataset is 19, 245 sessions 
in the validation train set and 3273 sessions in the validation test set. For the Rec-
Sys17 dataset, we have 8001 sessions in the validation train set and 2046 sessions in 
the validation test set. In case of CareerBuilder12, the validation train set contains 
51,  717 sessions and the validation test set 10,  574 sessions. Note that some ses-
sions did no longer have the minimal number of 3 interactions and were filtered out. 
As a consequence, the combination of the validation train and validation test set is 
smaller than the original train set. The results of the hyperparameter optimization 
step are described in Sect. 5.3.

4.4  Evaluation metrics

We quantify the recommendation performance of each approach concerning accu-
racy and beyond-accuracy metrics like system-based and session-based novelty. 
More specifically, in our study, we use the following performance measures:

Normalized Discounted Cumulative Gain (nDCG) nDCG is a ranking-depend-
ent metric that measures how many jobs are predicted correctly. Also, it takes the 
position of the jobs in the recommended list into account (Parra and Sahebi 2013). It 
is calculated by dividing the DCG of the session’s recommendations with the ideal 
DCG value, which is the highest possible DCG value that can be achieved if all 
the relevant jobs would be recommended in the correct order. The nDCG metric is 
based on the Discounted Cumulative Gain (DCG@k), which is given by Parra and 
Sahebi (2013):
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where rel(i) is a function that returns 1 if the recommended job at position i in the 
recommended list is relevant. nDCG@k is calculated as DCG@k divided by the 
ideal DCG value iDCG@k, which is the highest possible DCG value that can be 
achieved if all the relevant jobs would be recommended in the correct order. Over all 
the sessions, it is given by:

Mean reciprocal rank (MRR) MRR is another metric for measuring the accuracy 
of recommendations and is given as the average of the reciprocal ranks of the first 
relevant job in the list of recommended jobs, i.e., 1 for the first position, 1

2
 for the 

second position, 1
3
 for the third position and so on. This means that a high MRR is 

achieved if relevant jobs occur at the beginning of the recommended jobs list (Voor-
hees 1999). Formally, it is given by Aggarwal (2016):

Here, Hs is the history of the current session s and rank(Hj,Rk) is the position of the 
first relevant job Hj in the recommended job list Rk.

System-based novelty (EPC) System-based novelty denotes the ability of 
a recommender to introduce sessions to job postings that have not been (fre-
quently) experienced before in the system. A recommendation that is accurate but 
not novel will include items that the session user enjoys, but (probably) already 
knows. Optimizing system-based novelty has been shown to have a positive, trust-
building impact on user satisfaction (Pu et  al. 2011). Moreover, system-based 
novelty is also an important metric for the job domain since applying to popular 
jobs may decrease a user’s satisfaction due to high competition and less chance 
of getting hired (see, e.g., Kenthapadi et al. 2017). In our experiments, we meas-
ure the system-based novelty using the expected popularity complement (EPC) 
metric introduced by Vargas and Castells (2011). In contrast to solely popularity-
based metrics (e.g., Zhou et al. 2010), EPC also accounts for the recommendation 
rank and the relevance for the current session. Thus, the system-based novelty 
novsystem(Rk|s) for the recommendation list Rk of length k for session s is given by:

Here, disc(i) is a discount factor to weight the recommendation rank i [i.e., 
disc(i) = 1∕log2(i + 1) ] and p(rel|Ri, s) is 1 if the recommended job Ri is relevant for 
session s or 0 otherwise (i.e., only jobs that are in the current session history are taken 

DCG@k =

k∑

i=1

2rel(i) − 1

log(1 + i)

nDCG@k =
1

|S|
∑

s∈S

(
DCG@k

iDCG@k

)

(1)MRR@k =
1

|S|
∑

s∈S

1

|Hs|
∑

Hj∈Hs

1

rank(Hj,Rk)

EPC@k =
1

|S|
∑

s∈S

1

|Rk|
∑

Ri∈Rk

disc(i)p(rel|Ri, s)(1 − p(seen|Ri))
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into account). Finally, p(seen|Ri) defines the probability that a recommended job Ri 
was already seen in the system, i.e., p(seen|Ri) = log2(popRi

+ 1)∕log2(popMAX + 1).
Session-based novelty (EPD) In contrast to system-based novelty, session-based 

novelty incorporates the semantic content of jobs and represents how surprising 
or unexpected the recommendations are for a specific session history (Zhang et al. 
2012). Given a distance function d(Hi,Hj) that represents the dissimilarity between 
two jobs Hi and Hj , the session-based novelty is given as the average dissimilarity 
of all job pairs in the list of recommended jobs Rk and jobs in the current session 
history Hs (Zhou et al. 2010). In our experiments, we use the cosine similarity to 
measure the dissimilarity of two job postings using a raw job vector, which contains 
1 if a session interacted with it and 0 otherwise. Again, we use the definition by 
Vargas and Castells (2011) that takes the recommendation rank as well as the rel-
evance for the current session into account. Hence, we measure the session-based 
novelty novsession(Rk|s) for the recommendation list Rk of length k for session s by the 
expected profile distance (EPD) metric:

Here, Hs is the current history of a session s and disc(i) as well as p(rel|Ri, s) are 
defined as for the EPC metric for measuring the system-based novelty.

Coverage With coverage (Adomavicius and Kwon 2012; Ludewig and Jannach 
2018), we assess how many jobs a recommender approach can cover with its predic-
tions. As such, we additionally report the job coverage of each evaluated algorithm. 
We define the coverage as the ratio between the jobs that have been recommended 

EPD@k =
1

|S|
∑

s∈S

1

|Rk||Hs|
∑

Ri∈Rk

∑

Hj∈Hs

disc(i)p(rel|Ri, s)d(Ri,Hj)

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 5  The figures show the influence of the neighborhood size k for picking top-k similar sessions when 
comparing the three autoencoder variations on both interaction data and combined data. We find that the 
recommendation accuracy converges when k is picked to be around 60 or more
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and jobs that would be available for recommendation. Here, we make a distinction 
between coverage types and report the job coverage (1) on the full dataset, i.e., how 
many of all available jobs can we recommend, and (2) on the test dataset, i.e., how 
many of the jobs can we recommend that we expect to be interacted with during a 
session.

5  Results

In this section, we present our experimental results. We first compare the perfor-
mance of the respective models when used in a k-nearest neighbor manner and then 
analyze the embedding space of the best-performing autoencoder model. After that, 
we show the best hyperparameter configurations used for the baseline approaches 
and then discuss the performance of our approach compared to these baselines.

5.1  Comparing the recommendation performances of autoencoders

We compare the recommendation performance of all three variants of autoencoders, 
i.e., AE, DAE, VAE, trained on interactions as well as on content. This results in 
six autoencoder variants in total. We train all autoencoder models for a maximum 
of 50 epochs or until the error on the validation test set converges. We made addi-
tional experiments and incorporated the self-attention mechanism on the encoder 
layer (e.g., as in Lin et al. 2017; Parikh et al. 2016; Vaswani et al. 2017). We did not 
find any major improvements, so we do not report the results of these 6 additional 
autoencoder models.

Figure 5 shows the results of the autoencoder comparison in terms of nDCG@20. 
We compare the results across different values for the neighborhood size k, rang-
ing from 10 to 100. We find that VAEInt , which only uses interactions to encode the 
input vector, outperforms all other approaches on the Studo and RecSys17 datasets. 
When combining interaction data with content features (i.e., AEComb , DAEComb and 
VAEComb ), VAEComb performs the best on the Studo dataset and slightly worse than 
DAEComb on the RecSys17 dataset. For the CareerBuilder12 dataset, all approaches 
except the VAEInt approach have a similar performance. Such accuracy performance 
for VAEInt suggests that having a much larger item space can be problematic for 
the generative autoencoder variant. As the variational autoencoder outperforms the 
other approaches in the majority of the configurations, in the next step, we com-
pare it to the baseline methods. Furthermore, we find that for all autoencoders, accu-
racy converges after k = 60 . Thus, in Sect. 5.4, we report the results of VAEInt and 
VAEComb using top-60 similar sessions for recommendation.

5.2  Embedding analysis

To better understand the autoencoder models’ actual effectiveness, we employ the 
t-SNE algorithm (Maaten and Hinton 2008) to visualize the embedding spaces. 
The t-SNE method enables us to visualize high-dimensional data. It reduces the 
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dimensionality of the latent session representations and lets us explore embeddings 
in a 2D space. In t-SNE plots, similar items are modeled by neighboring points with 
high probability. In our case, we expect similar sessions to form clusters of neigh-
boring points in the 2D space.

Figures 6 and 7 show the variational autoencoder models as t-SNE plots for 
all three datasets, i.e., VAEInt trained on interactions and VAEComb trained on 
interactions combined with job content (see “Appendix B” for a more detailed 
embedding analysis). In the case of the smallest dataset Studo, when we train 
the autoencoder only on interactions, more clusters are produced with sessions 
of different sizes close to each other (e.g., Fig. 6a). If the variational autoencod-
ers are additionally trained on the job content, we can observe rainbow-colored 
shapes that are based on session length (e.g., as shown in Fig.  7a, b). In the 
larger CareerBuilder12 dataset, we end up with several sub-clusters that exhibit 

VAEInt

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 6  The plots show t-SNE embeddings for latent session representations produced with the VAE 
autoencoder models trained on all three datasets using only interaction data. The colors of the sessions 
reflect the session length, where the same red color is used for sessions with 20 or more interactions
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this rainbow pattern. In other words, when we encode the input with content fea-
tures, sessions of similar length tend to cluster. We attribute this to sessions of 
similar length having similar patterns of input vectors (e.g., many right-padded 
zeros for short sessions).

Next, we investigate the difference in recommendation accuracy between 
VAEInt and VAEComb in light of the clustering patterns. The results suggest that 
when sessions cluster by similar size in the 2D space, as in the case of VAEComb 
in the Studo and RecSys17 datasets and VAEInt in the CareerBuilder12 dataset, 
recommendation accuracy drops.

VAEComb

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 7  The plots show t-SNE embeddings for latent session representations produced with the VAE 
autoencoder models trained on all three datasets using interaction data combined with the job content. 
The colors of the sessions reflect the session length, where the same red color is used for sessions with 
20 or more interactions
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5.3  Hyperparameter optimization of the baseline approaches

We conducted a grid search on the hyperparameters for the baseline approaches 
using the validation set, i.e., two weeks of user interactions. As such, Table 3 reports 
on the best performing configurations for each approach and dataset in terms of rec-
ommendation accuracy (see “Appendix A” for more details).

BPR We performed a grid search that includes three different values for the reg-
ularization of session features �SESSION ∈ {0.0, 0.25, 0.5} and the regularization of 
item feature �ITEM ∈ {0.0, 0.25, 0.5}.

iKNN For the iKNN approach, we evaluated the values for regularization (i.e., to 
avoid coincidental high similarities of rarely visited items) � ∈ {20, 50, 80} and the 
normalization factor for the support between two items � ∈ {0.25, 0.5, 0.75}.

sKNN, S-sKNN and V-sKNN For all the sKNN variations that we utilize in this 
paper, we conducted a grid search for the parameter k (i.e., 100, 200, 500 or 1000), 

Table 3  Best performing hyperparameter settings for each evaluated baseline approach and dataset based 
on nDCG@20

Approach Parameter Studo RecSys17 CareerBuilder12

BPR �
SESSION

0.25 0 0
�
ITEM

0.25 0 0
iKNN � 80 50 20

� 0.75 0.75 0.75
sKNN k 100 500 1000

SAMPLING Recent Random Random
SIMILARITY Cosine Cosine Jaccard
POPULARITY BOOST No No Yes

S-sKNN k 100 500 1000
SAMPLING Recent Random Random
SIMILARITY Cosine Jaccard Cosine
POPULARITY BOOST No No Yes

V-sKNN k 100 100 100
SAMPLING Recent Random Random
SIMILARITY Cosine Cosine Cosine
POPULARITY BOOST No No No
WEIGHTING Quadratic Quadratic Logarithmic

GRU4Rec LOSS top1-max bpr-max-0.5 top1-max
LAYERS [100] [100] [1000]
DROPOUT 0.2 0.2 0.2
BATCH SIZE 32 32 32

pRNN ACTIVATION tanh tanh softmax
LAYERS [1000] [100] [1000]
� 0.001 0.01 0.001
BATCH SIZE 512 512 512
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Table 4  Prediction results ( k = 20 ) of remaining jobs that will be subject to interaction within a session. 
(Color table online)
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the sampling method of sessions (i.e., recent or random), the similarity function 
(i.e., cosine or Jaccard) and if popular items from neighboring sessions should be 
boosted. For V-sKNN, we also optimized the decay weighting function (i.e., divi-
sion, logarithmic or quadratic).

GRU4Rec In the case of GRU4Rec, we experimented with two different loss 
functions {top1-max, bpr-max-0.5} , four variations of the number of GRU layers and 
their sizes {[100], [100, 100], [1000], [1000, 1000]} , a dropout applied to the hidden 
layer of {0.0, 0.2, 0.5} and batch sizes of {32, 128, 512}.

pRNN For the pRNN approach, we explored two activation functions {softmax , 
tanh} for the output layer, two sizes for the GRU layers {[100], [1000]} , a learning 
rate � ∈ {0.01, 0.001} and batch sizes of {32, 128, 512} . With respect to the batch 
size, however, due to the computational complexity of pRNN and the size of Career-
Builder12, we were only able to tune this hyperparameter for Studo and RecSys17. 
As we received the best results for a batch size of 512 for both datasets, we also used 
a batch size of 512 in case of CareerBuilder12.

5.4  Comparison with baseline approaches

Table 4 shows the results of comparing VAEInt and VAEComb with all baseline meth-
ods when we evaluate against the remaining jobs in the session. We report recom-
mendation accuracy in terms of nDCG and MRR, as well as a system-based nov-
elty (EPC), session-based novelty (EPD) and coverage. In the case of the next job 
prediction problem, in Figs. 8 and 9, we show nDCG and EPC results for different 
values of k (i.e., number of recommended jobs).

Accuracy (nDCG & MRR) On all datasets, the sKNN-based approaches achieve 
high accuracy in terms of nDCG and MRR, as shown in Table 4. In terms of both 
nDCG and MRR, VAEInt performs second best in RecSys17, while it performs 
third best in Studo. For the Studo dataset, GRU4Rec has the highest accuracy for 
both metrics. In the RecSys17 dataset, BPR-MF performs best concerning nDCG, 
while POP performs best in terms of MRR. In CareerBuilder12, V-sKNN achieves 
the highest nDCG, while iKNN achieves the highest MRR. In this dataset, VAEInt 
achieves medium performance, which we attribute to the ample item space and spar-
sity of CareerBuilder12. The VAEComb method, however, results in a higher recom-
mendation accuracy, while training the model is much less expensive.

While the performance of sKNN-based approaches is rather stable, several base-
lines algorithms, namely POP, BPR-MF, iKNN, Bayes, GRU4Rec and pRNN, show 

Coverage is reported for the ratio of recommended jobs compared to all jobs available in the data set 
(left) and jobs expected in the test set (right)

Table 4  (continued)
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(a) Studo

(b) RecSys Challenge 2017

(c) CareerBuilder 2012

Fig. 8  nDCG results for different recommendation list sizes (i.e., values of k) when predicting the next 
job in the session. On all three datasets, both our proposed VAE approaches achieve competitive results 
concerning accuracy (i.e., nDCG) metrics
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(a) Studo

(b) RecSys Challenge 2017

(c) CareerBuilder 2012

Fig. 9  EPC results for different recommendation list sizes (i.e., values of k) when predicting the next job 
in the session. On all three datasets, both our proposed VAE approaches achieve good results concerning 
beyond-accuracy (i.e., EPC) metrics
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notable differences among the datasets. First, the Bayes approach establishes itself 
as a competitive baseline in the Studo dataset, whereas it results in a poor perfor-
mance for the two larger datasets (i.e., RecSys17 and CareerBuilder12). In fact, for 
the RecSys17 dataset, it results in the worst performance. Hence, when the domain 
has a small number of items, it can be reasonable to employ such a simple and com-
putationally inexpensive method.

Second, the accuracy of POP in the RecSys17 dataset is noteworthy.14 The rea-
son for this is that in the RecSys17 dataset, the most popular job from the train set 
was also the one with the highest number of interactions in the test set (i.e., around 
21.5% ). However, this approach will likely not result in high user satisfaction, just by 
predicting the same items repeatedly. Moreover, the BPR-MF performs best in terms 
of nDCG in the RecSys17 dataset, but it has the second worst performance in the 
other two datasets. Also, GRU4Rec performs worse for the RecSys17 dataset when 
compared to Studo and CareerBuilder12. We attribute this to bias toward popularity 
(Ludewig and Jannach 2018). The performance of GRU4Rec is low, while the per-
formance of BPR-MF is high in the RecSys17 dataset. The pRNN method performs 
low on all three datasets, but its recommendation accuracy is especially weak on 
the CareerBuilder12 dataset. Finally, the performance of the iKNN differs among 
all three datasets. While it has the highest MRR for the CareerBuilder12 dataset, the 
performance in the RecSys17 dataset is the second lowest for both accuracy metrics.

For the next job prediction problem shown in Fig.  8, in all three datasets, all 
approaches show a similar accuracy performance. The results confirm the presence 
of bias toward popular items in the RecSys17 dataset as the popularity approach 
outperforms the other algorithms until k = 3 , after which BPR-MF becomes the best 
performing approach. We also attribute the sudden increase in the nDCG values for 
BPR-MF and pRNN at the recommendation list of length 4 to this popularity bias 
in the dataset. A closer inspection revealed that both approaches often recommend 
highly popular items from the train set at the beginning of the recommendation list. 
The top-1 (i.e., most popular) item that is shared between the train and test set is 
also the one which gets recommended most frequently as the fourth item in the rec-
ommendation list of BPR-MF and pRNN. Besides that, for all values of k (i.e., the 
number of recommended jobs), the session-based KNN approaches and GRU4Rec 
achieve competitive accuracy values.

System-based novelty (EPC) As shown in Table 4, both VAE approaches achieve 
top results in terms of EPC for all three datasets. VAEInt performs best on the Rec-
Sys17 dataset, while VAEComb outperforms all approaches in the CareerBuilder12 
dataset. In the Studo dataset, VAEInt achieves second best to GRU4Rec. Especially 
in the RecSys17 dataset, the difference in novelty is considerably high when com-
pared to other baselines. For the baselines, the sKNN approaches and GRU4Rec both 
exhibit a good performance concerning the novelty of the recommended jobs. The 
pRNN method, as well as POP and BPR-MF, produces recommendations that have 
the lowest system-based novelty.

14 Quadrana et al. (2017) report that their popularity approach outperforms session-based RNN (Hidasi 
et al. 2015) in the XING dataset used in the ACM RecSys Challenge 2016.
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In Fig. 9, we see that both our proposed VAE approaches outperform all others in 
the CareerBuilder12 dataset after k = 9 . The sKNN baselines, as well as GRU4Rec, 
show a better novelty performance for a smaller number of recommended jobs.

Session-based novelty (EPD) As depicted in Table  4, both VAE approaches 
provide the best session-based novelty for the RecSys17 and CareerBuilder12 data-
sets and are competitive in the Studo dataset. The VAEComb method generates the 
most surprising recommendations in the largest dataset (i.e., CareerBuilder12) 
and GRU4Rec in the smallest dataset (i.e., Studo). In all cases, the sKNN-based 
approaches are a competitive baseline. We can observe the most notable difference 
between accuracy and EPD, however, in the CareerBuilder12 dataset, where the VAE 
approaches result in a rather average accuracy while performing very well concern-
ing session-based novelty. Overall, the results indicate that both VAE approaches are 
suitable for cases when we aim to generate novel session-based recommendations.

Coverage In Table 4, we report the percentage of jobs, which were recommended 
and are a part of (1) all jobs available in the dataset (i.e., the complete item catalog), 
and (2) the jobs that we know anonymous session users will interact within the test 
set (i.e., the expected item catalog).

In terms of the coverage of all possible job postings, VAEComb performs best in 
the Studo dataset. BPR-MF covers at the most the entire item catalog in the Rec-
Sys17 and CareerBuilder12 dataset. Concerning the coverage of items in the test 
set (i.e., expected items), the session-based KNN approaches achieve almost per-
fect coverage in the Studo dataset. Only in the case of the RecSys17 dataset, the 

Table 5  Summary of the rankings of the session-based algorithms evaluated in the job domain. (Color 
table online)

“++” indicates best, “+” good, “o” average, “-” low and “- -” the worst ranking with respect to (1) accu-
racy (i.e., nDCG and MRR), (2) beyond-accuracy (i.e., EPC and EPD) and (3) coverage
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BPR-MF baseline has an even higher coverage. As expected, the POP baseline 
results in the worst coverage. While this baseline has high accuracy values in the 
RecSys17 dataset (due to the popularity bias inherent in this dataset), it effectively 
covers only a small fraction of jobs in the system. It also has to be noted that the 
pRNN baseline always has the second-worst coverage. As the available item catalog 
grows, the coverage drops, which suggests that the trained model focuses on a spe-
cific (i.e., relatively small) set of items, which explains the worse performance in the 
largest dataset (i.e., CareerBuilder12).

5.5  Performance overview

To provide a better overview of the performance of the different session-based job 
recommendation approaches, we summarize all results in Table  5 with respect to 
three metric categories. That is, we report the performance on accuracy (i.e., nDCG 
and MRR), beyond accuracy (i.e., EPC and EPD) and coverage (of the whole dataset 
and the test set). For every approach, we assign a rank (i.e., from 1 to 11) for the par-
ticular metric in a dataset. We then aggregate these rankings across all three metric 
categories and datasets. The final rankings are then normalized and assigned into 
five performance buckets (i.e., from worst “- -” to best “++”; see “Appendix C” for 
the calculation steps).

Concerning accuracy, the best performance is achieved by V-sKNN, our VAEInt 
variant, S-sKNN and GRU4Rec. This is then followed by VAEComb and sKNN. 
All other baselines achieve worse accuracy. For the beyond accuracy metric cate-
gory, both of our VAE variants achieve the best performance. This is followed by 
GRU4Rec and the sKNN variants. A similar observation can be made for the metric 
category coverage. Here, however, BPR-MF also shows the best, iKNN good and the 
simple Bayes baseline medium coverage. Noteworthy is also the ranking score of the 
VAEComb , as with our proposed method it is possible to train the autoencoder models 
faster (i.e., even with a large item space) and without the need to frequently retrain 
the utilized model to consider new jobs coming to the system. The pRNN approach 
did not achieve a good rank in any metric category. The same is true for POP.

6  Conclusion and future work

In this work, we addressed the problem of providing job recommendations in an 
anonymous, online session setting. In three datasets, i.e., Studo, RecSys17 and 
CareerBuilder12, we evaluated the efficacy of using different autoencoder archi-
tectures to produce session-based job recommendations. Specifically, we utilized 
autoencoders to infer latent session representations, which are used in a k-nearest 
neighbor manner to recommend jobs within a session. We evaluated two types of 
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input for the autoencoders: (1) interactions with job postings within browsing ses-
sions and (2) a combination of interactions with job postings and content features 
extracted from these job postings.

We found that variational autoencoders trained on interaction and content data, 
and used in a k-nearest neighbor manner, led to very good results in terms of accu-
racy compared to other autoencoder variants. A visual analysis of the embedding 
spaces with t-SNE revealed that we could attribute a lower accuracy performance 
when similar-sized sessions form clusters in the 2D space. Although this was mostly 
the case for autoencoders trained on content features, in practice, however, such an 
approach has the advantage of fixed size vectors, which means retraining is needed 
less often. Consequently, depending on the application scenario, one can decide 
which input for the variational autoencoder to take, i.e., to balance frequent retrain-
ing and accuracy.

Furthermore, we evaluated all autoencoder and baseline approaches with respect 
to beyond-accuracy metrics, i.e., system-based and session-based novelty as well as 
coverage, in two settings: Firstly, we compared the recommendation performance of 
the approaches on all remaining interactions within a session, and secondly, we pre-
dicted the next job interaction in the session. We find that our proposed variational 
autoencoder methods can outperform state-of-the-art approaches for sessions-based 
recommender systems with respect to system-based and session-based novelty. 
Besides, the session-based KNN approaches are a competitive baseline for the vari-
ational autoencoder methods with respect to accuracy and coverage.

For future work, we aim to explore the use of generative variational autoencoder 
models to directly recommend jobs from the reconstructed session vector (e.g., in a 
similar way as in Liang et al. 2018). Other ideas for future work include investigat-
ing all approaches used in this study in an online evaluation. We plan to conduct 
an online study to ask users how satisfied and surprised they are with job recom-
mendations generated by autoencoders. Also, we plan to evaluate the accuracy in 
an A/B test to conclude whether a higher system-based and session-based novelty 
in a session-based offline setting leads to higher user satisfaction. Additionally, 
we also plan to directly optimize for the beyond-accuracy metrics by incorporat-
ing re-ranking techniques (e.g., maximum marginal relevance Carbonell and Gold-
stein 1998). These evaluations are planned to be carried out in the Talto  15 career 
platform. In summary, we hope that the approach presented in this paper will 
attract further research on the effectiveness of dimensionality reduction techniques 

15 Talto (https ://talto .com) is the successor of the jobs platform in Studo (http://www.studo ).
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for session-based job recommender systems and the effect of such methods on 
beyond-accuracy metrics such as system-based and session-based novelty as well as 
coverage.

Limitations Our work has several limitations. So far, we only focused on autoen-
coders to infer the latent representation of the anonymous user session. While 
autoencoders are a popular choice to reduce the dimensionality of data, other deep 
neural networks such as restricted Boltzmann machines (Nguyen et al. 2013), deep 
belief networks (Srivastava and Salakhutdinov 2012) or convolutional neural net-
works (Shen et al. 2014) could also serve well for this task. Furthermore, additional 
metadata information about jobs (e.g., textual content of job postings) could poten-
tially enhance recommendations, which we did not tackle due to the unavailabil-
ity of such data in all datasets. So far, we did not compare the approaches used in 
this study concerning computational performance, like the authors of (Ludewig and 
Jannach 2018) did. Moreover, in this work, we did not investigate how to model 
repeated interactions on the same job postings. Although this is implicitly consid-
ered by the autoencoder variants that combine interactions with job content features, 
such actions are not taken into account by the autoencoders that solely rely on inter-
action data. Also, in this work, we extracted the candidate sessions based on the 
last job interaction, which is a limitation of our work. For the evaluation procedure, 
we used a single time-based split for our experiments. One approach to assess the 
robustness of our results would be to apply a sliding window approach to generate 
splits with varying lengths. However, the size of the Studo and RecSys17 datasets 
is limited, which makes such an approach infeasible. For the larger CareerBuilder 
dataset, a sliding-window-based evaluation approach could be applied to test the 
robustness of the method. Due to computational constraints, for the present work, 
we used the same time-based split as for the Studo and the RecSys17 datasets. We 
leave the exploration of more splits to future work.

Another limitation is that one of the datasets we used for our study, the Studo 
dataset, is proprietary, and due to the terms of service of Moshbit, the owner of 
Studo, it cannot be made available for others at this point.
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Appendices

Fig. 10  Accuracy results for the different hyperparameters of the baseline approaches on the Studo data-
set

Fig. 11  Accuracy results for the different hyperparameters of the baseline approaches on the RecSys17 
dataset
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Hyperparameter optimization results

In this section, we report the distribution of the accuracy results achieved by opti-
mizing the hyperparameters for the baseline approaches in Sect. 5.3. For each base-
line approach, we pick those hyperparameters which showed the best performance 
with respect to nDCG@20. As such, Fig. 10 shows the differences between the eval-
uated baseline configurations on the Studo dataset. Respectively, Fig. 11 depicts the 
results for the RecSys17 and Fig. 12 for the CareerBuilder12 dataset.

Autoencoder embedding analysis

Figure  13 shows all autoencoder models as t-SNE plots for the Studo dataset, 
i.e., AEInt , DAEInt and VAEInt trained on interactions and AEComb , DAEComb and 
VAEComb trained on the combination of interactions and job content. The same is 
reported for RecSys17 in Fig. 14 and CareerBuilder12 in Fig. 15.

The results indicate that both denoising autoencoders and variational autoen-
coders tend to produce more session clusters than a classic autoencoder, which 
creates more of a linear pattern of neighboring sessions. In some cases, we can 
observe that both the classic and denoising autoencoder models produce shapes 
without clear structure and large dispersion (e.g., see Fig.  13d or  15b), which 
indicates that it is hard to find a clear neighborhood of similar sessions. For the 
smaller Studo dataset, if the autoencoders are solely trained on interactions, i.e., 
AEInt , DAEInt and VAEInt , more clusters are produced with sessions of different 

Fig. 12  Accuracy results for the different hyperparameters of the baseline approaches on the Career-
Builder12 dataset
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Studo

Int Int Int

Comb Comb

(a) AE (b)DAE (c) VAE

(d)AE (e) DAE (f) VAEComb

Fig. 13  t-SNE embeddings for latent session representations produced with the three autoencoder models 
trained on interaction and content data from the Studo dataset. Sessions are colored according to their 
length, where the same red color is used for sessions with 20 or more interactions

RecSys17

Int Int Int

Comb Comb

(a) AE (b) DAE (c) VAE

(d) AE (e) DAE (f) VAEComb

Fig. 14  t-SNE embeddings for latent session representations for the RecSys17 dataset
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sizes close to each other (e.g., Fig.  13b, c). Interestingly, if autoencoders are 
trained on content, we can observe rainbow-colored shapes that are based on ses-
sion length (e.g., as shown in Fig. 13e, f). In case of a larger dataset like Career-
Builder12, we end up with several sub-clusters that exhibit this rainbow pat-
tern. This shows that when we encode the input with content features, sessions 
of similar length tend to cluster. We attribute this to sessions of similar length 
having similar patterns of input vectors (e.g., many right-padded zeros for short 
sessions).

Aggregation of rankings

In Sect. 5.5, we report the aggregated performance of the different approaches. For 
this, in Table 6 we first rank the results from each dataset (i.e., based on Table 4). 
We then sum the rankings for each dataset (i.e., Studo, RecSys17 and Career-
Builder12) for the accuracy metrics (i.e., nDCG and MRR), the beyond-accuracy 
metrics (i.e., EPC and EPD) and both coverage, respectively. The aggregated rank-
ings are outlined in Table  7. The rankings are then normalized with the equation 

CareerBuilder12

Int Int Int

Comb Comb

(a) AE (b) DAE (c) VAE

(d) AE (e) DAE (f) VAEComb

Fig. 15  t-SNE embeddings for latent session representations for the Careerbuilder12 dataset
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Table 6  Ranking of the results per metric and dataset, which are derived from numerical results. (Color 
table online)

Coloring is according to the rank within each dataset



654 E. Lacic et al.

1 3

Norm(x) =
x−min+1

max−min+1
 , where min is the lowest aggregated rank and max is the high-

est aggregated rank. Thus, lower results are considered better, while the worst results 
receive the value 1. The results are then put into five buckets according to their val-
ues. A double plus (i.e., ++ ) is assigned to values between 0.0 and 0.2, while values 
between 0.2 and 0.4 get assigned a single plus (i.e., + ), followed by o (i.e., 0.4 until 
0.6), − (i.e., 0.6 until 0.8) and for the worst results a −− (i.e., 0.8 until 1). 
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Abstract. In this paper, we explore the reproducibility of MetaMF, a
meta matrix factorization framework introduced by Lin et al. MetaMF
employs meta learning for federated rating prediction to preserve users’
privacy. We reproduce the experiments of Lin et al. on five datasets,
i.e., Douban, Hetrec-MovieLens, MovieLens 1M, Ciao, and Jester. Also,
we study the impact of meta learning on the accuracy of MetaMF’s
recommendations. Furthermore, in our work, we acknowledge that users
may have different tolerances for revealing information about themselves.
Hence, in a second strand of experiments, we investigate the robustness
of MetaMF against strict privacy constraints. Our study illustrates that
we can reproduce most of Lin et al.’s results. Plus, we provide strong
evidence that meta learning is essential for MetaMF’s robustness against
strict privacy constraints.

Keywords: Recommender systems · Privacy · Meta learning ·
Federated learning · Reproducibility · Matrix factorization

1 Introduction

State-of-the-art recommender systems learn a user model from user and item
data and the user’s interactions with items to generate personalized recommen-
dations. In that process, however, users’ personal information may be exposed,
resulting in severe privacy threats. As a remedy, recent research makes use of
techniques like federated learning [2,4,6] or meta learning [7,20] to ensure pri-
vacy in recommender systems. In the federated learning paradigm, no data ever
leaves a user’s device, and as such, the leakage of their data by other parties is
prohibited. With meta learning, a model gains the ability to form its hypothesis
based on a minimal amount of data.

Similar to recent work [5,15], MetaMF by Lin et al. [16] combines federated
learning with meta learning to provide personalization and privacy. Besides,
MetaMF exploits collaborative information among users and distributes a private
rating prediction model to each user. Due to MetaMF’s recency and its clear
focus on increasing privacy for users via a novel framework, we are interested

c© Springer Nature Switzerland AG 2021
D. Hiemstra et al. (Eds.): ECIR 2021, LNCS 12657, pp. 107–119, 2021.
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in the reproducibility of Lin et al.’s research. Additionally, we aim to contribute
our own branch of research regarding privacy, i.e., MetaMF’s robustness against
strict privacy constraints. This is motivated by a statement of Lin et al. about one
critical limitation of MetaMF, i.e., its sensitivity to data scarcity that could arise
when users employ strict privacy constraints by withholding a certain amount of
their data. In this regard, every user has a certain privacy budget, i.e., a budget
of private data she is willing to share. Thus, in our paper at hand, the privacy
budget is considered a measure of how much data disclosure a user tolerates
and is defined as the fraction of rating data she is willing to share with others.
Thereby, employing small privacy budgets and thus, withholding data, serves as
a realization of strict privacy constraints.

Our work addresses MetaMF’s limitation against data scarcity and is struc-
tured in two parts. First, we conduct a study with the aim to reproduce the
results given in the original work by Lin et al. Concretely, we investigate two lead-
ing research questions, i.e., RQ1a: How does MetaMF perform on a broad body
of datasets? and RQ1b: What evidence does MetaMF provide for personaliza-
tion and collaboration? Second, we present a privacy-focused study, in which we
evaluate the impact of MetaMF’s meta learning component and test MetaMF’s
performance on users with different amounts of rating data. Here, we investigate
two more research questions, i.e., RQ2a: What is the role of meta learning in the
robustness of MetaMF against decreasing privacy budgets? and RQ2b: How do
limited privacy budgets affect users with different amounts of rating data? We
address RQ1a and RQ1b in Sect. 3 by testing MetaMF’s predictive capabilities
on five different datasets, i.e., Douban, Hetrec-MovieLens, MovieLens 1M, Ciao,
and Jester. Here, we find that most results provided by Lin et al. can be repro-
duced. In Sect. 4, we elaborate on RQ2a and RQ2b by examining MetaMF in
the setting of decreasing privacy budgets. Here, we provide strong evidence of
the important role of meta learning in MetaMF’s robustness. Besides, we find
that users with large amounts of rating data are substantially disadvantaged by
decreasing privacy budgets compared to users with few rating data.

2 Methodology

In this section, we illustrate our methodology of addressing RQ1a and RQ1b,
i.e., the reproducibility of Lin et al. [16], and RQ2a and RQ2b, i.e., MetaMF’s
robustness against decreasing privacy budgets.

2.1 Approach

MetaMF. Lin et al. recently introduced a novel matrix factorization framework
in a federated environment leveraging meta learning. Their framework comprises
three steps. First, collaborative information among users is collected and sub-
sequently, utilized to construct a user’s collaborative vector. This collaborative
vector serves as basis of the second step. Here, in detail, the parameters of
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a private rating prediction model are learned via meta learning. Plus, in par-
allel, personalized item embeddings, representing a user’s personal “opinion”
about the items, are computed. Finally, in the third step, the rating of an item
is predicted utilizing the previously learned rating prediction model and item
embeddings. We resort to MetaMF to address RQ1a, RQ1b, and RQ2b, i.e., the
reproducibility of results presented by Lin et al. and the influence of decreasing
privacy budgets on users with different amounts of rating data.

NoMetaMF. In our privacy-focused study, RQ2a addresses the role of meta
learning in MetaMF’s robustness against decreasing privacy budgets. Thus, we
conduct experiments with and without MetaMF’s meta learning component. For
the latter kind of experiments, we introduce NoMetaMF, a variant of MetaMF
with no meta learning. In MetaMF, a private rating prediction model is gen-
erated for each user by leveraging meta learning. The authors utilize a hyper-
network [11], i.e., a neural network, coined meta network, that generates the
parameters of another neural network. Based on the user’s collaborative vector
cu, the meta network generates the parameters of the rating prediction model,
i.e., weights Wu

l and biases bu
l for layer l and user u. This is given by

h = ReLU(W∗
hcu + b∗

h) (1)

Wu
l = U∗

W u
l
h + b∗

W u
l

(2)

bu
l = U∗

bu
l
h + b∗

bu
l

(3)

where h is the hidden state with the widely-used ReLU(x) = max(0, x) [8,12]
activation function, W∗

h, U∗
W u

l
, U∗

bu
l

are the weights and b∗
h, b∗

W u
l
, b∗

bu
l

are the
biases of the meta network. NoMetaMF excludes meta learning by disabling
backpropagation through the meta network in Eqs. 1–3. Thus, meta parameters
W∗

h, U∗
W u

l
, U∗

bu
l
, b∗

h, b∗
W u

l
, b∗

bu
l

will not be learned in NoMetaMF. While back-
propagation is disabled in the meta network, parameters Wu

l and bu
l are learned

over those non-meta parameters in NoMetaMF to obtain the collaborative vec-
tor. Hence, the parameters of the rating prediction models are still learned for
each user individually, but without meta learning.

Lin et al. also introduce a variant of MetaMF, called MetaMF-SM, which
should not be confused with NoMetaMF. In contrast to MetaMF, MetaMF-SM
does not generate a private rating prediction model for each user individually, but
instead utilizes a shared rating prediction model for all users. Our NoMetaMF
model generates an individual rating prediction model for each user but operates
without meta learning. Furthermore, we note that in our implementation of
NoMetaMF, the item embeddings are generated in the same way as in MetaMF.
With NoMetaMF, we aim to investigate the impact of meta learning on the
robustness of MetaMF against decreasing privacy budgets, i.e., RQ2a.

2.2 Datasets

In line with Lin et al., we conduct experiments on four datasets: Douban [14],
Hetrec-MovieLens [3], MovieLens 1M [13], and Ciao [10]. We observe that none
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of these datasets comprises a high average number of ratings per item, i.e., 22.6
(Douban), 85.6 (Hetrec-MovieLens), 269.8 (MovieLens 1M), and 2.7 (Ciao). To
increase the diversity of our datasets, we include a fifth dataset to our study, i.e.,
Jester [9] with an average number of ratings per item of 41,363.6. Furthermore,
Lin et al. claimed that several observations about Ciao may be explained by its
low average number of ratings per user, i.e., 38.3. Since Jester exhibits a similarly
low average number of ratings per user, i.e., 56.3, we utilize Jester to verify Lin et
al.’s claims. To fit the rating scale of the other datasets, we scale Jester’s ratings
to a range of [1, 5]. Descriptive statistics of our five datasets are outlined in
detail in the following lines. Douban comprises 2,509 users with 893,575 ratings
for 39,576 items. Hetrec-MovieLens includes 10,109 items and 855,598 ratings of
2,113 users. The popular MovieLens 1M dataset includes 6,040 users, 3,706 items
and 1,000,209 ratings. Ciao represents 105,096 items, with 282,619 ratings from
7,373 users. Finally, our additional Jester dataset comprises 4,136,360 ratings
for 100 items from 73,421 users.

We follow the evaluation protocol of Lin et al. and thus, perform no cross-
validation. Therefore, each dataset is randomly separated into 80% training set
Rtrain, 10% validation set Rval and 10% test set Rtest. However, we highlight
that in the case of Douban, Hetrec-MovieLens, MovieLens 1M, and Ciao, we
utilize the training, validation and test set provided by Lin et al.

Identification of User Groups. In RQ2b, we study how decreasing privacy
budgets influence the recommendation accuracy of user groups with different
user behavior. That is motivated by recent research [1,19], which illustrates dif-
ferences in recommendation quality for user groups with different characteristics.
As an example, [19] measures a user group’s mainstreaminess, i.e., how the user
groups’ most listened artists match the most listened artists of the entire pop-
ulation. The authors split the population into three groups of users with low,
medium, and high mainstreaminess, respectively. Their results suggest that low
mainstream users receive far worse recommendations than mainstream users.

In a similar vein, we also split users into three user groups: Low, Med, and
High, referring to users with a low, medium, and a high number of ratings,
respectively. To precisely study the effects of decreasing privacy budgets on each
user group, we generate them such that the variance of the number of ratings
is low, but yet, include a sufficiently large number of users. For this matter,
each of our three user groups includes 5% of all users. In detail, we utilize the
5% of users with the least ratings (i.e., Low), the 5% of users with the most
ratings (i.e., High) and the 5% of users, whose number of ratings are the closest
to the median (i.e., Med). Thus, each user group consists of 125 (Douban), 106
(Hetrec-MovieLens), 302 (MovieLens 1M), 369 (Ciao), and 3,671 (Jester) users.

2.3 Recommendation Evaluation

In concordance to the methodology of Lin et al., we minimize the mean squared
error (MSE) between the predicted r̂ ∈ R̂ and the real ratings r ∈ R as the
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objective function for training the model. Additionally, we report the MSE and
the mean absolute error (MAE) on the test set Rtest to estimate our models’
predictive capabilities. Since we dedicate parts of this work to shed light on
MetaMF’s and NoMetaMF’s performance in settings with different degrees of
privacy, we illustrate how we simulate decreasing privacy budgets and how we
evaluate a model’s robustness against these privacy constraints.

Simulating Different Privacy Budgets. To simulate the reluctance of users
to share their data, we propose a simple sampling procedure in Algorithm 1.
Let β be the privacy budget, i.e., the fraction of data to be shared. First, a user
u randomly selects a fraction of β of her ratings without replacement. Second,
the random selection of ratings Rβ

u is then shared by adding it to the set Rβ .
That ensures that (i) each user has the same privacy budget β and (ii) each user
shares at least one rating to receive recommendations. The set of shared ratings
Rβ without held back ratings then serves as a training set for our models.

Algorithm 1: Sampling procedure for simulating privacy budget β.

Input: Ratings R, Users U and privacy budget β.
Result: Shared ratings Rβ , with a fraction of β of each user’s ratings.
Rβ = {}
for u ∈ U do

Rβ
u = {R′

u ⊆ Ru : |R′
u|/|Ru| = β}

Rβ = Rβ ∪ Rβ
u

end

Measuring Robustness. Our privacy-focused study is concerned with dis-
cussing MetaMF’s robustness against decreasing privacy budgets. We quantify a
model’s robustness by how the model’s predictive capabilities change by decreas-
ing privacy budgets. In detail, we introduce a novel accuracy measurement called
ΔMAE@β, which is a simple variant of the mean absolute error.

Definition 1 (ΔMAE@β). The relative mean absolute error ΔMAE@β mea-
sures the predictive capabilities of a model M under a privacy budget β relative
to the predictive capabilities of M without any privacy constraints.

MAE@β =
1

|Rtest|
∑

ru,i∈Rtest

|(ru,i − M(Rβ
train, θ)u,i)| (4)

ΔMAE@β =
MAE@β

MAE@1.0
(5)

where M(Rβ
train, θ)u,i is the estimated rating for user u on item i for M with

parameters θ being trained on the dataset Rβ
train and | · | is the absolute function.

Please note that the same Rtest is utilized for different values of β.
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Table 1. MetaMF’s error measurements (reproduced/original) for our five datasets
alongside the MAE (mean absolute error) and the MSE (mean squared error) reported
in the original paper. The non-reproducibility of the MSE on the Ciao dataset can be
explained by the particularities of the MSE and the Ciao dataset. All other measure-
ments can be reproduced (RQ1a).

Dataset MAE MSE

Douban 0.588/0.584 0.554/0.549

Hetrec-MovieLens 0.577/0.571 0.587/0.578

MovieLens 1M 0.687/0.687 0.765/0.760

Ciao 0.774/0.774 1.125/1.043

Jester 0.856/- 1.105/-

Furthermore, it is noteworthy that the magnitude of ΔMAE@β measure-
ments does not depend on the underlying dataset, as it is a relative measure.
Thus, one can compare a model’s ΔMAE@β measurements among different
datasets.

2.4 Source Code and Materials

For the reproducibility study, we utilize and extend the original implemen-
tation of MetaMF, which is provided by the authors alongside the Douban,
Hetrec-MovieLens, MovieLens 1M, and Ciao dataset samples via BitBucket1.
Furthermore, we publish the entire Python-based implementation of our work
on GitHub2 and our three user groups for all five datasets on Zenodo3 [18].

We want to highlight that we are not interested in outperforming any state-
of-the-art approaches on our five datasets. Thus, we refrain from conducting
any hyperparameter tuning or parameter search and utilize precisely the same
parameters, hyperparameters, and optimization algorithms as Lin et al. [16].

3 Reproducibility Study

In this section, we address RQ1a and RQ1b. As such, we repeat experiments by
Lin et al. [16] to verify the reproducibility of their results. Therefore, we evaluate
MetaMF on the four datasets Douban, Hetrec-MovieLens, MovieLens 1M, and
Ciao. Additionally, we measure its accuracy on the Jester dataset. Please note
that we strictly follow the evaluation procedure as in the work to be reproduced.

We provide MAE (mean absolute error) and MSE (mean squared error) mea-
surements on our five datasets in Table 1. It can be observed that we can repro-
duce the results by Lin et al. up to a margin of error smaller than 2%. Only in

1 https://bitbucket.org/HeavenDog/metamf/src/master/, Last accessed Oct. 2020.
2 https://github.com/pmuellner/RobustnessOfMetaMF.
3 https://doi.org/10.5281/zenodo.4031011.
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the case of the MSE on the Ciao dataset, we obtain different results. Due to the
selection of random batches during training, our model slightly deviates from
the one utilized by Lin et al. Thereby, also, the predictions are likely to differ
marginally. As described in [21], the MSE is much more sensitive to the variance
of the observations than the MAE. Thus, we argue that the non-reproducibility
of the MSE on the Ciao dataset can be explained by the sensitivity of the MSE on
the variance of the observations in each batch. In detail, we observed in Sect. 2.2
that Ciao comprises very few ratings but lots of items. Thus, the predicted rat-
ings are sensitive to the random selection of training data within each batch.
However, it is noteworthy that we can reproduce the more stable MAE on the
Ciao dataset. Hence, we conclude that our results provide strong evidence of
the originally reported measurements being reproducible, enabling us to answer
RQ1a in the affirmative.

Next, we study the rating prediction models’ weights and the learned item
embeddings. Again, we follow the procedure of Lin et al. and utilize the popular
t-SNE (t-distributed stochastic neighborhood embedding) [17] method to reduce
the dimensionality of the weights and the item embeddings to two dimensions.
Since Lin et al. did not report any parameter values for t-SNE, we rely on the
default parameters, i.e., we set the perplexity to 30 [17]. After the dimensionality
reduction, we standardize all observations x ∈ X by x−μ

σ , where μ is the mean
and σ is the standard deviation of X. The rating prediction model of each user
is defined as a two-layer neural network. However, we observe that Lin et al.
did not describe what layer’s weights they visualize. Correspondences with the
leading author of Lin et al. clarified that in their work, they only describe the
weights of the first layer of the rating prediction models. The visualizations of
the first layer’s weights of the rating prediction models on our five datasets are
given in Fig. 1.

In line with Lin et al., we discuss the weights and the item embeddings with
respect to personalization and collaboration. As the authors suggest, personal-
ization leads to distinct weight embeddings and collaboration leads to clusters
within the embedding space. First, we observe that MetaMF tends to generate
different weight embeddings for each user. Second, the visualizations exhibits
well-defined clusters, which indicates that MetaMF can exploit collaborative
information among users. However, our visualizations of the weights deviate
slightly from the ones reported by Lin et al. Similar to the reproduction of the
accuracy measurements in Table 1, we attribute this to the inability to derive
the exact same model as Lin et al. Besides, t-SNE comprises random compo-
nents and thus, generates slightly varying visualizations. However, the weights
for the Ciao dataset in Fig. 1d illustrate behavior that contradicts Lin et al.’s
observations. In the case of the Ciao dataset, they did not observe any form of
clustering and attributed this behavior to the small number of ratings per user
in the Ciao dataset. To test their claim, we also illustrate the Jester dataset
with a similarly low number of ratings per user. In contrast, our visualizations
indeed show well-defined clusters and different embeddings. We note that Jester
exhibits many more clusters than the other datasets due to the much larger
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(a) Douban (b) Hetrec-MovieLens (c) MovieLens 1M

(d) Ciao (e) Jester

Fig. 1. MetaMF’s weights embeddings of the first layer of the rating prediction models.
One observation corresponds to an individual user (RQ1b).

number of users. Overall, we find that both, Ciao and Jester, do not support the
claim made by Lin et al. However, we see the possibility that this observation
may be caused by randomness during training.

Due to space limitations, we refrain from visualizing the item embeddings.
It is worth noticing that our observations on the weights also hold for the item
embeddings. In detail, our visualizations exhibit indications of collaboration and
personalization for all datasets. Overall, we find the visualizations of the weights
and the item embeddings presented by Lin et al. to be reproducible for the
Douban, Hetrec-MovieLens, and MovieLens 1M datasets and thus, we can also
positively answer RQ1b.

4 Privacy-Focused Study

In the following, we present experiments that go beyond reproducing Lin et al.’s
work [16]. Concretely, we explore the robustness of MetaMF against decreasing
privacy budgets and discuss RQ2a and RQ2b. More detailed, we shed light on
the effect of decreasing privacy budgets on MetaMF in two settings: (i) the role
of MetaMF’s meta learning component and (ii) MetaMF’s ability to serve users
with different amounts of rating data equally well.

First, we compare MetaMF to NoMetaMF in the setting of decreasing privacy
budgets. Therefore, we utilize our sampling procedure in Algorithm 1 to generate
datasets with different privacy budgets. In detail, we construct 10 training sets,
i.e., {Rβ

train : β ∈ {1.0, 0.9, . . . , 0.2, 0.1}}, on which MetaMF and NoMetaMF
are trained on. Then, we evaluate both models on the test set Rtest. It is worth
noticing that Rtest is the same for all values of β to enable a valid compari-
son. Our results in Fig. 2a illustrate that for all datasets, MetaMF preserves its
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(a) MetaMF (b) NoMetaMF

Fig. 2. ΔMAE@β measurements on (a) MetaMF and (b) NoMetaMF, in which meta
learning is disabled. Especially for small privacy budgets, MetaMF yields a much more
stable accuracy than NoMetaMF (RQ2a).

predictive capabilities well, even with decreasing privacy budgets. However, a
privacy budget of ≈ 50% seems to be a critical threshold. The ΔMAE@β only
marginally increases for β > 0.5, but rapidly grows for β ≤ 0.5 in the case of
the Douban, Hetrec-MovieLens, and MovieLens 1M dataset. In other words, a
user could afford to withhold ≤ 50% of her data and still get well-suited recom-
mendations. Additionally, the ΔMAE@β remains stable for the Ciao and Jester
dataset. Similar observations can be made about the results of NoMetaMF in
Fig. 2b. Again, the predictive capabilities remain stable for β > 0.5 in the case of
Douban, Hetrec-MovieLens, and MovieLens 1M, but decrease tremendously for
higher levels of privacy. Our side-by-side comparison of MetaMF and NoMetaMF
in Fig. 2 suggests that both methods exhibit robust behavior for large privacy
budgets (i.e., β > 0.5), but exhibit an increasing MAE for less data available
(i.e., β ≤ 0.5). However, we would like to highlight that the increase of the MAE
is much worse for NoMetaMF than for MetaMF. Here, the ΔMAE@β indicates
that the MAE for NoMetaMF increases much faster than the MAE for MetaMF
for decreasing privacy budgets. This observation pinpoints the importance of
meta learning and personalization in settings with a limited amount of data per
user, i.e., a high privacy level. Thus, concerning RQ2a, we conclude that MetaMF
is indeed more robust against decreasing privacy budgets than NoMetaMF, but
yet, requires a sufficient amount of data per user.

Next, we compare MetaMF to NoMetaMF with respect to their ability for
personalization and collaboration in the setting of decreasing privacy budgets.
As explained in Sect. 3, we refer to Lin et al., which suggest that personalization
leads to distinct weight embeddings and collaboration leads to clusters within the
embedding space. In Fig. 3, we illustrate the weights of the first layer of the rat-
ing prediction models of MetaMF and NoMetaMF for the MovieLens 1M dataset
for different privacy budgets (i.e., β ∈ {1.0, 0.5, 0.1}). Again, we applied t-SNE
to reduce the dimensionality to two dimensions, followed by standardization to
ease the visualization. In the case of MetaMF, we observe that it preserves the
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(a) β = 1.0 (b) β = 0.5 (c) β = 0.1

(d) β = 1.0 (e) β = 0.5 (f) β = 0.1

Fig. 3. Weights of the first layer of the rating prediction models for the MovieLens 1M
dataset. (a), (b), (c) depict MetaMF, whereas (d), (e), (f) depict NoMetaMF, in which
meta learning is disabled. No well-defined clusters are visible for NoMetaMF, which
indicates the inability to exploit collaborative information among users (RQ2a).

ability to generate different weights for each user for decreasing privacy budgets.
Similarly, well-defined clusters can be seen, which indicates that MetaMF also
preserves the ability to capture collaborative information among users. In con-
trast, our visualizations for NoMetaMF do not show well-defined clusters. This
indicates that NoMetaMF loses the ability to exploit collaborative information
among users. Due to limited space, we refrain from presenting the weights of the
first layer of the rating prediction models for the other datasets. However, we
observe that MetaMF outperforms NoMetaMF in preserving the collaboration
ability for decreasing privacy budgets on the remaining four datasets, which is
also in line with our previous results regarding RQ2a.

In the following, we elaborate on how the high degree of personalization in
MetaMF impacts the recommendations of groups of users with different amounts
of rating data. In a preliminary experiment, we measure the MAE on our three
user groups Low, Med, and High on our five datasets in Table 2. Except for the
Ciao dataset, our results provide evidence that Low is served with significantly
worse recommendations than High. In other words, users with lots of ratings are
advantaged over users with only a few ratings.

To detail the impact of decreasing privacy budgets on these user groups,
we monitor the ΔMAE@β on Low, Med, and High. The results for our five
datasets are presented in Fig. 4. Surprisingly, Low seems to be much more robust
against small privacy budgets than High. Here, we refer to our observations about
MetaMF’s performance on the Ciao and Jester dataset in Fig. 2a. In contrast
to the other datasets, Ciao and Jester comprise only a small average number of
ratings per user, i.e., 38 (Ciao) and 56 (Jester), which means that they share
a common property with our Low user group. Thus, we suspect a relationship
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Table 2. MetaMF’s MAE (mean absolute error) measurements for our three user
groups on the five datasets. Here, we simulated a privacy budget of β = 1.0. According
to a one-tailed t-Test, Low is significantly disadvantaged over High, indicated by *, i.e.,
α = 0.05 and ****, i.e., α = 0.0001 (RQ2b).

Dataset Low Med High

Douban* 0.638 0.582 0.571

Hetrec-MovieLens**** 0.790 0.603 0.581

MovieLens 1M**** 0.770 0.706 0.673

Ciao 0.773 0.771 0.766

Jester**** 1.135 0.855 0.811

between the robustness against decreasing privacy budgets and the amount of
rating data per user. The most prominent examples of Low being more robust
than High can be found in Figs. 4a, 4b and 4c. Here, the accuracy of MetaMF
on High substantially decreases for small privacy budgets. On the one hand,
MetaMF provides strongly personalized recommendations for users with lots of
ratings, which results in a high accuracy for these users (i.e., High). On the
other hand, this personalization leads to a serious reliance on the data, which
has a negative impact on the performance in settings with small privacy budgets.
Thus, concerning RQ2b, we conclude that users with lots of ratings receive better
recommendations than other users if they can take advantage of their abundance

(a) Douban (b) Hetrec-MovieLens (c) MovieLens 1M

(d) Ciao (e) Jester

Fig. 4. MetaMF’s ΔMAE@β measurements for the (a) Douban, (b) Hetrec-MovieLens,
(c) MovieLens 1M, (d) Ciao, and (e) Jester dataset for all three usergroups. Especially
(a), (b), and (c) illustrate that High is sensitive to small privacy budgets. In contrast,
Low can afford a high degree of privacy, since the accuracy of its recommendations
only marginally decreases (RQ2b).
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of data. In settings where a high level of privacy is required, i.e., a low privacy
budget, and thus, users decide to hold back the majority of their data, users are
advantaged who do not require as much personalization from the recommender
system.

5 Conclusions and Future Work

In our study at hand, we conducted two lines of research. First, we reproduced
results presented by Lin et al. in [16]. Besides, we introduced a fifth dataset,
i.e., Jester, which, in contrast to the originally utilized datasets, has plenty
of rating data per item. We found that all accuracy measurements are indeed
reproducible (RQ1a). However, our reproduction of the t-SNE visualizations of
the embeddings illustrated potential discrepancies between our and Lin et al.’s
work (RQ1b). Second, we conducted privacy-focused studies. Here, we thor-
oughly investigated the meta learning component of MetaMF. We found that
meta learning takes an important role in preserving the accuracy of the recom-
mendations for decreasing privacy budgets (RQ2a). Furthermore, we evaluated
MetaMF’s performance with respect to decreasing privacy budgets on three user
groups that differ in their amounts of rating data. Surprisingly, the accuracy of
the recommendations for users with lots of ratings seems far more sensitive to
small privacy budgets than for users with a limited amount of data (RQ2b).

Future Work. In our future work, we will research how to cope with incomplete
user profiles in our datasets, as users may already have limited the amount
of their rating data to satisfy their privacy constraints. Furthermore, we will
develop methods that identify the ratings a user should share based on the
characteristics of the data.
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1 INTRODUCTION
Recommender systems often rely on neighborhood-based collaborative filtering [30] to generate
recommendations. These systems can intuitively justify their recommendations to the target user
and also efficiently incorporate new rating data from users, which are two key issues of modern rec-
ommender systems [16]. For example, user-based KNN, i.e., UserKNN, is a variant of neighborhood-
based collaborative filtering that utilizes the rating data of the k nearest neighbors of a target user
to process a rating query. A rating query is a request to a recommender system to predict a rat-
ing for a target user to a target item. However, the way in which rating queries are processed by
UserKNN can increase the privacy risk of users since the estimated rating scores, which determine
whether an item will be recommended, are generated based on rating data of users that are used
as neighbors. In this regard, existing research [9, 49, 64] finds that these neighbors are susceptible
to multiple privacy risks, such as the inference of their private rating data (see Section 3). To mit-
igate that privacy risk, several works [10, 24, 65] use differential privacy (DP) [18, 20] to protect
users’ rating data by adding a degree of randomness to the data. However, the added randomness
typically leads to severe drops in recommendation accuracy [7].

To address this problem, we introduce ReuseKNN, a novel differentially private KNN-based rec-
ommender system that reduces the number of neighbors to which differential privacy needs to be
applied. Intuitively, instead of utilizing new users as neighbors for processing new rating queries,
ReuseKNN reuses useful neighbors from past rating queries. Hence, ReuseKNN constructs small
but highly reusable neighborhoods for every target user by fostering the neighbors’ reusability for
many rating queries. With this, as illustrated in Figure 1, ReuseKNN minimizes the set of users that
need to be protected with DP—we call them “vulnerable users”. Plus, most users do not need to
be protected with DP, as their rating data is only rarely used in the recommendation process—we
call them “secure users”. As shown, we also introduce a data usage threshold τ , i.e., a hyperparam-
eter that allows adjusting the maximum data usage for a user to be treated as secure. In this way,
we leave it to the recommender system provider to specify what degree of data usage is tolerated
despite the resulting privacy risks and which users need to be protected.

We evaluate the proposed approach in a two-stage procedure: (i) neighborhood reuse only, i.e.,
ReuseKNN, and (ii) neighborhood reuse with DP, i.e., ReuseKNN DP . In the first stage, ReuseKNN
does not use DP at all. With this, we focus on how neighborhood reuse can increase the reusability
of neighbors and preserve UserKNN ’s recommendation accuracy. In the second stage, we combine
ReuseKNN with DP, i.e., ReuseKNN DP , to protect vulnerable users with DP. This allows the in-
vestigation of how ReuseKNN DP can mitigate all users’ privacy risk while generating accurate
recommendations. We evaluate ReuseKNN and ReuseKNN DP on five different datasets: MovieLens
1M, Douban, LastFM, Ciao, and Goodreads. Plus, we compare ReuseKNN and ReuseKNN DP with five
KNN-based baselines that utilize DP (e.g., [65]) and the concept of neighborhood reuse in different
ways with respect to recommendation accuracy and users’ privacy risk. Additionally, the nature of
neighborhood reuse may raise concerns that the generated recommendations are biased towards
items consumed by many users, i.e., popular items. Thus, we investigate whether the proposed
approach is more or less prone to item popularity bias than the baselines.

Our results indicate that ReuseKNN yields significantly smaller neighborhoods than traditional
UserKNN. Despite the smaller neighborhoods, ReuseKNN and ReuseKNN DP outperform our base-
lines in terms of recommendation accuracy. Moreover, ReuseKNN DP leads to significantly less
privacy risk for users than UserKNN with DP. Also, the proposed approach does not increase item
popularity bias. Overall, the three main contributions of this article are as follows:

(1) We present a novel ReuseKNN recommender system and compare two neighborhood
reuse strategies to substantially foster the reusability of a target user’s neighborhood and
effectively reduce the number of vulnerable users.
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Fig. 1. Schematic illustration of the data usage (i.e., how often a user is used as a neighbor) distribution of
traditional UserKNN and the proposed ReuseKNN recommender system. ReuseKNN increases the number
of secure users (green, no differential privacy needed) and decreases the number of vulnerable users (red,
differential privacy needs to be applied) compared with UserKNN. The dashed line illustrates the data usage
threshold τ , a hyperparameter for adjusting the maximum data usage for a user to be treated as secure.

(2) We combine ReuseKNN with DP to realize ReuseKNN DP and show that ReuseKNN DP
improves recommendation accuracy over KNN- and DP-based baselines and, at the same
time, does not increase item popularity bias.

(3) We show that ReuseKNN DP leads to significantly less privacy risk, since most users
are rarely exploited in the recommendation process and only the remaining users, i.e.,
vulnerable users, are protected with DP.

Our work illustrates how to address privacy risks in KNN-based recommender systems through
neighborhood reuse combined with DP. While the proposed approach focuses on traditional KNN,
we additionally demonstrate the generalizability of the neighborhood reuse principle to user and
item embeddings created by state-of-the-art neural collaborative filtering approaches [29].

2 RELATED WORK
We describe two research strands related to our work: (i) studies on the identification and quantifi-
cation of users’ privacy risks in recommender systems and (ii) privacy-aware recommender sys-
tems that mitigate users’ privacy risks. Since ReuseKNN is a differentially private and KNN-based
recommender system, we emphasize KNN-based methods when reviewing privacy risks in recom-
mender systems as well as DP when reviewing privacy-preserving technologies for recommender
systems. Also, we focus on the privacy risks that arise from the recommendations presented to
potentially malicious target users. This can harm the neighbors used in the recommendation
process.

2.1 Privacy Risks in Recommender Systems
Previous research [5, 23, 36, 49] describes many severe privacy risks for users of recommender
systems. For example, according to Ramakrishnan et al. [49], the use of neighbors’ rating
data in the recommendation process can pose a privacy risk to the neighbors. Serendipitous
recommendations could reveal unique connections between neighbors and items. In this way,
the rating data of the neighbors can be uncovered or the neighbors’ identities can be revealed
within the recommendation database. Also, Zhang et al. [64] show that it could be possible to
identify users whose data was used in the recommendation process. Their results suggest that the
effectiveness of their attack depends on the number of generated recommendations. Moreover,
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Calandrino et al. [9] propose to generate fake users, i.e., sybils, based on limited knowledge of a
victim’s data. These sybils can isolate the victim that is utilized as a neighbor and compromise its
privacy.

To quantify users’ privacy risks in computational systems such as recommender systems, several
privacy risk metrics [13, 17, 42, 53, 56] have been proposed. These metrics often rely on the sensitiv-
ity of users’ data, i.e., how strong this data puts users’ privacy at risk. For example, Chen et al. [13]
detect correlations within the dataset to measure whether a piece of data could reveal personal
information about the users. Srivastava and Geethakumari [53] measure the relative sensitivity of
a single piece of data compared with the remaining data of a user. Similarly, Domingo-Ferrer [17]
relates the overall sensitivity of a user’s data to the sensitivity of other users’ data. Liu and Terzi’s
privacy score [42] weighs the sensitivity with the degree of visibility of a user’s data (i.e., how often
a user’s data is utilized in the recommendation process).

Evaluating the privacy risk of users based on attacks only measures the privacy risk with respect
to the specific attack scenario. Liu and Terzi’s metric measures users’ privacy risk independent of
specific attack scenarios and, thus, allows investigating privacy risk in a recommender system at
a more general level. Therefore, in our work, we utilize Liu and Terzi’s metric to measure users’
privacy risk in a general neighborhood-based recommendation scenario. Furthermore, we assume
that all pieces of data are equally sensitive, since sensitivity typically depends on the application
and the user’s perception of privacy [38].

2.2 Privacy-Aware Recommender Systems
Several works [33, 55, 63] mitigate users’ privacy risks by applying homomorphic encryption [25]
to users’ rating data. Here, recommendations are generated based on the encrypted rating data,
and, thus, users’ rating data remains protected in the recommendation process. Homomorphic
encryption, however, has high computational complexity. Thus, Tang and Wang [55] apply homo-
morphic encryption on the rating data of a target users’ friends only, i.e., a small subset of users,
to improve computational efficiency. Besides homomorphic encryption, federated learning [44]
is used to lower users’ privacy risks [27, 41, 48, 60]. Specifically, instead of a user’s rating data,
the parameters of the user’s local recommendation model are utilized in the recommendation
process. For example, Perifanis and Efraimidis [48] combine federated learning with neural
collaborative filtering [29] to improve privacy. However, since federated learning could still leak
user data [47, 50], research proposes to learn a user’s local model by utilizing only a subset of
the rating data [4, 14, 46]. Moreover, differential privacy (DP) [18, 20] has been leveraged for
collaborative filtering recommender systems [10–12, 24, 60, 65]. These techniques add randomness
to users’ data to hide the actual data. Therefore, they face a trade-off between accuracy and
privacy (e.g., [7]). To address this trade-off, Xin and Jaakkola [61] assume a moderate number of
public users who tolerate disclosing their rating data. With this unprotected rating data, recom-
mendation accuracy can be preserved while the privacy requirements of the remaining users are
respected.

It has been shown in several studies [1, 39, 43] that users often receive more recommendations
for popular items, and correspondingly non-popular items receive less exposure. This behavior
of recommender systems, which is referred to as popularity bias, leads to disparate, i.e., unfair,
treatment of less popular items. Dwork et al. [19] and Zemel et al. [62] show that, formally, there
is a close connection between fairness and DP. However, the sole application of DP is insufficient
to ensure fairness due to correlations within the dataset [21]. Moreover, Ekstrand et al. [21] and
Agarwal [3] highlight a trade-off between user privacy and fairness. Overall, related work suggests
that DP can severely impact recommendations in different ways, for example, result in popularity
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Table 1. Overview of the Notation Used in this Article

Symbol Description
k Number of neighbors to process a rating query for target user u and target item i .
Qu Rating queries for target user u, i.e., the items in u’s test set Rtest

u .
Rk User-based KNN recommender system utilizing k neighbors to predict ratings.
Rk (u, i ) Estimated rating score for target user u and target item i by recommender system Rk .
Rk

top (u) Items with the highest estimated rating score for target user u.
ru,i Rating score of user u to item i .
U The set of users.
Ui The set of users that rated item i .
I The set of items.
Iu The set of items rated by user u.
R The set of ratings.
N k

u,i The k nearest neighbors for target user u and target item i .
Nu,i Neighbors of target user u and rated item i .
Nu The set of neighbors for target user u across all rating queries.
N

(q )
u The set of neighbors for target user u across q rating queries.

sim(u,n) Similarity score between target user u and neighbor n.
reusability (c |u) Reusability score of candidate neighbor c for target user u.
rankinд(·) The ranking function that ranks candidate neighbors w.r.t. similarity and reusability.
τ Data usage threshold, i.e., the maximal usage of a user’s data that is tolerated.
mDP Differential privacy mechanism that utilizes plausible deniability.
ϵ Privacy parameter.
S Secure users that do not need to be protected with DP.
V Vulnerable users that need to be protected with DP.
RS Rating data of secure users.
R̃V DP-protected rating data of vulnerable users.
α Significance level used for the statistical tests.
σx Sample standard deviation of variable x .
σx,y Sample covariance of variables x and y.

bias. Therefore, we believe that it is important to evaluate the proposed approach, ReuseKNN, also
in terms of item popularity bias.

Similar to our work, previous research by Zhu et al. [65] prevents the inference of neighbors’
rating data by applying DP to the users’ rating data in UserKNN. However, to preserve recommen-
dation accuracy, Zhu et al. vary the degree of randomness that is added to all users’ rating data
based on the sensitivity of the data. In contrast, ReuseKNN preserves recommendation accuracy
by adding randomness only where it is necessary, i.e., to vulnerable users with a high privacy risk.
In the remainder of the article, we use a variant of the approach of Zhu et al. that is comparable to
the proposed approach as baseline (i.e., UserKNN f ull

DP ) for our experiments.

3 PROBLEM DEFINITION
In the following, we discuss one key vulnerability of UserKNN, which poses privacy risks to the
neighbors utilized in the recommendation process. Also, we precisely model the adversary’s goal,
i.e., the inference of the neighbors’ rating data. A summary of the notation used in this article is
given in Table 1.

3.1 Vulnerability Analysis of UserKNN
Typically, a user-based KNN recommender systemRk , i.e., UserKNN, generates an estimated rating
score for a rating query of a target user u and a target item i by utilizing the ratings of k other
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users that have rated i , i.e., the k nearest neighbors N k
u,i :

Rk (u, i ) =

∑
n∈N k

u,i
sim(u,n) · rn,i

∑
n∈N k

u,i
sim(u,n)

, (1)

where sim(u,n) is the similarity between target user u and neighbor n, commonly determined via
Pearson’s correlation coefficient [6] or Cosine similarity between the users’ rating vectors. For
UserKNN, the neighborhood N k

u,i used for generating recommendations for target user u and item
i , comprises the k most similar neighbors:

N k
u,i =

karg max
c ∈Ui

sim(u, c ), (2)

whereUi are all users that have rated i and sim is the similarity metric. UserKNN utilizes the rating
data of the target user’sk nearest neighbors to generate an estimated rating score (see Equation (1)).
Therefore, the estimated rating score Rk (u, i ) for target useru and item i is linked to the neighbors’
rating data. Through learning the behavior of UserKNN, the estimated rating score could reveal the
rating data of users that have been used as neighbors [9]. Therefore, the privacy threat for users
can be traced back to them being utilized as neighbors in the recommendation process.

3.2 Attack Model
In this work, we assume that a user with malicious intent, i.e., the adversary a, exploits the
vulnerability above via querying estimated rating scores from the recommender system, i.e.,
Rk (a) = {Rk (a, i1),Rk (a, i2), . . . ,Rk (a, il )}, where Rk (a, i j ) is the estimated rating score for item
i j ∈ Qa and Qa is the set of a’s queries. The adversary a can target a specific user n by increasing
the likelihood of n being used as neighbor. To achieve this, a would modify its own user profile Ra
such that it (partially) matches n’s profile. Moreover, a can exploit publicly available data P , e.g.,
public rating data, product reviews, tweets, or lists of similar items, to better learn the behavior of
UserKNN [9]. Given these assumptions, the adversary aims to infer the rating data of a neighbor
n used to generate the estimated rating scores:

Pr [rn,i1 , rn,i2 , . . . , rn,il |Rk (a, i1),Rk (a, i2), . . . ,Rk (a, il ), P ∪ Ra], (3)
where rn,i j is the rating score of neighbor n for item i j . Note that if a user is used as neighbor for
many rating queries, many ratings could be targeted by an adversary. Thus, the degree to which
a user’s rating data is used in the recommendation process is an important indicator of this user’s
privacy risk (see the DataUsage@k metric in Section 5.2.3).

Given this attack model, the privacy threat lies on the rating level, i.e., the inference of neigh-
bors’ rating scores. Therefore, our approach aims at protecting the neighbors’ rating scores. In the
remainder of this work, we evaluate our approach in a rating-prediction task, since this fits well
to our problem statement above (see Appendix B for results of a ranking-based experiment).

4 APPROACH
In the following, we first schematically illustrate UserKNN ’s and ReuseKNN ’s recommendation
process based on an illustrative example. Then, we outline the two neighborhood reuse strate-
gies of the ReuseKNN recommender system (Section 4.2). Finally, we present ReuseKNN DP , i.e.,
neighborhood reuse with differential privacy (DP) (Section 4.3).

4.1 Example of the Recommendation Process in UserKNN and ReuseKNN
Figure 2 provides a schematic illustration of UserKNN ’s and ReuseKNN ’s recommendation process,
showing the interplay between a user’s data usage and the user’s privacy risk. For simplicity, we
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Fig. 2. Schematic illustration of the recommendation process for three rating queries in Alice’s query set
QAlice for UserKNN and ReuseKNN. A green shaded item indicates that the rating score for this item is
estimated for the target user and a red shaded item indicates that the rating score of a neighbor has been
utilized for the rating estimation. Traditional UserKNN selects those users as neighbors that rated the queried
item and have the highest similarity value; in this toy example, those are Bob and Amy. Thus, Bob and Amy
are vulnerable and need to be protected with DP. In contrast, ReuseKNN utilizes Tim as neighbor. As such,
ReuseKNN substantially increases reusability (5.15 instead of 1.2 and 0.74) at the price of a slightly reduced
similarity (0.90 instead of 0.98 and 0.97). This way, only Tim is vulnerable and is the only neighbor that needs
to be protected with DP, as Bob and Amy remain unused.

assume that Bob, Amy, and Tim have been used as neighbors for τ rating queries, i.e., data usage
and privacy risk is τ . To process Alice’s rating queries for items il and im , UserKNN selects Bob and
Amy as neighbors, as they have the highest similarity values across all users that rated the queried
items. Due to the usage of Bob’s and Amy’s data, their data usage exceeds threshold τ and DP
needs to be applied. For the rating query for item in , again, Amy is utilized in the recommendation
process. Since she is already protected with DP, her privacy risk remains at τ . This is different from
how ReuseKNN processes rating queries. For the rating queries for items il , im , and in , ReuseKNN
selects Tim as neighbor, as Tim has a substantially higher reusability value and only marginally
smaller similarity than Bob and Amy. Therefore, only Tim’s data usage exceeds τ , and DP is needed
to protect Tim.

In summary, in this illustrative example, UserKNN leads to two vulnerable users, Bob and Amy,
that need to be protected with DP. In contrast, ReuseKNN leads to only one vulnerable user, Tim,
to which DP has to be applied.
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4.2 ReuseKNN
The key feature of ReuseKNN is to reuse neighbors from a target user u’s previous rating queries
to minimize the cardinality of the neighborhood Nu =

⋃
i ∈Qu N k

u,i across all rating queries Qu . As
illustrated in Figure 1, this means that ReuseKNN decreases the data usage for most users, i.e., se-
cure users, and in this way, also their privacy risk. Plus, ReuseKNN decreases the number of highly
reused neighbors, i.e., vulnerable users with high data utilization and, thus, high privacy risk.

In addition to the similarity, ReuseKNN also considers the extent to which a target user u could
reuse candidate neighbor c as a neighbor for many rating queries, i.e., reusability (c |u). Since both
similarity and reusability scores are differently distributed across their respective numeric ranges,
we rank candidate neighbors according to their scores. Formally, for a useru, the rank rankinд(u) =
|{v ∈ U \ {u} : f (v ) ≤ f (u)}|, where U is the set of all users and f measures the similarity or
reusability score. Note that rankinд(u) > rankinд(v ) if f (u) > f (v ) for users u and v , and that
rankinд(u) = rankinд(v ) in case f (u) = f (v ). With this, the k neighbors N k

u,i are selected based
on similarity and reusability. Formally:

N k
u,i =

karg max
c ∈Ui

[rankinд(sim(u, c )) + rankinд(reusability (c |u))], (4)

where Ui are all users that rated item i , sim measures the similarity between two users, and
reusability depends on the given neighborhood reuse strategy of ReuseKNN. In the case in which
multiple candidate neighbors have equal values for rankinд(sim(u, c ))+rankinд(reusability (c |u)),
we choose these neighbors at random.

To estimate a candidate neighbor’s reusability score, ReuseKNN utilizes two neighborhood
reuse strategies: Expect and Gain. The unpersonalized Expect strategy measures a candidate neigh-
bor’s reusability for an average target user, whereas the personalized Gain strategy measures the
reusability for a specific target user. Next, we discuss two strategies to increase the reusability of
a target user’s neighbors: unpersonalized and personalized neighborhood reuse.

Unpersonalized Neighborhood Reuse: Expect. The more users rated an item, the more likely it is that
a random target user will query a rating estimation for this item. Following this intuition, Expect
promotes candidate neighbors that rated many popular items and penalizes candidate neighbors
that either rated only a few items or many unpopular items. For Expect, the reusability score of
candidate neighbor c is defined by

reusability (c |u) = reusability (c ) =
∑

i ∈Ic

|Ui |
|U | , (5)

where u is the target user, Ic are the items c rated, Ui are the users that rated an item i , and U is
the set of all users. In this case, reusability (c ) is the summed-up popularity of c’s rated items and
measures the expected number of a random user’s rating queries for which c could be used as a
neighbor. This means that the reusability of a candidate neighbor is estimated for an average user
and not for a specific target user (i.e., unpersonalized).

Personalized Neighborhood Reuse: Gain. In contrast to unpersonalized neighborhood reuse, Gain
measures a candidate neighbor’s reusability for a specific target user. Specifically, Gain quantifies
how many of a target user’s ratings a candidate neighbor could have covered in the past, i.e., how
many ratings the target user could have gained from the candidate neighbor. Thus, Gain gives
the fraction of a target user u’s rated items for which a candidate neighbor c could have served as
a neighbor:

reusability (c |u) =
|Iu ∩ Ic |
|Iu | , (6)
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where Iu are the items rated by u and Ic are the items rated by c . In contrast to the unpersonalized
Expect strategy, Gain’s reusability score depends on a specific target user (i.e., personalized).

4.3 ReuseKNNDP : Neighborhood Reuse and Differential Privacy
ReuseKNN leads to a minimal number of highly reused neighbors, i.e., vulnerable users, who are
utilized more often as neighbors than the data usage threshold τ would allow. ReuseKNN DP ad-
dresses this high privacy risk resulting from the frequent usage of vulnerable users (see Section 3)
by adding DP to our neighborhood reuse strategies. Specifically, for a rating query for user u and
item i , a privacy mechanismmDP is applied to the ratings for i of vulnerable usersV that are used
as neighbors, i.e., R̃V = {mDP (rn,i ) : n ∈ N k

u,i ∩V }. In this way, ReuseKNN DP utilizes real ratings
of secure users S , i.e., RS = {rn,i : n ∈ N k

u,i ∩ S }, plus the modified ratings R̃V of vulnerable users,
to generate the estimated rating score Rk (u, i ):

Rk (u, i ) =

∑
n∈N k

u,i∩S sim(u,n) · rn,i +
∑

n∈N k
u,i∩V sim(u,n) ·mDP (rn,i )

∑
n∈N k

u,i
sim(u,n)

. (7)

Specifically, the privacy mechanism mDP utilizes randomized responses [59] to achieve DP [20].
With this, intuitively, neighbors can plausibly deny that their real rating was used in the recom-
mendation process. The privacy mechanism mDP flips a fair coin and if the coin is heads, the
vulnerable neighbor’s real rating is utilized in the recommendation process. If the coin is tails,
mDP flips a second fair coin to decide whether to utilize the vulnerable neighbor’s real rating
or a random rating drawn from a uniform distribution over the range of ratings. With this, the
adversary is unaware whether the utilized rating is real, or random, which leads to the privacy
guarantees within the DP framework [20]:

Pr [Adversary’s assumption: Real rating | Truth: Real rating]
Pr [Adversary’s assumption: Real rating | Truth: Random rating] =

0.75
0.25 = 3 ≤ eϵ , (8)

which results in a privacy parameter of ϵ = ln 3. Reconsidering user-based KNN ’s vulnerability
(see Equation (1)), this means that if a neighbor n is considered as vulnerable, the DP-protected
rating is used in the recommendation process instead of the real rating for item i (see Equation (7)).
This impacts the adversary a’s objective (see Equation (3)) of inferring n’s rating data given the
estimated rating scores for whichn was used as neighbor and its own rating dataRa in combination
with public knowledge P (see Section 3). Since a maximum of τ (i.e., the data usage threshold) real
ratings of n are used by the recommender system, the remaining ratings are DP-protected. Thus,
the adversary is not aware of whether the inferred rating data is the original rating data or random
rating data as generated by themDP mechanism:

Pr [rn,i1 , . . . , rn,iτ ,mDP (rn,iτ+1 ), . . . ,mDP (rn,il ) |Rk (a, i1),Rk (a, i2), . . . ,Rk (a, il ), P ∪ Ra], (9)
where rn,i j is n’s rating for item i j and Rk (a, i j ) is the estimated rating score of i j for adversary a.
Through combining non-DP and DP ratings, ReuseKNN DP yields the following privacy parameter
ϵ for each of a vulnerable user’s, in this case n, utilized ratings (for details, see Appendix A):

ϵ = ln ��3 + 4 · Pr [Non-DP rating]
Pr [DP rating]

��. (10)

In this way, ReuseKNN DP combines neighborhood reuse with DP to reduce the number of neigh-
bors to which DP needs to be applied and to ensure privacy. Overall, ReuseKNN DP can use two
neighborhood reuse strategies with DP (for details, see Section 4.2):

(1) ExpectDP : Unpersonalized neighborhood reuse combined with DP
(2) GainDP : Personalized neighborhood reuse combined with DP
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5 EXPERIMENTAL SETUP
We utilize a two-stage evaluation procedure to compare and evaluate the two neighborhood reuse
strategies of (i) ReuseKNN and (ii) ReuseKNN DP :

Neighborhood Reuse without DP: ReuseKNN. In the first stage, we evaluate ReuseKNN without pro-
tecting vulnerable neighbors with DP in order to better understand the advantages and disadvan-
tages of the proposed neighborhood reuse strategies. Hence, we compare Expect and Gain to distill
the impact of neighborhood reuse for recommendations.

Neighborhood Reuse with DP: ReuseKNNDP . In the second stage, we combine ReuseKNN with DP
to protect vulnerable users, i.e., ReuseKNN DP . We compare our neighborhood reuse strategies
ExpectDP and GainDP to investigate how ReuseKNN DP can address the accuracy–privacy trade-off.

5.1 Baselines
We compare ReuseKNN and ReuseKNN DP with five different KNN-based baselines. Concretely, for
ReuseKNN, i.e., neighborhood reuse without DP, we use two non-DP baselines:

(1) UserKNN [30]: Traditional UserKNN without neighborhood reuse. No users are protected
with DP (Vulnerable users V = ∅).

(2) UserKNN+Reuse: A variant of UserKNN with neighborhood reuse. Initially, for the first rating
query, e.g., for item j, the k most similar users that rated j are selected as neighbors, as
in case of UserKNN. However, for the following rating queries, e.g., for item i and user u,
kpr ev = min{k, |Nu,i |} neighbors from all previous rating queries that rated i (i.e., Nu,i ) are
reused. If too few previous neighbors rated i , i.e.,kpr ev < k , a minimal set ofknew = k−kpr ev

new neighbors is additionally used, as given by:

N k
u,i =

kpr ev

arg max
n∈Nu,i

sim(u, c ) ∪ knew

arg max
c ∈Ui \Nu,i

sim(u, c ), (11)

where Ui are all users that rated item i . Similar to UserKNN, UserKNN+Reuse assumes that
no users are vulnerable (V = ∅). Thus, no users are protected with DP.

For ReuseKNN DP , i.e., neighborhood reuse with DP, we use three DP baselines:
(1) UserKNN DP : A variant of UserKNN, but DP is applied to vulnerable users V = {u ∈ U :

DataUsage@k (u) > τ }. See Section 5.5 for the exact τ values.
(2) UserKNN+ReuseDP : A variant of UserKNN+Reuse, but DP is applied to vulnerable users V =
{u ∈ U : DataUsage@k (u) > τ }. See Section 5.5 for the exact τ values.

(3) UserKNN f ull
DP : Traditional differentially private UserKNN, where DP is applied to the full set

of users, i.e.,V = {u ∈ U : DataUsage@k (u) ≥ 0} (similar to the rating perturbation in [65]).
To evaluate ReuseKNN DP , we use the three DP baselines, as well as non-DP UserKNN. With this,
we can compare ReuseKNN DP to two contrastive baselines: UserKNN f ull

DP , which protects all users
with DP, and UserKNN, which does not apply DP at all.

5.2 Evaluation Metrics
We test the proposed approach in two evaluation stages using the following evaluation criteria
and metrics (see Table 2 for an overview):

5.2.1 Neighborhood Reuse. To evaluate the degree to which ReuseKNN can reuse neighbors
from previous rating queries, we measure the size of a target user’s neighborhood after multiple
queries. Plus, we study whether the reused neighborhoods are capable of generating meaningful
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Table 2. Overview of the Seven Evaluation Metrics Used in this Work

Evaluation Stage
Evaluation Criterion Evaluation Metric Objective Short Description ReuseKNN ReuseKNN DP

Neighborhood Reuse Neighbors@q ↘ Neighborhood size •
CoRatings@q ↗ No. of co-rated items •

Accuracy MAE@k ↘ Mean absolute error • •
Privacy |V | ↘ Percentage of vulnerable users •

PrivacyRisk@k ↘ Privacy risk of users •
Popularity Bias PP-Corr@k ↘ Positivity–popularity correlation •

Coverage@k ↗ Percentage of item coverage •
↘ indicates that lower values are better and↗ indicates that higher values are better. q is the number of queries and k
is the number of neighbors. With •, we indicate the evaluation stage in which the metric is used.

recommendations via measuring the number of co-rated items between the neighborhood and the
target user.

Neighborhood Size. For every rating query of a target user u, k neighbors are required to generate
the recommendation. In the worst case, no neighbors from previous rating queries can be reused.
Thus, after q queries, |Nu | = min{q · k, |U | − 1} for U being the set of all users. In the best case, u
reuses the same k neighbors for all q queries, i.e., |Nu | = k . To quantify how many ofu’s neighbors
are reused, we measure the size of u’s neighborhood after q rating queries:

Neighbors@q(u) = ���N (q )
u

��� , (12)

where N
(q )
u is u’s set of neighbors after q rating queries. With that, we test how well our neigh-

borhood reuse strategies of ReuseKNN, i.e., neighborhood reuse only, can reuse a target user’s
neighbors for multiple rating queries.

Number of Co-Ratings. The utilization of fewer neighbors across many rating queries might
impact the accuracy of recommendations. Therefore, we test whether a target user’s neighbors
are beneficial for recommendation accuracy, i.e., “reliable”. One important characteristic of these
reliable neighbors is the number of co-rated items with the target user [2, 16]. Thus, we measure
the average number of co-rated items between a target user u and its neighbors n ∈ Nu after q
rating queries:

CoRatings@q(u) =
1
|N (q )

u |
∑

n∈N (q )
u

|Iu ∩ In |, (13)

where Iu are the items rated by target user u and In are the items rated by neighbor n. With this,
we test how beneficial the neighborhoods are for generating accurate recommendations.

5.2.2 Accuracy. To quantify the accuracy of a target user’s recommendations, we rely on the
widely used mean absolute error metric (MAE). We use MAE to measure how accurate the rating
scores can be predicted, because of the way in which we apply DP, i.e., via adding noise to the
neighbors’ rating values in order to protect against the disclosure of these ratings (see Section 3).
According to Herlocker et al. [30], the number of neighbors k has an impact on the recommen-
dation accuracy. Thus, we test the accuracy of u’s recommendations for k ∈ {5, 10, 15, 20, 25, 30}.
Therefore, MAE@k (u) quantifies the accuracy of u’s recommendations when k neighbors are
used to generate a recommendation. More formally:

MAE@k (u) =
1

|Rtest
u |

∑

ru,i ∈Rt est
u

|ru,i − Rk (u, i ) |, (14)
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where the predicted rating score Rk (u, i ) is compared with the real rating scores ru,i ∈ Rtest
u in u’s

test set. We note that the items for which Rtest
u comprises ratings are the ones that are in u’s set of

rating queriesQu . We use the MAE@k (u) metric for evaluating both, ReuseKNN, i.e., neighborhood
reuse only, and ReuseKNN DP , i.e., neighborhood reuse with DP.

5.2.3 Privacy. Liu and Terzi [42] provide a framework to measure a user’s privacy risk in com-
putational systems, such as recommender systems based on the visibility of the user’s data. In our
work, we relate this visibility to how often a user’s rating data was utilized in the recommendation
process. As such, the DataUsage@k (u) metric counts for how many rating queries a user u was
used as a neighbor. Similar to MAE@k (u), we also relate the usage of u’s data to the number of
neighbors k used to generate recommendations. Formally:

DataUsage@k (u) =
∑

v ∈U

∑

i ∈Qv

1N k
v,i

(u), (15)

where U is the set of all users, Qv is the set of items for which user v queries estimated ratings,
and 1Nv,i (u) is the indicator function of user u being in v’s set of neighbors Nv,i for an item i .

Percentage of Vulnerable Users. As mentioned earlier, the main goal of neighborhood reuse is to
reduce the number of users that need to be protected with DP. The DataUsage@k definition allows
us to identify these vulnerable usersV , i.e., the set of users whose data is utilized more often than
the adjustable privacy risk threshold τ allows:

V = {u ∈ U : DataUsage@k (u) > τ }, (16)
whereU is the set of all users. Thus, the percentage of vulnerable users relates to what fraction of
users DP has to be applied to (i.e., |V |/|U |). We use this metric to evaluate ReuseKNN, i.e., neigh-
borhood reuse only.

Privacy Risk. We apply DP to a user u’s data if DataUsage@k (u) > τ . This way, only the first
τ utilized ratings contribute to u’s privacy risk, since for the remaining ratings that are utilized,
privacy is guaranteed via the DP framework (see Section 4.3):

PrivacyRisk@k (u) = min[τ ,DataUsage@k (u)]. (17)
We use PrivacyRisk@k to measure the users’ privacy risk when neighborhood reuse is combined
with DP, i.e., ReuseKNN DP .

5.2.4 Item Popularity Bias. One might be concerned that neighborhood reuse could lead
to exploiting users as neighbors that rated many popular items, which could result in more
positive estimated rating scores for popular items. To test for this item popularity bias, we
analyze all items for which the recommender system estimates high rating scores, i.e., “top items”.
For a recommender system model R and k neighbors, a user u’s set of top items is given by
Rk

top (u) =
narg maxi ∈Qu

Rk (u, i ), whereQu are the items inu’s query set. In our case, we set n = 10.

Positivity-Popularity Correlation. To study whether higher estimated rating scores are given to
popular items, we follow Kowald et al. [39] and correlate an item’s popularity with its occurrences
in users’ sets of top items: ItemFreq+@k (i ) =

∑
u ∈U 1Rk

top (u ) (i ), where 1Rk
top (u ) (i ) indicates

whether item i is in user u’s set of top items Rk
top (u). Plus, an item i’s popularity is given by

ItemPop(i) = |Ui |/|U |, whereU is the set of all users andUi are the users that rated i . We compute
the Pearson correlation coefficient [6] between the two variables ItemFreq+ and ItemPop to
identify item popularity bias:

PP-Corr@k =
σItemFreq+@k, ItemPop@k

σItemFreq+@k · σItemPop@k
, (18)
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Table 3. Descriptive Statistics of the Five Datasets

Dataset Domain Rating range |U | |I | |R | |R |/|U | |U |/|I | Density
ML 1M Movies {1. . . 5} 6,040 3,706 1,000,209 165.60 1.6298 4.47%
Douban Movies {1. . . 5} 2,509 39,576 893,575 356.15 0.0634 0.90%
LastFM Music {1. . . 1,000} 3,000 352,805 1,755,361 585.12 0.0085 0.17%
Ciao Movies {1. . . 5} 7,375 105,096 282,619 38.32 0.0702 0.04%
Goodreads Books {1. . . 5} 20,000 508,696 2,569,177 128.46 0.0394 0.03%
|U | is the number of users, |I | is the number of items, |R | is the number of ratings, |R |/ |U | is the ratings-to-users ratio,
|U |/ |I | is the users-to-items ratio, and Density is given by |R |/( |U | · |I |).

where σItemFreq+@k, ItemPop@k is the sample covariance between ItemFreq+@k and ItemPop@k . The
sample standard deviations are given by σItemFreq+@k and σItemPop@k .

Item Coverage. In addition to evaluating the correlation between an item’s estimated rating score
and its popularity, we measure the fraction of items that are a top item for at least one user. For
this, we use the Item Coverage metric [31] given by

Coverage@k =
1
|I |

������
⋃

u ∈U
Rk

top (u)
������ , (19)

where k is the number of neighbors, I is the set of items, U is the set of users, and Rk
top (u) is

the set of top items for user u. This way, we can test whether parts of the item catalog always
receive low estimated rating scores. We use PP-Corr@k and Coverage@k to evaluate ReuseKNN DP .
Additionally, we use these metrics to evaluate UserKNN to explore the impact of DP [21].

5.3 Datasets
In this work, we conduct experiments on five different datasets: MovieLens 1M (ML 1M) [28],
Douban [34], LastFM User Groups (LastFM) [39], Ciao [26], and Goodreads [57, 58].

All five datasets exhibit different properties, as illustrated in Table 3. For example, the movie
rating dataset ML 1M (integer ratings in {1 . . . 5}) is the densest dataset. Similarly, Douban (integer
ratings in {1 . . . 5}) and Ciao (integer ratings in {1 . . . 5}) are movie rating datasets. Moreover, in
Ciao, users have the smallest number of ratings per user (i.e., |R |/|U |) on average. LastFM includes
implicit feedback data (i.e., listening counts) from the online music streaming service Last.fm.
However, in this dataset, Kowald et al. [39] transfer the implicit feedback to decimal ratings in
{1 . . . 1, 000}. Plus, users have the largest number of ratings per users. The book rating dataset
Goodreads (integer ratings in {1 . . . 5}), for which we use a random sample of 20,000 users, is the
largest and least dense dataset.

Overall, the datasets cover (i) the movie, music, and book domain; (ii) implicit and explicit feed-
back; and (iii) different descriptive statistics.

5.4 Evaluation Protocol and Statistical Tests
We perform all experiments using 5-fold cross-validation, and randomly split all folds into 80%
training sets Rtr ain and 20% test sets Rtest . The ratings in Rtr ain are used to train the recom-
mendation algorithms, and the ratings in Rtest represent the rating queries used for evaluation.
Also, we test the statistical significance of our results. Specifically, after close inspection of our
results, we resort to the Mann-Whitney-U-Test. For the query-based metrics Neighbors@q and
CoRatings@q, we evaluate significance for all rating queries q ∈ [2; 100] when utilizing k = 10
neighbors. For other metrics, i.e., MAE@k , PrivacyRisk@k , PP-Corr@k , and Coverage@k , we
evaluate significance after all queries have been processed by the recommender system. Again,
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here, we utilize k = 10 neighbors to generate recommendations. Importantly, throughout this
work, we only report statistical significance if we observe significance for each of the five
folds.

5.5 Parameter Settings
The proposed approach relies on two adjustable hyperparameters: (i) the number of neighbors k
used in the recommendation process and (ii) the data usage threshold τ . To test the performance of
ReuseKNN and ReuseKNN DP for different values ofk , we varyk ∈ {5, 10, 15, 20, 25, 30}. Plus, we set
τ to the approximate starting value of the tail of UserKNN ’s data usage distribution DataUsage@k,
which is given by its maximal second derivative (see Figure 1). This way, we assume that only the
tail’s small privacy risk (as a result of the rare data usage) is tolerable and give an example of how
τ can be defined by the recommender system provider. Also, τ is the same for all users. This leads
to the following τ values for k = 10: 92.89 (ML 1M), 91.54 (Douban), 104.32 (LastFM), 95.79 (Ciao),
and 94.90 (Goodreads). For the similarity function sim, we use cosine similarity.

6 RESULTS AND DISCUSSION
We structure our results into two parts: (i) neighborhood reuse only (ReuseKNN ), and (ii) neigh-
borhood reuse with DP (ReuseKNN DP ).

6.1 ReuseKNN
In this section, we present our evaluation results for ReuseKNN, i.e., neighborhood reuse only.

6.1.1 Neighborhood Reuse. As the first step in this evaluation stage, neighborhood reuse only,
we investigate the neighborhoods generated by ReuseKNN. Specifically, we compare our neigh-
borhood reuse strategies to our UserKNN baseline with respect to the neighborhood size and the
number of co-ratings with the target user. Moreover, we test for statistical significant differences
to UserKNN after multiple rating queries, i.e., for all q ∈ [2; 100].

We investigate the average size of target users’ neighborhood after q rating queries for a model
with k = 10 neighbors in Figure 3. For all of our five datasets, the size of a user’s neighborhood
increases more strongly for traditional UserKNN than for our neighborhood reuse strategies. For
ML 1M, Douban, LastFM, and Goodreads, a one-tailed Mann-Whitney-U-Test (α = 0.01) shows that
all our neighborhood reuse strategies yield significantly smaller neighborhoods than traditional
UserKNN for q ∈ [2; 100] rating queries. This means that ReuseKNN can already reuse neighbors
after an initial neighborhood is generated for the very first rating query.

However, for Ciao, multiple initial rating queries are needed to generate reusable neighborhoods.
Our neighborhood reuse strategies tend to yield significantly smaller neighborhoods only for a
few rating queries. For Gain, we do not observe significant differences. We attribute this to the on
average small user profiles in Ciao (see Table 3). Reusable neighbors are scarce and, thus, ReuseKNN
cannot reduce the neighborhood size as effectively as in the case of the other datasets.

In addition to the neighborhood size, we also investigate the number of co-rated items between
the target user and its neighbors after querying q rating queries (see Figure 4). Note that, as before,
the statistical significance is evaluated after multiple rating queries, i.e., for all q ∈ [2; 100]. For all
of our five datasets, our neighborhood reuse strategies can substantially increase the number of co-
ratings over traditional UserKNN. A one-tailed Mann-Whitney-U-Test (α = 0.01) reveals that our
neighborhood reuse strategies generate neighborhoods with significantly more co-ratings with the
target user than UserKNN for q ∈ [2; 100] rating queries. This indicates that ReuseKNN generates
neighborhoods with fewer neighbors that have more co-ratings with the target user than in the
case of traditional UserKNN, which can foster recommendation accuracy [2, 16].

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 5, Article 80. Publication date: August 2023.



ReuseKNN: Neighborhood Reuse for Differentially Private KNN-Based Recommendations 80:15

Fig. 3. Average number of neighbors per target user afterq rating queries. Our neighborhood reuse strategies
utilized in ReuseKNN, i.e., Expect and Gain, generate smaller neighborhoods than UserKNN.

Fig. 4. Avg. number of co-rated items between the target user and its neighbors. Our neighborhood reuse
strategies for ReuseKNN, i.e., Expect and Gain, generate neighborhoods, in which the neighbors’ rated items
overlap more with the target users’ than in the case of UserKNN. With this, neighbors are beneficial for
generating accurate recommendations.

However, for Ciao, our neighborhood reuse strategies tend to generate neighborhoods with
significantly more co-ratings for only a few rating queries. As in our neighborhood size experiment,
we attribute this to the small user profiles in Ciao, which makes neighborhood reuse less effective
due to the scarcity of reusable neighbors.

6.1.2 Accuracy. Next, we compare ReuseKNN with traditional UserKNN in terms of recommen-
dation accuracy (see Figure 5). Specifically, we test for statistically significant differences between
our neighborhood reuse strategies and the UserKNN baseline.
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Fig. 5. Comparison of the recommendation accuracy between ReuseKNN and UserKNN. ReuseKNN ’s neigh-
borhood reuse strategies generate more accurate recommendations than UserKNN. For sparse datasets (i.e.,
Ciao and Goodreads), personalized neighborhood reuse (i.e., Gain) works better. In contrast, unpersonalized
neighborhood reuse (i.e., Expect) works better for datasets, in which neighbors are scarce (i.e., LastFM).

We find that our neighborhood reuse strategies can generate more accurate recommendations
than UserKNN. This shows that reusing neighbors that have already been used in the past can also
lead to meaningful (accurate) recommendations in the future. Specifically, for ML 1M, Douban,
and LastFM, a one-tailed Mann-Whitney-U-Test (α = 0.01) indicates that our neighborhood reuse
strategies significantly increase recommendation accuracy for a model with k = 10 neighbors. Due
to personalization, Gain performs best across most datasets.

For LastFM, unpersonalized neighborhood reuse (i.e., Expect) outperforms personalized neigh-
borhood reuse (i.e., Gain). We attribute this to LastFM’s small users-to-items ratio as compared
with the other datasets (see Table 3), which makes it hard to identify neighbors, similar to an
item–cold start scenario [52]. Concretely, in the case of personalized neighborhood reuse, select-
ing reusable neighbors for a specific target user reduces the pool of potential neighbors per item
to a personalized subset and leads to a worse performance compared with unpersonalized neigh-
borhood reuse. In contrast, unpersonalized neighborhood reuse allows using the entire pool of
potential neighbors and, thus, achieves a higher accuracy for LastFM.

In the case of our least dense datasets Ciao and Goodreads, we observe that our personalized
neighborhood reuse strategy Gain can handle these datasets better than our unpersonalized neigh-
borhood reuse strategy Expect. Gain selects neighbors whose rating data could have been used by
the target user in the past (see Equation (6)). This way, Gain creates a neighborhood for a given
target user with sufficient rating data even in sparse datasets.

Plus, we highlight that Gain significantly increases recommendation accuracy for Goodreads de-
spite the dataset’s low density. In the case of Ciao, a two-tailed Mann-Whitney-U-Test (α = 0.01)
reveals no significant differences between our neighborhood reuse strategies and UserKNN for
k = 10, which suggests that all our neighborhood reuse strategies can preserve recommendation
accuracy. As shown in our previous experiments (see Section 6.1.1), neighborhood reuse is less
effective for Ciao due to the small user profiles. Thus, it makes sense that for Ciao, the recommen-
dation accuracy cannot be improved as effectively as for the remaining datasets.
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Table 4. Percentage of Vulnerable Users for a Model with k = 10 Neighbors

Method ML 1M Douban LastFM Ciao Goodreads
UserKNN 80.39% 96.68% 99.89% 8.02% 65.00%
UserKNN+Reuse 84.64% 87.37% 98.90% 7.91% 52.29%
Expect 24.13% 34.40% 68.20% 7.88% 29.12%
Gain 25.09% 37.43% 80.28% 8.19% 40.51%

Best results, i.e., lowest values, are in bold. For all datasets, ReuseKNN ’s Expect
neighborhood reuse strategy leads to fewer vulnerable users than UserKNN. For Ciao,
our neighborhood reuse strategies can achieve only minor improvements, as already
UserKNN yields a small percentage of vulnerable users.

6.1.3 Percentage of Vulnerable Users. In Section 6.1.1, we found that neighborhood reuse can
significantly reduce the number of neighbors that are utilized in the recommendation process.
Now, however, we analyze how many neighbors are utilized for more than τ rating queries (i.e.,
the usage of their data exceeds threshold τ ) and, thus, need to be protected with DP (see Table 4).
Specifically, we compare our neighborhood reuse strategies to the UserKNN baseline.

For all of our five datasets, our neighborhood reuse strategies lead to less vulnerable users than
traditional UserKNN. Especially, Except shows the best (i.e., lowest) percentage of vulnerable users.
For example, for the ML 1M dataset, UserKNN leads to 80.39% of users that are vulnerable, since
their data usage exceeds threshold τ = 92.89 (see Section 5.5), whereas Expect leads to only 24.13%
vulnerable users and, thus, fewer users need to be protected with DP.

For Ciao, our neighborhood reuse strategies achieve only minor improvements over UserKNN.
The reason is that UserKNN already yields a small percentage of vulnerable users and, as such,
ReuseKNN leads to only small improvements. Additionally, our previous findings show that the
effect of neighborhood reuse on Ciao is smaller than on the remaining datasets due to the small
average user profile size (see Table 3). This leads to a lack of reusable neighbors and, thus, also
limits the effect that neighborhood reuse has on the percentage of vulnerable users.

6.1.4 Summary. Overall, we find that through neighborhood reuse, ReuseKNN can significantly
reduce the size of target users’ neighborhoods as compared with traditional UserKNN. Despite the
much smaller neighborhoods, ReuseKNN identifies neighbors that have many more co-rated items
with the target user than in the case of UserKNN. As related work suggests, these neighbors are
more “reliable” and can be crucial for recommendation accuracy [2, 16].

Based on the much smaller but more reliable neighborhoods, ReuseKNN can provide signifi-
cantly higher recommendation accuracy than traditional UserKNN. For sparse datasets, personal-
ized neighborhood reuse seems to be a better solution than unpersonalized neighborhood reuse.

Plus, ReuseKNN can substantially reduce the percentage of vulnerable users, and in general, our
Except neighborhood reuse method yields the fewest vulnerable users.

6.2 ReuseKNNDP

Next, we present our results on ReuseKNN DP , i.e., neighborhood reuse with DP.

6.2.1 Accuracy. First and foremost, we note that in our experiments without DP (see Figure 5),
UserKNN could be outperformed by ReuseKNN. In our experiments with DP, however (see
Figure 6), it is apparent that all evaluated DP methods do not reach the accuracy of non-DP
UserKNN. This means that in general, due to DP, drops in recommendation accuracy have to
be expected. However, we will investigate next whether ReuseKNN DP can make this accuracy
drop less severe compared with using the baselines. In detail, we compare our neighborhood
reuse strategies to the UserKNN DP baseline and test for statistically significant differences.
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Fig. 6. Comparison of the recommendation accuracy between ReuseKNNDP and UserKNNDP . We find that
ReuseKNNDP ’s neighborhood reuse strategies, ExpectDP and GainDP , can preserve or even improve recom-
mendation accuracy in terms of lower MAE. This shows that reducing the number of users to which DP has
to be applied can help to increase recommendation accuracy.

Furthermore, we incorporate UserKNN without DP and UserKNN f ull
DP as additional baselines for

our experiments.
In general, for our neighborhood reuse strategies, DP does not cause an accuracy drop as severe

as in case of UserKNN DP (see Figure 6). Plus, as expected, UserKNNf ull
DP performs worst due to the

randomness that is added via DP to the rating data of all users. This shows that our neighborhood
reuse concept helps to generate accurate recommendations in differentially private KNN-based
recommender systems. For ML 1M and LastFM, a one-tailed Mann-Whitney-U-Test (α = 0.01)
indicates that our neighborhood reuse strategies significantly increase recommendation accuracy
over UserKNN DP for a model with k = 10 neighbors. Additionally, for ML 1M, GainDP performs
better than our non-DP baseline UserKNN.

Moreover, we observe that LastFM is highly sensitive to the incorporation of DP, since the mean
absolute error magnitudes differ substantially between our non-DP experiment in Figure 5 and our
DP experiment in Figure 6. In line with our previous results on non-DP ReuseKNN, ReuseKNN DP ’s
unpersonalized neighborhood reuse strategy ExceptDP also cannot increase recommendation ac-
curacy for Ciao and Goodreads, which are our two sparsest datasets. However, our personalized
neighborhood reuse strategy GainDP generates recommendations with significantly higher accu-
racy for Goodreads. For Ciao, no significant differences are found according to a two-tailed Mann-
Whitney-U-Test (α = 0.01). Thus, GainDP can preserve recommendation accuracy.

For Douban, we observe no significant differences between our neighborhood reuse strategies
and UserKNN DP . We found empirically that for Douban, UserKNN DP and ReuseKNN DP utilize
more rating data from vulnerable users than in the case of our remaining datasets. Thus, we mea-
sure the fraction of rating data; each user contributes to the dataset, i.e., |Ru |/|R |, where R are all
users’ ratings and Ru are useru’s ratings. We find that for Douban, the 5% of users with the largest
user profiles contribute substantially more ratings to the dataset than for our other datasets: 0.0008
(ML 1M), 0.0022 (Douban), 0.0012 (LastFM), 0.0009 (Ciao), and 0.0003 (Goodreads). This suggests
that in the case of Douban, the recommendation process more often utilizes these users due to
their abundance of rating data. This, however, makes these users more vulnerable. Therefore, we
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Fig. 7. Logarithm (base 10) of the privacy risk averaged over all users. ReuseKNNDP ’s neighborhood reuse
strategies yield lower privacy risk than UserKNNDP . This is due to the fact that ReuseKNNDP reduces the
percentage of users with a privacy risk of τ (i.e., vulnerables) and simultaneously decreases the privacy risk
of the remaining users (i.e., secures). Overall, we find that our unpersonalized neighborhood reuse strategy
ExpectDP achieves the best user privacy, i.e., the lowest privacy risk.

suppose that this strong utilization of DP-protected rating data from vulnerable users leads to no
significant differences in accuracy between UserKNN DP and ReuseKNN DP .

For Douban, we additionally compare ReuseKNN DP to UserKNN f ull
DP . Our results suggest that

our personalized reuse strategy GainDP generates recommendations with significantly higher ac-
curacy, wher ExceptDP show no significant differences. Thus, all our neighborhood reuse strategies
can preserve recommendation accuracy for this dataset.

6.2.2 Privacy Risk. In ReuseKNN DP , vulnerable users with high data usage are protected with
DP and as such, their privacy risk is set to threshold τ . Moreover, secure users’ privacy risk is also
reduced since they are rarely exploited as neighbors in the recommendation process, i.e., low data
usage (see Figure 1). Specifically, we compare our neighborhood reuse strategies to UserKNN DP
and test for statistically significant differences. Furthermore, we use UserKNN without DP and
FullDP as additional baselines.

We visualize the privacy risk of ReuseKNN DP and our three baselines UserKNN, UserKNN DP , and
UserKNN f ull

DP in Figure 7. We find that our neighborhood reuse strategies combined with DP can
improve user privacy over UserKNN DP . Specifically, a one-tailed Mann-Whitney-U-Test (α = 0.01)
reveals that for our neighborhood reuse strategies on all datasets and for k = 10, users have
significantly less privacy risk than in UserKNN DP .

However, for LastFM, this privacy improvement is smaller than for the other datasets. Due to
the large percentage of vulnerable users for all approaches (see Table 4), most users’ privacy risk
is set to τ due to the application of DP. Thus, the small percentage of secure users is insufficient
to reduce the average privacy risk via neighborhood reuse in the case of LastFM.

Across all datasets, we observe that our unpersonalized neighborhood reuse strategy ExpectDP
yields the best (lowest) privacy risk. This finding is in line with our previous results in Table 4,
which show that ExpectDP performs best with respect to minimizing the percentage of vulnerable
users. Thus, only a few users have a privacy risk of τ , and the high number of secure users enables
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a drastic reduction of the average privacy risk. For example, the average privacy risk of secure
users for a model with k = 10 neighbors for ExpectDP is 11.45 for ML 1M, 18.34 for Douban, 49.92
for LastFM, 15.29 for Ciao, and 18.99 for Goodreads compared with the privacy risk of secure users
for UserKNN DP , which is 50.83 for ML 1M, 62.13 for Douban, 73.42 for LastFM, 21.76 for Ciao, and
41.13 for Goodreads. Additionally, a one-tailed Mann-Whitney-U-Test (α = 0.01) reveals that for
ML 1M, Douban, Ciao, and Goodreads, these differences are significant. Thus, for secure users,
ExpectDP yields a substantially smaller privacy risk than UserKNN DP .

6.2.3 Item Popularity Bias. We test for item popularity bias in ReuseKNN DP ’s recommendations
via comparing ReuseKNN DP to our UserKNN DP baseline with respect to two metrics: Positivity-
Popularity Correlation (PP-Corr) and Item Coverage (Coverage). Plus, we use UserKNN without DP
and UserKNN f ull

DP as additional baselines. Moreover, in the case of PP-Corr, we test for statistically
significant differences between our neighborhood reuse strategies and UserKNN DP (see Table 3).
First and foremost, for ML 1M, Douban, LastFM, and Ciao, the non-DP baseline UserKNN yields
lower PP-Corr values than all remaining methods that use DP. Similarly, applying DP to only
vulnerable users yields lower PP-Corr values than applying DP to all users in the case of ML 1M,
Douban, Ciao, and Goodreads. This fits well to related research [21] arguing that popularity bias
can arise due to the recommender system’s inability to personalize recommendations when DP is
applied.

However, ReuseKNN DP can make the impact of DP on popularity bias less severe, since our
neighborhood reuse strategies yield a lower PP-Corr than the DP baseline UserKNN DP . No notable
differences can be observed for Ciao only. We investigate this in more detail and find that the
neighbors identified by ReuseKNN DP rated more distinct items than the neighbors identified by
UserKNN DP . As shown by related work on item popularity bias in recommender systems (e.g., [1,
39]), users with a larger user profile size tend to consume less popular items, which leads to less
popularity bias. Due to the small number of ratings per user in Ciao (see Table 3), which is similar
to a user cold-start setting [40], no noteworthy effects on popularity bias can be observed.

In addition to PP-Corr, we also evaluate Coverage, i.e., the percentage of items from the entire
item catalog that occur within users’ sets of top items. In general, UserKNN f ull

DP tends to give the
highest item coverage and non-DP UserKNN yields the lowest item coverage. This makes sense
since UserKNN f ull

DP protects all rating data with DP and, thus, the estimated rating scores are more
random than for the remaining approaches. This leads to more randomized recommendations,
and, therefore, to high item coverage [22]. These randomized recommendations also lead to the
fact that, in Table 5, ReuseKNN DP cannot reach the item coverage of UserKNN f ull

DP . However, more
randomized recommendations lead to poorer accuracy than our previous results in Figure 6 show.

Our neighborhood reuse strategies cover fewer items than UserKNN DP only in the case of
LastFM. We underline that these item coverage values are negatively correlated with our accuracy
results in Figure 6. This indicates that for LastFM, there is a trade-off between recommendation
accuracy and item coverage similar to the well-known trade-off between precision and recall [8].

6.2.4 Summary. Overall, our results are in line with the previously presented results for our
non-DP ReuseKNN. Through neighborhood reuse and, thus, reducing the number of users that
need to be protected with DP, recommendation accuracy can be preserved and, in many cases,
even significantly improved over UserKNN DP .

Also, our neighborhood reuse strategies used in ReuseKNN DP lead to significantly smaller pri-
vacy risk than UserKNN DP . In particular, unpersonalized neighborhood reuse (i.e., ExceptDP ) per-
forms best in increasing user privacy. This shows that the combination of neighborhood reuse and
DP provides higher privacy than UserKNN DP .
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Table 5. PP-Corr and Item Coverage for a Model with k = 10 Neighbors

ML 1M Douban LastFM Ciao Goodreads

PP-Corr Coverage PP-Corr Coverage PP-Corr Coverage PP-Corr Coverage PP-Corr Coverage
UserKNN 0.8405 87.94% 0.6780 23.50% 0.7339 6.11% 0.9755 63.19% 0.9318 29.56%
UserKNNDP 0.8742 88.77% 0.7589 26.55% 0.8625 15.54% 0.9758 64.03% 0.9409 31.59%
UserKNNf ull

DP 0.8800 89.53% 0.7675 27.65% 0.8597 15.86% 0.9778 66.72% 0.9523 34.13%
UserKNN+ReuseDP 0.8750 88.37% 0.7523 27.67% 0.8779 15.46% 0.9759 64.26% 0.9407 31.74%
ExpectDP 0.8688 88.83% ∗∗0.7400 28.75% 0.8773 14.32% 0.9767 64.58% ∗∗0.9317 34.69%
GainDP 0.8725 88.07% ∗∗0.7428 28.61% 0.8621 14.77% 0.9769 64.01% 0.9454 31.46%
Best results, i.e., highest for PP-Corr and lowest for Coverage, are in bold. For PP-Corr, a z-Test [32] shows, with **
(α = 0.01) that our neighborhood reuse strategies as utilized in ReuseKNN DP lead to estimated rating scores that are
significantly less correlated with item popularity than in case of UserKNN DP . With respect to item coverage,
especially ExpectDP can cover a larger percentage of the item catalog than UserKNN DP . Overall, our results suggest
that ReuseKNN DP does not increase item popularity bias over UserKNN DP .

Table 6. Mean Absolute Error and Average Privacy Risk Values for our Neighborhood Reuse Strategies
Used in ReuseKNNDP , i.e., ExpectDP and GainDP and for the UserKNNDP Baseline (k = 10)

ML 1M Douban LastFM Ciao Goodreads

MAE Privacy R. MAE Privacy R. MAE Privacy R. MAE Privacy R. MAE Privacy R.
UserKNN 0.80 330.77 0.66 665.17 47.46 844.94 0.78 35.21 0.80 182.26
UserKNNDP 0.82 84.39 0.68 89.86 118.80 103.77 0.81 27.61 0.83 75.71
UserKNNf ul l

DP 0.83 0.00 0.69 0.00 128.41 0.00 0.87 0.00 0.85 0.00
UserKNN+ReuseDP 0.81 87.16 0.68 87.16 118.13 103.56 0.81 26.54 0.83 68.35
ExpectDP

∗∗0.80 ∗∗31.03 0.68 ∗∗43.25 ∗∗111.78 ∗∗86.81 0.82 ∗∗21.53 0.85 ∗∗40.95
GainDP

∗∗0.79 ∗∗35.30 0.68 ∗∗46.57 ∗∗115.31 ∗∗93.95 0.81 ∗∗26.74 ∗∗0.81 ∗∗55.90
Also, we perform a one-tailed Mann-Whitney-U-Test (α = 0.01) and mark (with ∗∗) significantly better (i.e., Lower)
values than UserKNN DP . Overall, personalized neighborhood reuse (i.e., GainDP ) yields the best accuracy and
unpersonalized neighborhood reuse (i.e., ExpectDP ) gives the lowest privacy risk. For Douban and LastFM, ExpectDP
is well-suited as it yields the highest accuracy and lowest privacy risk. For the remaining datasets, all neighborhood
reuse strategies provide a less serious accuracy-privacy trade-off than UserKNN DP .

In addition, we find that for ReuseKNN DP , high estimated rating scores are weaker correlated
to item popularity than in the case of UserKNN DP and that ReuseKNN DP can estimate high rating
scores for more items than UserKNN DP . Thus, ReuseKNN DP does not increase item popularity
bias.

6.3 Discussion
We provide a condensed summary of experimental results (see Table 6) for all evaluated approaches
and all five datasets. Specifically, we present the accuracy (i.e., MAE@k) and average privacy risk
(i.e., PrivacyRisk@k) values for a model with k = 10 neighbors.

Overall, non-DP UserKNN results in low MAE but high privacy risk values. This shows that
approaches without DP sacrifice a user’s privacy for recommendation accuracy. However, our
neighborhood reuse strategies with DP provide a less serious trade-off between recommendation
accuracy and privacy. Thus, in the following, we briefly discuss advantages and disadvantages of
our neighborhood reuse strategies for all five datasets.

Across our neighborhood reuse strategies that are utilized in ReuseKNN DP , in general, person-
alized neighborhood reuse (GainDP ) provides the best recommendation accuracy. Plus, unperson-
alized neighborhood reuse (ExpectDP ) yields the lowest privacy risk. For Douban and LastFM, Ex-
pectDP performs best in both accuracy and privacy risk. Thus, in this case, ExpectDP is well suited
to provide accurate and private recommendations. For ML 1M, Ciao, and Goodreads, no neighbor-
hood reuse strategy provides the best result in both evaluation criteria. Thus, it depends on the
recommender system service provider to decide what strategy could be utilized.
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6.4 Additional Considerations and Experiments
While our experiments reported so far considered a rating prediction task as motivated by our
problem statement in Section 3 (accordingly, we measured accuracy using the MAE [51]), we
perform additional experiments with regards to a ranking-based recommendation scenario and
a neural-based recommender system. Due to space limitations, the results of these are detailed in
the appendices of this article. First, we model a ranking-based recommendation scenario, which is
very common today. Accordingly, we perform experiments using a ranking-based evaluation met-
ric, nDCG [35], and report results in Appendix B. Given the widespread adoption of deep learning
techniques in the latest recommender systems, we also incorporate neighborhood reuse into a pop-
ular neural-based approach, neural collaborative filtering (NeuCF) [29]. The approach and results
are detailed in Appendix C.

Overall, our additional experiments reveal the same pattern of results as discussed above.
That is, the combination of neighborhood reuse and DP can provide a better trade-off between
accuracy and privacy than recommendation methods without neighborhood reuse. This shows
the generalizability of the neighborhood reuse principle for other evaluation scenarios and
recommendation algorithms.

7 CONCLUSION
In this work, we investigate the efficacy of neighborhood reuse for differentially private KNN-
based recommendations. We discuss the proposed approach in a two-stage evaluation procedure:
(i) neighborhood reuse only, ReuseKNN, to distill the impact of neighborhood reuse on recommen-
dation accuracy and on the percentage of users that need to be protected with differential privacy;
and (ii) neighborhood reuse with differential privacy, ReuseKNN DP , to investigate the practical
benefit of neighborhood reuse for differentially private KNN-based recommendations. We find
that ReuseKNN and ReuseKNN DP can substantially reduce the number of users that need to be
protected with DP while outperforming related approaches in terms of accuracy. Also, we high-
light that ReuseKNN DP effectively mitigates users’ privacy risk, as most users are rarely exploited
in the recommendation process. Our work illustrates how to address privacy risks in recommender
systems through neighborhood reuse combined with DP.

Limitations. We recognize two limitations of the proposed approach. To quantify the privacy risk,
we assume that all pieces of data are equally sensitive. In reality, disclosing a particular piece of
information could pose a different level of privacy risk than disclosing another piece of informa-
tion [38, 45]. Also, we focus on a neighborhood-based recommender system, specifically user-based
KNN, instead of neural-based recommender systems. The latter are popular due to their ability to
extract and exploit rich user and item representations for generating recommendations. However,
traditional algorithms, such as user-based KNN, have been shown to perform well in a variety of
real-world use cases [15]. Plus, neighborhood-based recommender systems have the advantage of
providing justifiable recommendations and they incorporate new rating data of users efficiently
without requiring a complete retraining of the whole model from scratch [16]. Nonetheless, we
demonstrate in Appendix C that neighborhood reuse can be generalized to neural-based recom-
mender systems, e.g., NeuCF [29].

Future Work. In this work, we evaluated the proposed approach using datasets of three different
domains (movies, books, and music). Future work will consider additional, more sensitive domains,
such as medicine, finance, insurance, and recruiting. We will also incorporate neighborhood reuse
into other neural-based recommendation models, e.g., BERT4Rec [54]. Plus, we plan to study the
impact of the proposed approach, i.e., neighborhood reuse and differential privacy, on individual
users’ preferences towards long-tail items, e.g., by using the dataset from our previous work on
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fairness in music recommender systems [39]. Hence, our long-term plan is to investigate the inter-
action between privacy and fairness, two key aspects of trustworthy recommender systems.

MATERIALS
The Python-based implementation of our work is publicly available.1 Also, we provide the source
code for generating our sample of the Goodreads dataset. All remaining datasets are publicly avail-
able as well (see Section 5.3).

APPENDICES
A DETAILED DIFFERENTIAL PRIVACY ANALYSIS
Our differential privacy analysis relies on the fact that, even if the adversary is able to infer the
rating used in the recommendation process, it is unaware whether this rating is the neighbor’s
real rating or was randomly generated by ourmDP mechanism. Formally:

Pr [Adversary’s assumption: Real rating | Truth: Real rating]
Pr [Adversary’s assumption: Real rating | Truth: Random rating] = (20)

Pr [Non-DP rating] + Pr [Real rating | DP rating] · Pr [DP rating]
Pr [Random rating | DP rating] · Pr [DP rating] = (21)

Pr [Non-DP rating]
Pr [Random rating | DP rating] · Pr [DP rating] +

Pr [Real rating | DP rating]
Pr [Random rating | DP rating]︸������������������������������������︷︷������������������������������������︸

mDP mechanism

= (22)

1
0.25 ·

Pr [Non-DP rating]
Pr [DP rating] +

0.75
0.25 = (23)

4 ·
PrivacyRisk@k (u )
DataUsage@k (u )

DataUsage@k (u )−PrivacyRisk@k (u )
DataUsage@k (u )

+ 3 = (24)

4 · PrivacyRisk@k (u)

DataUsage@k (u) − PrivacyRisk@k (u)
+ 3 ≤ eϵ (25)

which leads to a privacy parameter of

ϵ = ln ��3 + 4 · PrivacyRisk@k (u)

DataUsage@k (u) − PrivacyRisk@k (u)
��. (26)

In the case of UserKNN f ull
DP , all ratings of a user u are protected with DP and, therefore,

PrivacyRisk@k (u) = 0, which leads to ϵ = ln 3. In the case of UserKNN, no DP is applied at
all and, thus, computing ϵ is not possible since ϵ is part of the DP framework. Therefore, we
set ϵ = ∞. In the case of UserKNN DP and ReuseKNN DP , DP is applied to the rating data of
users, for which the usage of their data exceeds threshold τ . Assuming that u is vulnerable,
then DataUsage@k (u) > τ and PrivacyRisk@k (u) = min[τ ,DataUsage@k (u)]. Therefore, it
follows that 0 < PrivacyRisk@k (u) < DataUsage@k (u). Varying PrivacyRisk@k (u) within these
boundaries yields:

ln 3 < ln ��3 + 4 · 1
DataUsage@k (u) − 1

�� ≤ ϵ ≤ ln ��3 + 4 · (DataUsage@k (u) − 1)�� < ∞. (27)

1https://github.com/pmuellner/ReuseKNN
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This shows that UserKNN DP and ReuseKNN DP provide better privacy than UserKNN, but worse
privacy than UserKNN f ull

DP .
Moreover, via neighborhood reuse, ReuseKNN DP utilizes a vulnerable useru more often as neigh-

bor (with DP-protected data) than UserKNN DP does. Also, note that the privacy risk ofu is the same
for ReuseKNN DP and UserKNN DP . From these observations and Equation (26), we see that the ϵ
value for ReuseKNN DP is smaller than the ϵ value for UserKNN DP . Thus, for vulnerable users, our
neighborhood reuse principle leads to ReuseKNN DP providing better privacy than UserKNN DP .

B EVALUATION OF TOP-N RECOMMENDATIONS
In our article, we show that ReuseKNN DP can achieve better accuracy in terms of the rating predic-
tion metric MAE than a traditional KNN recommender system with DP. In the following, we eval-
uate ReuseKNN DP in a top-n items recommendation setting via the ranking-aware metric nDCG
(Normalized Discounted Cumulative Gain) [35].

B.1 Evaluation Process
To generate a list of recommended items that can be evaluated via nDCG, we select then = 10 items
with the highest predicted rating score for a given target user u [51]. Formally, for a recommender
system model R and k neighbors, a user u’s top-n items are given by:

Rk
top (u) =

narg max
i ∈Qu

Rk (u, i ) (28)

where Qu are the items in u’s query set. We consider items in the test set as relevant if their true
rating exceeds the average rating in the training set of the given dataset.

B.2 Experiments

Our results reveal that ExpectDP and GainDP can yield higher nDCG scores than UserKNN f ull
DP (see

Figure 8). In the case of the ML 1M dataset, ExpectDP and GainDP can even outperform the non-DP
baseline UserKNN. Especially GainDP yields high nDCG scores. Overall, this experiment validates

Fig. 8. nDCG values of each user’s top 10 items. The pattern matches our results reported in Section 6, i.e.,
ReuseKNNDP can yield better accuracy than UserKNNDP . Also, especially personalized neighborhood reuse
(i.e., GainDP ) can preserve accuracy well.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 5, Article 80. Publication date: August 2023.



ReuseKNN: Neighborhood Reuse for Differentially Private KNN-Based Recommendations 80:25

the results of our rating prediction evaluation setting also in a top-n items recommendation
setting.

C EVALUATION OF NEURAL-BASED RECOMMENDATIONS
This work considers rating data as input to the recommender system. However, recommender sys-
tems can also use more complex representations of users and items, i.e., embeddings as generated
by neural network architectures. Therefore, in the following, we demonstrate the generalizability
of our approach for neural-based recommendation methods.

C.1 Generation of Embeddings
To generate user and item embeddings, we rely on a simple approach inspired by the NeuCF [29]
architecture. Specifically, for user u and item i , the predicted rating score yu,i is given by:

yu,i = b + ReLu
(
wxuW

T
u xiWi

)
, (29)

where xu is the id of user u, xi is the id of item i , the size of the embedding layer is d = 16,
Wu ,Wi ∈ Rd , w,b ∈ R, and ReLu is the activation function. We apply Adam [37] with a step size
of α = 0.001 to minimize the MAE betweenyu,i and the rating ru,i . The parameters α and d are set
to the values proposed in [29]. We train the network for 50 epochs and use a batch size of 128. We
stop training if there is no improvement of the training objective for more than 10 epochs. After
training, the user and item embeddings are given by xuWu and xiWi respectively.

C.2 Neural-Based Recommendations
For our neural-based variants of UserKNN—NeuKNN and NeuKNN DP —we calculate the similar-
ity between the target user and the candidate neighbors based on their user embeddings (see
Equation (2)). For NeuKNN+ReuseDP , i.e., an embedding-based variant of ReuseKNN DP , we also use
an embedding-based similarity. Plus, we employ a modified definition of reusability that measures
the reusability of a candidate neighbor c based on the previous t −1 rating queries of target useru:

reusability (c |u, i, t ) =
∑

j ∈Q (t−1)
u

1Nu, j (c ) · sim(i, j ), (30)

where 1Nu, j (c ) is the indicator function of candidate neighbor c being in Nu, j . The item similarity
sim is the cosine similarity between i’s and j’s item embeddings. Therefore, reusability (c |u, i, t ) is
the summed-up item similarity between the target item i and all items j ∈ Q (t−1)

u (i.e., the previous
t − 1 rating queries of u) for which c has been used as neighbor.

C.3 Experiments
In our experiments, we perform evaluation according to the following procedure: First, we ran-
domly split the dataset into 5 equally sized subsets: D1≤i≤5. We select D1 and equally partition it
into the validation data that is used for validating the user and item embeddings and the test data
that is used for evaluating the recommendations. The remaining data, ⋃2≤i≤5 Di , is used to train
the user and item embeddings and to generate recommendations. Next, we select Di and repeat
this procedure for all D2≤i≤5. Eventually, we compute the mean of our evaluation results.

Accuracy. For all datasets, NeuKNN+ReuseDP outperforms our baseline NeuKNN f ull
DP that applies

DP to all users (see Figure 9). For completeness, we also visualize NeuKNN that does not apply
DP at all and, thus, yields higher accuracy than both DP-based methods. Overall, the result for
our embedding-based methods NeuKNN f ull

DP and NeuKNN+ReuseDP are in line with the results of
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Fig. 9. Mean absolute error of our neural-based KNN recommender system variants. Our results indicate
that combining neighborhood reuse with DP (i.e., NeuKNN+ReuseDP ) yields better accuracy (lower MAE)

than neural-based methods that apply DP without neighborhood reuse (i.e., NeuKNN f ull
DP ).

Fig. 10. Logarithmic (base 10) average privacy risk of our neural-based KNN recommender system variants.
Via combining neighborhood reuse and DP, NeuKNN+ReuseDP decreases the users’ average privacy risk
compared with neural-based methods that do not apply DP (i.e., NeuKNN).

our rating-based methods, i.e., that the combination of neighborhood reuse and DP yields better
accuracy on all five investigated datasets than traditional DP-based methods.

Privacy. Our baseline NeuKNN without DP yields the worst privacy risk, whereas NeuKNN f ull
DP

yields a privacy risk of zero since all users are protected with DP (see Figure 10). NeuKNN+ReuseDP
protects only vulnerable users with DP; in this way, its privacy risk lies between our two baselines.
Therefore, also in terms of privacy risk, the results of our embedding-based experiments match
the pattern of the results of our rating-based methods.
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State-of-the-art recommender systems produce high-quality recommendations

to support users in finding relevant content. However, through the utilization

of users’ data for generating recommendations, recommender systems threaten

users’ privacy. To alleviate this threat, often, di�erential privacy is used to protect

users’ data via adding random noise. This, however, leads to a substantial drop

in recommendation quality. Therefore, several approaches aim to improve this

trade-o� between accuracy and user privacy. In this work, we first overview threats

to user privacy in recommender systems, followed by a brief introduction to

the di�erential privacy framework that can protect users’ privacy. Subsequently,

we review recommendation approaches that apply di�erential privacy, and we

highlight research that improves the trade-o� between recommendation quality

and user privacy. Finally, we discuss open issues, e.g., considering the relation

between privacy and fairness, and the users’ di�erent needs for privacy. With this

review, we hope to provide other researchers an overview of the ways in which

di�erential privacy has been applied to state-of-the-art collaborative filtering

recommender systems.

KEYWORDS

di�erential privacy, collaborative filtering, recommender systems, accuracy-privacy

trade-o�, review

1. Introduction

Several previous research works have revealed multiple privacy threats for users in

recommender systems. For example, the disclosure of users’ private data to untrusted

third parties (Calandrino et al., 2011), or the inference of users’ sensitive attributes, such

as gender or age (Zhang et al., 2023). Similarly, also the users themselves care more

about their privacy in recommender systems (Herbert et al., 2021). For these reasons,

privacy-enhancing techniques have been applied, most prominently differential privacy

(DP) (Dwork, 2008). DP injects random noise into the recommender system and formally

guarantees a certain degree of privacy. However, through this random noise, the quality of

the recommendations suffers (Berkovsky et al., 2012). Many works aim to address this trade-

off between recommendation quality and user privacy via carefully applying DP in specific

ways. Friedman et al. (2016) show that in case of matrix factorization, DP can be applied to

three different parts of the recommender system: (i) to the input of the recommender system,

(ii) within the training process of the model, and (iii) to the model after training. However, a

concise overview of works with respect to these three categories does not exist yet.

Frontiers in BigData 01 frontiersin.org
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Therefore, in the paper at hand, we address this gap and identify

26 papers from relevant venues that deal with DP in collaborative

filtering recommender systems. We briefly review these 26 papers

and make two key observations about the state-of-the-art. Firstly,

the vast majority of works use datasets from the same non-sensitive

domain, i.e., movies. Secondly, research on applyingDP aftermodel

training is scarce. Finally, we discuss our findings and present

two open questions that may be relevant for future research: How

does applying DP impact fairness? and How to quantify the user’s

perceived privacy?

Our work is structured as follows: In Section 2, we

present threats to the privacy of users in recommender

systems and additionally, introduce the DP framework.

In Section 3, we precisely outline our methodology for

obtaining the set of 26 relevant papers. In Section 4, we

review these papers and group them into three groups

according to the way in which they apply DP. In Section 5,

we discuss our findings and propose open issues that

we identified.

2. Background

In recent years, users of recommender systems have

shown increasing concerns with respect to keeping their data

private (Herbert et al., 2021). In fact, several research works (Bilge

et al., 2013; Jeckmans et al., 2013; Friedman et al., 2015; Beigi and

Liu, 2020; Majeed and Lee, 2020; Himeur et al., 2022) have revealed

multiple privacy threats, for example, the inadvertent disclosure of

users’ interaction data, or the inference of users’ sensitive attributes

(e.g., gender, age).

Typically, a recommender system utilizes historic interaction

data to generate recommendations. Ramakrishnan et al. (2001)

show that in k nearest neighbors recommender systems, the

recommendations could disclose the interaction data of the

neighbors, i.e., users, whose interaction data is utilized to generate

the recommendations. Similarly, Calandrino et al. (2011) inject

fake users to make the recommendations more likely to disclose

the neighbors’ interaction data, and also, they can infer users’

interaction data based on the public outputs of a recommender

system, e.g., public interaction data or public product reviews.

Furthermore, Hashemi et al. (2022) and Xin et al. (2023) aim to

learn user behavior via observing many recommendations and, in

this way, can disclose parts of a user’s interaction data. Weinsberg

et al. (2012) show that an adversary could infer sensitive attributes,

in this case, gender, based on a user’s interaction data. Their

attack relies on a classifier that leverages a small set of training

examples to learn the correlation between a user’s preferences and

gender. Likewise, Ganhör et al. (2022) show that recommender

systems based on autoencoder architectures are vulnerable to

infer the user’s gender from the latent user representation. The

authors also propose an adversarial training regime to mitigate

this problem. Similarly, also Zhang et al. (2023) infer the age and

gender of users in a federated learning recommender system. In

summary, many of a user’s sensitive attributes can be inferred

via thoroughly analyzing the user’s digital footprint (e.g., the

behavior in a recommender system or social media platform)

(Kosinski et al., 2013).

Overall, the utilization of users’ interaction data for generating

recommendations poses a privacy risk for users. Therefore, privacy-

enhancing techniques, such as homomorphic encryption (Gentry,

2009), federated learning (McMahan et al., 2017), or most

prominently, differential privacy (DP) (Dwork, 2008) have been

applied to protect users’ privacy. Specifically, DP is applied via

injecting noise into the recommender system. This ensures that

the recommender system uses noisy data instead of the real data.

For example, an additive mechanism samples random noise from

the Laplace or Gaussian distribution and adds it to the users’

rating data (Dwork and Roth, 2014). Alternatively, the randomized

responses mechanism flips a fair coin, which decides whether to use

the real data or random data, and this way, ensures DP (Warner,

1965; Dwork and Roth, 2014). Overall, the degree of noise that

is used is defined by the parameter ǫ, i.e., the privacy budget.

Intuitively, the smaller the ǫ-value is, the better the privacy, but

the stronger the expected accuracy drop. Therefore, choosing ǫ is

non-trivial and depends on the specific use case (Dwork, 2008).

3. Review methodology

To conduct our review, we chose relevant conferences in

the field, i.e., ACM SIGIR, TheWebConf, ACM KDD, IJCAI,

ACM CIKM, and ACM RecSys and journals, i.e., TOIS,

TIST, UMUAI, and TKDE. Adopting a keyword-based search,

we identified relevant publications in the proceedings via

querying the full-texts for “differential privacy” and “recommender

system”, “recommend”, “recommendation”, or “recommender”.

We manually checked the resulting papers for their relevance and

retrieved 16 publications. In addition, we conducted a literature

search on Google Scholar using the same keywords and procedure,

which resulted in 10 publications. Overall, we considered 26

publications in the paper at hand.

4. Recommender systems with
di�erential privacy

According to Friedman et al. (2016), DP can be applied

via (i) adding noise to the input of a collaborative filtering-

based recommender system, e.g., the user data or other user

representations, (ii) adding noise to the training process of the

model, i.e., the model updates, or (iii) adding noise to the model

after training, i.e., to the resulting latent factors. In Table 1, we

group the selected publications into these three categories.

4.1. Di�erential privacy applied to the user
representation

In collaborative filtering recommender systems, the input

to the system is typically given by interaction or rating data.

However, more complex user representations exist, e.g., neural-

based user embeddings.

Chen et al. (2020) protect POI (point of interest) interaction

data of users, e.g., a user visited a restaurant, with DP. Specifically,

they use this data to privately calculate POI features, i.e., the
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TABLE 1 Overview of the reviewed 26 publications.

DP applied to

References Domain(s) User represent. Model updates After training

Long et al. (2023) Location •

Müllner et al. (2023) Movies, Music, Books, Social •

Neera et al. (2023) Movies, Jokes, Dating •

Wang et al. (2023) Movies, Music •

Chai et al. (2022) Movies, Location •

Chen et al. (2022) Movies, Music, Books •

Jiang et al. (2022) Movies, Music, Location, Groceries •

Liu et al. (2022) Social •

Ning et al. (2022) Movies •

Ran et al. (2022) Movies, Music •

Ren et al. (2022) Social •

Wu et al. (2022) Advertisement •

Li et al. (2021) Movies, Dating •

Minto et al. (2021) Movies •

Zhang et al. (2021) Movies • •

Chen et al. (2020) Location •

Gao et al. (2020) Movies, Smartphone •

Ma et al. (2019) Health •

Meng et al. (2018) Social •

Shin et al. (2018) Movies, Dating •

Liu et al. (2017) Movies •

Yang et al. (2017) Movies •

Li et al. (2016) Movies •

Hua et al. (2015) Movies • •

Zhu et al. (2013) Movies •

Zhao et al. (2011) Movies •

Wemark whether DP is applied to the user representation, to the model updates, or after training. Domain(s) refers to the domain(s) in which the recommendations are evaluated. We sort the

publications with respect to recency.

number of visitors per restaurant, which are subsequently used

for generating recommendations instead of the DP-protected

interaction data. This way, they can increase recommendation

accuracy. Similarly, Long et al. (2023) use DP to recommend POIs,

but in a decentralized fashion. A central server collects public

data to train a recommendation model and to privately identify

groups of similar users. DP is used for privately calculating user-

user similarities. Then, users locally use information from similar

users, which leads to a better trade-off between recommendation

quality and privacy than comparable approaches.

Liu et al. (2017) add noise to users’ rating data and to the user-

user covariancematrix to ensure DP of a KNN-based recommender

system. They show that this leads to better privacy than in case only

the covariance matrix is protected via DP. Besides revealing users’

rating data, an attacker could also aim to infer sensitive attributes

(e.g., gender) of the users. Therefore, Chai et al. (2022) propose an

obfuscation model to protect gender information. After applying

this obfuscation model, users protect their data via DP and send it

to a central server. Yang et al. (2017) use the Johnson-Lindenstrauss

transform (Blocki et al., 2012), i.e., they ensure DP via multiplying

the original interaction matrix with a random matrix. Using this

protectedmatrix, their approach guarantees differential privacy and

also can even generate more accurate recommendations than a

non-private approach. Neera et al. (2023) underline that adding

Laplacian noise can lead to “unrealistic” rating values, i.e., outside

the rating range, and through this, recommendation accuracy

can drop severely. Therefore, they bound the noisy ratings to

a “realistic” value range without harming DP. Plus, they use a

Gaussian mixture model to estimate and then remove noise in the

recommendation process to keep recommendation accuracy.

Cross-domain recommendation models can increase

recommendation accuracy in the target domain by exploiting

data from multiple source domains. To protect user privacy when

data from the source domain is made available to the target domain,

Frontiers in BigData 03 frontiersin.org



Müllner et al. 10.3389/fdata.2023.1249997

Chen et al. (2022) use the Johnson-Lindenstrauss transform. Due

to the high sparsity of the rating matrix, they employ a variant

that performs better when applied to sparse matrices (Ailon

and Chazelle, 2009). Ren et al. (2022) utilize data from different

social network platforms to generate recommendations and

apply DP to the user attributes and the connections in the social

network graphs. Plus, they apply a variant of DP to protect

textual data (Fernandes et al., 2019). Moreover, to increase the

click-through rate for recommended advertisements, Wu et al.

(2022) leverage user interaction data from multiple platforms.

First, user embeddings are generated per platform and then

protected with DP. Second, the recommender system collects and

aggregates a user’s DP-protected embeddings across platforms

and then applies DP again to the aggregated user embedding.

According to the authors, applying DP after aggregation allows

for smaller noise levels when applying DP to the per-platform

user embeddings, which results in higher accuracy. Typically,

many users use a variety of different online platforms. Therefore,

Li et al. (2016) leverage these multiple data sources per user to

increase recommendation accuracy. Specifically, they combine

DP-protected item-item similarities from dataset B as auxiliary

data that helps to generate more accurate recommendations for

users in dataset A (cf. Zhao et al., 2011).

Gao et al. (2020) compute item-item similarities by using DP-

protected user interaction data. With these item-item similarities,

users can locally generate recommendations on their own devices,

therefore not harming their privacy. The item-based KNN

recommender system proposed by Zhu et al. (2013) utilizes DP

in two ways: First, they randomly rearrange the most similar

neighbors to foster privacy. Second, they measure how the item-

item similarity changes if a specific user interaction was not present,

and with this, they add the necessary level of noise to the users’

interactions. This way, recommendation accuracy can be better

preserved than with approaches that apply the same level of noise

to all user interactions. For user-based KNN, Müllner et al. (2023)

identify neighbors that can be reused for many recommendations.

This way, only a small set of users are used as neighbors for many

recommendations and need to be protected with DP. Many users,

however, are only rarely utilized as neighbors and therefore do not

need to be protected with DP. Overall, this yields more accurate

recommendations than in case DP needs to be applied to all users.

4.2. Di�erential privacy applied to the
model updates

Some recommender systems do not process user data and

create user representations on a central server, instead, they

compute the model updates, i.e., gradients, locally on their users’

device. Then, the recommender system collects these gradients to

adapt its recommendation model. To prohibit the leakage of user

data through these gradients (Bagdasaryan et al., 2020), DP can

be applied.

For example, Hua et al. (2015) add noise to the gradients of

the recommendation model to ensure DP. However, due to the

sparsity of the gradients, the application of DP can be ineffective

and information about what items have been rated by the user

can be disclosed. To address this problem, Shin et al. (2018) use

DP to mask whether a user appears in the dataset. Also, they

formally show that the noise added to the gradients hinders a

fast convergence of the recommendation model, and in this way,

increases the training time. Therefore, they introduce a stabilization

factor to enable better training of the recommendation model.

Wang et al. (2023) propose a recommender system that uses a

special DP-mechanism (Zhao et al., 2020) to simultaneously protect

the rating values and the set of items that is rated by a user.

The DP-protected item-vectors are then send to a central server,

which performs dimensionality reduction to reduce the accuracy

drop (cf. Shin et al., 2018). In Minto et al. (2021), users receive

a global model from a central server and, then, compute their

respective updates locally. These updates are protected via DP,

before being sent back to the server. Plus, the number of updates

per user are restricted to further improve privacy. Moreover, the

authors highlight that high-dimensional gradients can negatively

impact the recommendation quality, as they are especially prone

to higher sparsity (cf. Hua et al., 2015; Shin et al., 2018). When

DP is applied, the gradients become denser since noise is added

to the entire gradient, including the zero-entries. This, in practice,

leads to additional communication overhead, since all non-zero-

entries need to be transmitted (Ning et al., 2022). Therefore,

Ning et al. only add noise to the non-zero gradients. This way,

the communication overhead is reduced; however, DP cannot be

guaranteed anymore.

Jiang et al. (2022) reduce the accuracy drop via an adaptive

DP mechanism that depends on the number of training steps.

Intuitively, after many training steps, the model fine-tunes its

predictions and the gradients need to be measured more accurately

than during the beginning of the model training. Thus, they add

more noise in the beginning and less noise in the end of the training

process. This yields more accurate recommendations than a static

DP mechanism that always adds the same level of noise. Li et al.

(2021) also use noisy model updates to ensure DP. They observe

that noise can lead to large values for the user embeddings, which

increases the sensitivity and therefore also the level of noise that

is required to ensure DP. To foster recommendation quality, they

map the user embeddings to a certain range, which bounds the

sensitivity and requires less noise. Liu et al. (2022) leverage user

interactions and social connections to generate recommendations

via a federated graph neural network. To ensure DP, they add noise

to the gradients that are sent to a central server. However, gradients

with different magnitudes have different sensitivities (cf. Li et al.,

2021), and thus, need a different level of noise to ensure DP.

Therefore, they fit the noise level to the gradient magnitudes to

satisfy DP, but also, to preserve recommendation accuracy.

Ma et al. (2019) employ federated tensor factorization in

the health domain. A global model is distributed to hospitals,

which locally update the model based on their data. To protect

privacy, a variant of DP is applied to the model updates, which

are subsequently sent to the global server to adapt the global

model. Meng et al. (2018) randomly divide users’ ratings into non-

sensitive and sensitive ratings. For sensitive ratings, they apply

more noise than for non-sensitive ratings.With this, their approach

can preserve higher recommendation accuracy than in case the

same noise level is used for sensitive and non-sensitive data.
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FIGURE 1

Overview of the main concepts of the reviewed papers. Use auxiliary data to foster accuracy refers to the incorporation of data from other domains,

datasets or users to increase recommendation accuracy. Reduce noise level that is needed refers to designing recommender systems that require a

minimal amount of noise to ensure DP. Limit where/when to apply DP refers to carefully minimizing the application of DP. Other refers to

approaches that do not fit into the previous categories.

4.3. Di�erential privacy applied after
training

Only few works apply DP to the recommendation model after

training. In case of a matrix factorization approach, noise can be

added to the learned user- and item-vectors to ensure DP. Our

selected publications (see Section 3) do not include any works that

apply DP exclusively to the model after training. Nevertheless, we

describe works that apply DP to the user representation or the

model updates, but also after training.

For example, Hua et al. (2015) consider a matrix factorization

model, where the model sends item-vectors back to the users and

this way, users’ data can get leaked. To prohibit this, Hua et al.

perturb the model’s objective function after training via adding

noise to the latent item-vectors. Similarly, Ran et al. (2022) also

use DP to prohibit data leakage through the item-vectors that

are sent to the users. Specifically, a trusted recommender system

generates a matrix factorization model. Instead of publishing the

item-vectors of this model, they learn new item-vectors on the

DP-protected user-vectors. Through this, they can minimize the

noise that is introduced and thus, can improve recommendation

accuracy over comparable approaches. Zhang et al. (2021) apply

DP to the user representation and also, to the model after training.

Specifically, they use a polynomial approximation of the model’s

loss function to efficiently compute the sensitivity of the dataset

and, accordingly, adapt the level of noise that is added to the

loss function.

5. Summary and open questions

In this review, we investigate research works that apply DP

to collaborative filtering recommender systems. We identify 26

relevant works and categorize these based on how they apply DP,

i.e., to the user representation, to themodel updates, or to themodel

after training (see Table 1). In addition, we briefly summarize these

relevant works to obtain a broad overview of the state-of-the-art.

Furthermore, we identify the main concepts of the relevant works

in Figure 1 to help readers to understand in which diverse ways the

reviewed papers apply DP to improve the accuracy-privacy trade-

off. Our main findings from reviewing the discussed literature are

two-fold: (i) The majority of works use datasets from the same non-

sensitive domain, i.e., movies, and (ii) applying DP to the model

after training seems to be an understudied topic.

Many research works use datasets from the movie domain,

which, in general, does not include sensitive data. For research

on DP in collaborative filtering recommender systems, however,

datasets from sensitive domains may be better suited to resemble

real-world privacy threats well. For example, datasets from the

health, finance, or job domain. Moreover, the majority of research

focuses on either applying DP to the user representation or to the

model updates. Research on applying DP to themodel after training

is scarce, and therefore, this opens up the possibility of future work

to fill this gap.

Our review of relevant work allows to grasp the state-of-the-art

and to identify the following open research questions:
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Q1: How does applying DP impact fairness? Dwork et al. (2012)

and Zemel et al. (2013) suggest that in theory, privacy can lead

to fairness and fairness can lead to privacy. The reason is that for

both, a user’s data shall be hidden, either to ensure privacy or to

prohibit discrimination based on this data. However, in practice,

correlations in private data can still lead to unfairness (Ekstrand

et al., 2018; Agarwal, 2020). Only recently, Yang et al. (2023)

and Sun et al. (2023) investigate the connection between privacy

and fairness in recommender systems. For example, Sun et al.

(2023) use DP-protected information to re-rank the items in the

recommendation list and in this way, increase a more fair exposure

of items. Nonetheless, the impact of DP on fairness remains an

understudied topic.

Q2: How to quantify the user’s perceived privacy? Users perceive

privacy differently, e.g., some users tolerate disclosing their gender,

while others refuse to do this (Joshaghani et al., 2018). This

perceived privacy depends on many factors, e.g., context or

situational factors (Knijnenburg and Kobsa, 2013; Mehdy et al.,

2021). However, measuring users’ perceived privacy is hard and is

usually done via questionnaires (Knijnenburg and Kobsa, 2013).

This is in stark contrast to how privacy is measured in the DP

framework, i.e., via quantifying to what extent the data impacts the

output of the recommender system. Therefore, developingmethods

to better quantify users’ privacy is an important future research

avenue.
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Abstract. Research has shown that recommender systems are typically
biased towards popular items, which leads to less popular items being
underrepresented in recommendations. The recent work of Abdollahpouri
et al. in the context of movie recommendations has shown that this pop-
ularity bias leads to unfair treatment of both long-tail items as well as
users with little interest in popular items. In this paper, we reproduce
the analyses of Abdollahpouri et al. in the context of music recommen-
dation. Specifically, we investigate three user groups from the Last.fm
music platform that are categorized based on how much their listen-
ing preferences deviate from the most popular music among all Last.fm
users in the dataset: (i) low-mainstream users, (ii) medium-mainstream
users, and (iii) high-mainstream users. In line with Abdollahpouri et al.,
we find that state-of-the-art recommendation algorithms favor popular
items also in the music domain. However, their proposed Group Aver-
age Popularity metric yields different results for Last.fm than for the
movie domain, presumably due to the larger number of available items
(i.e., music artists) in the Last.fm dataset we use. Finally, we compare
the accuracy results of the recommendation algorithms for the three user
groups and find that the low-mainstreaminess group significantly receives
the worst recommendations.

Keywords: Algorithmic fairness · Recommender systems · Popularity
bias · Item popularity · Music recommendation · Reproducibility

1 Introduction

Recommender systems are quintessential tools to support users in finding rel-
evant information in large information spaces [10]. However, one limitation of
typical recommender systems is the so-called popularity bias, which leads to the
underrepresentation of less popular (i.e., long-tail) items in the recommendation
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(a) Long-tail of listening counts. (b) Popular artists in user profiles.

Fig. 1. Listening distribution of music artists. We find that around 1/3 (i.e., 1,000) of
our users actually listen to at least 20% of unpopular artists.

lists [1,4,5]. The recent work of Abdollahpouri et al. [2] has investigated this
popularity bias from the user perspective in the movie domain. The authors
have shown that state-of-the-art recommendation algorithms tend to underserve
users, who like unpopular items.

In this paper, we reproduce this study and conduct it in the music domain.
As described in [16], there are several aspects of music recommendations that
make them different to, e.g., movie recommendations such as the vast amount
of available items. Therefore, we investigate music recommendations concerning
popularity bias and, for reasons of comparability, raise the same two research
questions as in [2]:

– RQ1 : To what extent are users or groups of users interested in popular music
artists?

– RQ2 : To what extent does the popularity bias of recommendation algorithms
affect users with different inclination to mainstream music?

For our experiments, we use a publicly available Last.fm dataset and address
RQ1 in Sect. 2 by analyzing the popularity of music artists in the user pro-
files. Next, we address RQ2 in Sect. 3 by comparing six state-of-the-art music
recommendation algorithms concerning their popularity bias propagation.

2 Popularity Bias in Music Data

For our reproducibility study, we use the freely available LFM-1b dataset [14].
Since this dataset contains 1.1 billion listening events of more than 120,000
Last.fm users and thus is much larger than the MovieLens dataset used in [2],
we focus on a subset of it. Precisely, we extract 3,000 users that reflect the three
user groups investigated in [2]. To this end, we use the mainstreaminess score,
which is available for the users in the LFM-1b dataset and which is defined as the
overlap between a user’s listening history and the aggregated listening history
of all Last.fm users in the dataset [3]. It thus represents a proxy for a user’s
inclination to popular music.
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(a) Number of popular artists. (b) Average popularity of artists.

Fig. 2. Correlation of user profile size and the popularity of artists in the user profile.
While there is a positive correlation between profile size and number of popular artists,
there is a negative correlation between profile size and the average artist popularity.

Our subset consists of the 1,000 users with lowest mainstreaminess scores
(i.e., the LowMS group), the 1,000 users with a mainstreaminess score around
the median (i.e., the MedMS group), and the 1,000 users with the highest main-
streaminess scores (i.e., the HighMS group). In total, we investigate 1,755,361
user-artist interactions between 3,000 users and 352,805 music artists. Compared
to the MovieLens dataset with only 3,900 movies that Abdollahpouri et al. [2]
have used in their study, our itemset is, consequently, much larger.

Listening Distribution of Music Artists. Fig. 1 depicts the listening dis-
tribution of music artists in our Last.fm dataset. As expected, in Fig. 1a, we
observe a long-tail distribution of the listener counts of our items (i.e., artists).
That is, only a few artists are listened to by many users, while most artists (i.e.,
the long-tail) are only listened to by a few users. Furthermore, in Fig. 1b, we plot
the ratio of popular artists in the profiles of our 3,000 Last.fm users. As in [2],
we define an artist as popular if the artist falls within the top 20% of artists with
the highest number of listeners. We see that around 1,000 of our 3,000 users (i.e.,
around 1/3) have at least 20% of unpopular artists in their user profiles. This
number also corresponds to the number of low-mainstream users we have in the
LowMS user group.

User Profile Size and Popularity Bias in Music Data. Next, in Fig. 2, we
investigate if there is a correlation between the user profile size (i.e., number of
distinct items/artists) and the popularity of artists in the user profile. Therefore,
in Fig. 2a, we plot the number of popular artists in the user profile over the profile
size As expected, we find a positive correlation (R = .965) since the likelihood
of having popular artists in the profile increases with the number of items in
the profile. However, when plotting the average popularity of artists in the user
profile over the profile size in Fig. 2b, we find a negative correlation (R = −.372),
which means that users with a smaller profile size tend to listen to more popular
artists. As in [2], we define the popularity of an artist as the ratio of users who
have listened to this artist.
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(a) Random. (b) MostPopular. (c) UserItemAvg.

(d) UserKNN. (e) UserKNNAvg. (f) NMF.

Fig. 3. Correlation of artist popularity and recommendation frequency. For all six
algorithms, the recommendation frequency increases with the artist popularity.

Concerning RQ1, we find that one-third of our Last.fm users have at least
20% of unpopular artists in their profiles and thus, are also interested in low-
mainstream music. Furthermore, we find that users with a small profile size
tend to have more popular artists in their profiles than users with a more exten-
sive profile size. These findings are in line with what Abdollahpouri et al. have
found [2].

3 Popularity Bias in Music Recommendation

In this section, we study popularity bias in state-of-the-art music recommen-
dation algorithms. To foster the reproducibility of our study, we calculate and
evaluate all recommendations with the Python-based open-source recommenda-
tion toolkit Surprise1. Using Surprise, we formulate our music recommendations
as a rating prediction problem, where we predict the preference of a target user
u for a target artist a. We define the preference of a for u by scaling the listening
count of a by u to a range of [0, 1000] as also done in [15]. We then recommend
the top-10 artists with the highest predicted preferences.

Recommendation of Popular Music Artists. We use the same evaluation
protocol (i.e., 80/20 train/test split) and types of algorithms as in [2], which
includes (i) baseline approaches, (ii) KNN-based approaches, and (iii) Matrix
Factorization-based approaches. Specifically, we evaluate three baselines, i.e.,
Random, MostPopular, and UserItemAvg, which predicts the average listening
count in the dataset by also accounting for deviations of u and a (e.g., if u tends

1 http://surpriselib.com/.
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Fig. 4. Group Average Popularity (Δ GAP) of recommendation algorithms for LowMS,
MedMS and HighMS. Except for the Random and NMF algorithms, all approaches
provide too popular artist recommendations for all three user groups.

to have in general more listening events than the average Last.fm user) [6]. We
also evaluate the two KNN-based approaches [13] UserKNN and UserKNNAvg,
which is a hybrid combination of UserKNN and UserItemAvg. Finally, we include
NMF (Non-Negative Matrix Factorization) into our study [9]. To reduce the
computational effort of our study, in our evaluation, we exclude ItemKNN [12] as
well as SVD++ [11] in contrast to [2]. In Fig. 3, we plot the correlation of artist
popularity and how often the six algorithms recommend these artists. For all
algorithms except for Random, we find a positive correlation, which means that
popular items are recommended more often than unpopular items. As expected,
this effect is most evident for the MostPopular algorithm and not present at
all for the Random algorithm. It also seems that this popularity bias is not as
strong in the case of NMF, which we will investigate further in the next section
of this paper.

Popularity Bias for Different User Groups. To investigate the popularity
bias of music recommendations for different user groups (i.e., LowMS, MedMS,
and HighMS), we use the Group Average Popularity (GAP ) metric proposed
in [2]. Here, GAP (g)p measures the average popularity of the artists in the user
profiles p of a specific user group g. We also define GAP (g)r, which measures the
average popularity of the artists recommended by a recommendation algorithm
r to the users of group g. For each algorithm and user group, we are interested
in the change in GAP (i.e., ΔGAP ), which shows how the popularity of the
recommended artists differs from the expected popularity of the artists in the
user profiles. Hence, ΔGAP = 0 would indicate fair recommendations in terms
of item popularity, where fair means that the average artist popularity of the
recommendations a user receives matches the average artist popularity in the

user’s profile. It is given by: ΔGAP =
GAP (g)r−GAP (g)p

GAP (g)p
.
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Table 1. MAE results (the lower, the better) for four personalized recommendation
algorithms and our three user groups. The worst (i.e., highest) results are always given
for the LowMS user group (statistically significant according to a t-test with p < .005
as indicated by ∗∗∗). Across the algorithms, the best (i.e., lowest) results are provided
by NMF (indicated by bold numbers).

User group UserItemAvg UserKNN UserKNNAvg NMF

LowMS 42.991∗∗∗ 49.813∗∗∗ 46.631∗∗∗ 38.515∗∗∗

MedMS 33.934 42.527 37.623 30.555

HighMS 40.727 46.036 43.284 37.305

All 38.599 45.678 41.927 34.895

In Fig. 4, we plot the ΔGAP for our six algorithms and three user groups. In
contrast to the results presented in [2], where the LowMS group (i.e., the niche
users) receives the highest values, we do not observe a clear difference between
the groups except for MostPopular. We think that this is the case because of
the large number of items we have in our Last.fm dataset (i.e., 352,805 artists
compared to 3,900 movies in MovieLens). However, in line with Fig. 3, we again
find that Random and NMF provide the fairest recommendations.

To further investigate RQ2, we analyze the Mean Average Error (MAE) [17]
results of the four personalized algorithms for our user groups. As shown in
Table 1, the LowMS group receives significantly worse (according to a t-test)
recommendations than MedMS and HighMS for all algorithms. Interestingly, the
MedMS group gets the best recommendations, probably since the users in this
group have the largest profiles (i.e., on average 715 artists per user as compared
to around 500 for the other two groups). Across the algorithms, NMF provides
the best results. This is especially of interest since NMF also provided the fairest
results in terms of artist popularity across the personalized algorithms.

4 Conclusion and Future Work

In this paper, we reproduced the study of [2] on the unfairness of popularity
bias in movie recommender systems, which we adopted to the music domain.
Similar to the original paper, we find (i) that users only have a limited interest
in popular items (RQ1 ) and (ii) that users interested in unpopular items (i.e.,
LowMS) receive worse recommendations than users interested in popular items
(i.e., HighMS). However, we also find that the proposed GAP metric does not
provide the same results for Last.fm as it does for MovieLens, probably due to
the high number of available items.

For future work, we plan to adapt this GAP metric in order to make it more
robust for various domains. Furthermore, we want to study the characteristics of
the LowMS users in order to better understand why they receive the worst rec-
ommendations and to potentially overcome this with novel algorithms (e.g., [7]).
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Abstract
Music recommender systems have become an integral part of music streaming
services such as Spotify and Last.fm to assist users navigating the extensive music
collections offered by them. However, while music listeners interested in mainstream
music are traditionally served well by music recommender systems, users interested
in music beyond the mainstream (i.e., non-popular music) rarely receive relevant
recommendations. In this paper, we study the characteristics of beyond-mainstream
music and music listeners and analyze to what extent these characteristics impact the
quality of music recommendations provided. Therefore, we create a novel dataset
consisting of Last.fm listening histories of several thousand beyond-mainstream
music listeners, which we enrich with additional metadata describing music tracks
and music listeners. Our analysis of this dataset shows four subgroups within the
group of beyond-mainstream music listeners that differ not only with respect to their
preferred music but also with their demographic characteristics. Furthermore, we
evaluate the quality of music recommendations that these subgroups are provided
with four different recommendation algorithms where we find significant differences
between the groups. Specifically, our results show a positive correlation between a
subgroup’s openness towards music listened to by members of other subgroups and
recommendation accuracy. We believe that our findings provide valuable insights for
developing improved user models and recommendation approaches to better serve
beyond-mainstream music listeners.

Keywords: Music recommender systems; Acoustic features; Last.fm; Clustering; User
modeling; Fairness; Popularity bias; Beyond-mainstream users

1 Introduction
In the digital era, users have access to continually increasing amounts of music via music
streaming services such as Spotify and Last.fm. Music recommender systems have become
an essential means to help users deal with content and choice overload as they assist users
in searching, sorting, and filtering these extensive music collections. Simultaneously, both
music listeners and artists benefit from the employed segmentation and personalization
approaches that are typically leveraged in music recommendation approaches [1]. As a
result, users with different preferences and needs can be targeted in various ways with the

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Figure 1 Recommendation accuracy measured by
the mean absolute error (MAE) of a non-negative
matrix factorization-based approach (i.e., NMF [10])
and a neighborhood-based approach (i.e., UserKNN
[11]) for mainstream and beyond-mainstream user
groups in Last.fm. We see that beyond-mainstream
users receive a substantially lower recommendation
quality (i.e., higher MAE) compared to mainstream
music listeners. Thus, for recommender systems, it is
harder to provide high-quality recommendations to
beyond-mainstream than to mainstream listeners

goal that all users are presented the information and content that they need or prefer. This
also means that current recommendation techniques should serve all users equally well,
independent of their inclination to popular content.

Present work In the paper at hand, we focus on music consumers who listen to music be-
yond the mainstream (i.e., users who listen to non-popular music) in the music streaming
platform Last.fm.1 As highlighted in Fig. 1, current recommender systems do not work
well for consumers of beyond-mainstream music (see Sect. 3.5 for details on this anal-
ysis). In contrast, music consumers who listen to popular music seem to get better rec-
ommendations. This finding is not essentially new. In fact, it is a widely-known problem
that recommender systems (and those based on collaborative filtering, in particular) are
prone to popularity bias, which leads to the behavior that long-tail items (i.e., items with
few user interactions) have little chance being recommended. This phenomenon is also
present across different application domains such as movies [2] or music [3].

Our previous work [4] has shown that users interested in beyond-mainstream music
tend to have larger user profile sizes (i.e., individual users show a high(er) number of dis-
tinct artists they have listened to) compared to users interested in mainstream music.
The observation that beyond-mainstream music listeners produce a substantial amount
of digital footprints motivates the need to improve the recommendation quality for this
group. However, although related research has already studied the long-tail recommen-
dation problem (e.g., [5–8]; see Sect. 2 for a more detailed discussion of related work), it
is still a fundamental challenge to understand and identify the characteristics of beyond-
mainstream music and beyond-mainstream music listeners. Additionally, related work [9]
has shown that the group-specific concepts of openness and diversity influence recom-
mendation quality, where openness is defined as across-group diversity (i.e., do users of
one group listen to the music of other groups?) and diversity is defined as within-group
variability (i.e., how dissimilar is the music listened to by users within groups?). Thus, we
are also interested in the correlation between the characteristics of beyond-mainstream
music and music listeners with openness and diversity patterns as well as with recommen-
dation quality. Concretely, our work is guided by the following research question:

RQ: What are the characteristics of beyond-mainstream music tracks and music listeners,
and how do these characteristics correlate with openness and diversity patterns as well as
with recommendation quality?

1https://www.last.fm/
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To address this research question, we create, provide, and analyze a novel dataset called
LFM-BeyMS, which contains complete listening histories of more than 2000 beyond-
mainstream music listeners mined from the Last.fm music streaming platform. Besides,
our dataset is enriched with acoustic features and genres of music tracks. Using this en-
riched dataset, we identify different types of beyond-mainstream music via unsupervised
clustering applied to the acoustic features of music tracks. We then characterize the result-
ing music clusters using music genres. Then, we assign beyond-mainstream users to the
clusters to further divide the beyond-mainstream users into subgroups. We study how
the characteristics of these beyond-mainstream subgroups correlate with openness and
diversity patterns as well as with recommendation quality measured through prediction
accuracy.

Findings and contributions We identify four clusters of beyond-mainstream music in
our dataset: (i) Cfolk, music with high acousticness such as “folk”, (ii) Chard, high energy
music such as “hardrock”, (iii) Cambi, music with high acousticness and high instrumental-
ness such as “ambient”, and (iv) Celec, music with high energy and high instrumentalness
such as “electronica”. By assigning users to these clusters, we get four distinct subgroups
of beyond-mainstream music listeners: (i) Ufolk, (ii) Uhard, (iii) Uambi, and (iv) Uelec. We
also find that these groups differ considerably with respect to the accuracy of recommen-
dations they receive, where group Uambi gets significantly better recommendations than
Uhard. When relating our results to openness and diversity patterns of the subgroups, we
find that Uambi is the most open but least diverse group, while Uhard is the least open but
most diverse group. This is in line with related research [9], which has shown that open-
ness is stronger correlated with accurate recommendations than diversity. This means that
users are more likely to accept recommendations from different groups (i.e., openness)
rather than varied within a group (i.e., diversity).

Summed up, our contributions are:
• We identify more than 2000 beyond-mainstream music listeners on the Last.fm

platform and enrich their listening profiles with acoustic features and genres of music
tracks listened to (Sects. 3.1–3.4).

• We validate related research by showing that beyond-mainstream music listeners
receive a significantly lower recommendation accuracy than mainstream music
listeners (Sect. 3.5).

• We identify four clusters of beyond-mainstream music using unsupervised clustering
and characterize them with respect to acoustic features and music genres (Sect. 4.1).

• We define four subgroups of beyond-mainstream music listeners by assigning users to
the music clusters and discuss the relationship between openness, diversity, and
recommendation quality of these groups (Sect. 4.2).

• To foster reproducibility of our research, we make available our novel LFM-BeyMS
dataset via Zenodo2 and the entire Python-based implementation of our analyses via
Github.3

We believe that our findings provide useful insights for creating user models and recom-
mendation algorithms that better serve beyond-mainstream music listeners.

2https://doi.org/10.5281/zenodo.3784764
3https://github.com/pmuellner/supporttheunderground
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2 Related work
We identify three strands of research that are relevant to our work: (i) modeling of mu-
sic preferences, (ii) long-tail recommendations, and (iii) popularity bias in music recom-
mender systems.

Modeling of music preferences A multitude of factors [12] influences musical tastes and
musical preferences of users. Characteristics of music listeners and music preferences have
been studied in various research domains [13], ranging from music sociology [14] and psy-
chology [15] to music information retrieval and music recommender systems [1]. Stud-
ies on music listening behavior showed that personal traits and long-term music prefer-
ences are correlated as people tend to prefer music styles that align with their personalities
[16, 17]. Furthermore, related work found a relationship between music and motivation
[18], music and emotion [19–22] or both personality and emotion [23]. Openness, a per-
sonality trait from the Five Factor Model [24], has also been shown to positively influence
a user’s preference for music recommendations [9]. Specifically, the authors of [9] found
that people tend to prefer recommendations from different kinds of music (i.e., open-
ness) rather than varied within a specific kind of music (i.e., diversity). Others showed
that familiarity has a positive influence on music preferences [25, 26] and that music pref-
erences may change over time [27]. Another strand of research on modeling users’ music
preferences leverages content features, e.g., acoustic features. It has been shown that the
distribution of acoustic features of a user’s preferred genre substantially influences the
user’s choice of music within other genres [28]. Also, acoustic features have been utilized
to model users’ preferences under different contextual conditions, in order to refine rec-
ommendation quality [29]. Based on tracks’ acoustic features, the authors of [30] identi-
fied several types of music, and subsequently modeled each user by linearly combining
the acoustic features of the music types. In contrast to these works, we focus on using
acoustic features of music tracks for modeling and clustering beyond-mainstream music.
Additionally, we link these beyond-mainstream music clusters to music genres and users
in our Last.fm data sample.

Long-tail recommendations Related research [6, 7] has found that individual music con-
sumption is biased towards popular music and that usage data for less popular music is
scarce. Due to the scarcity problem, items with no or few ratings (i.e., long-tail items) have
little chance of being recommended [5]. As a consequence, users that particularly favor
items with few ratings or interactions are less likely to be recommended those items that
they like [3]. That is problematic because many users, from time to time, prefer niche
music [8]. Therefore, such users are not well served as a result of their preference for
less popular items. That has been attributed to popularity bias, which corresponds to
over-representation of popular items in the recommendation lists [31–33]. Abdollahpouri
et al. [2] studied popularity bias in a dataset of movies (i.e., the MovieLens 1M dataset
[34]) from the user perspective. Their study showed that commonly used recommenda-
tion techniques tend to deliver worse recommendations to users who prefer less popular
movies. In our work [4], we found evidence for popularity bias in a Last.fm dataset and
showed that traditional personalized recommendation algorithms such as collaborative
filtering deliver worse recommendations for consumers of niche music. In the present
work, we aim to gain a deeper understanding of the behavior and preferences of this
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beyond-mainstreaminess user group. Thus, in contrast to existing works in long-tail rec-
ommendations, we focus on the user rather than the item perspective.

Popularity bias in music recommender systems Music recommender systems [1] are cru-
cial tools in online streaming services such as Last.fm, Pandora, or Spotify. They help users
find music that is tailored to their preferences. The basis of music recommender systems
are user models derived from users’ listening behavior, user properties such as personality
(e.g., [35]), content features of music, or hybrid combinations of both, e.g., [36–39]. As dis-
cussed earlier, due to insufficient amounts of usage data for less popular items, many mu-
sic recommendation algorithms do not provide useful recommendations for consumers
of less popular and niche items. As a remedy, in [40], an approach is suggested that di-
vides music consumers into experts and novices according to their long tail distribution
in their playlists. These experts are then converted to nodes with bidirectional links con-
necting all the experts. These links are created to perform link analysis on the graph and to
assign fine-grained weights to songs. The presented approach helps add music from the
long-tail into the recommendation list. In our previous research [41, 42], we have used
a framework [43] that employs insights from human memory theory to design a music
recommendation algorithm that provides more accurate recommendations than collabo-
rative filtering-based approaches for three groups of users, i.e., low-mainstream, medium-
mainstream and high-mainstream users. While the awareness of popularity bias in mu-
sic recommender systems increases (e.g., [44]), the characteristics of music consumers
whose preferences lie beyond popular, mainstream music are still not well understood. In
the present work, we shed light on the characteristics of such beyond-mainstream music
consumers and relate them to openness and diversity patterns as well as recommendation
quality. With this, we aim to provide useful insights for creating novel music recommen-
dation models that mitigate popularity bias.

3 Preliminaries
We investigate the characteristics of beyond-mainstream music listeners in a dataset
mined from Last.fm, a popular music streaming platform. We characterize the tracks in
our dataset with acoustic features. Besides, we compare the recommendation accuracy of
beyond-mainstream music listeners with the one of mainstream music listeners to moti-
vate our subsequent analysis of the characteristics of beyond-mainstream music listeners.

3.1 Acoustic music features
For our analyses, we characterize music tracks using acoustic features that describe the
content of a given track. Following the lines of, e.g., [30, 45–47], we rely on acoustic fea-
tures provided by the Spotify API as a compact characterization of tracks.4 The following
eight features are extracted from the audio signal of a track:

Danceability captures how suitable a track is for dancing and is computed based “on a
combination of musical elements including tempo, rhythm stability, beat strength,
and overall regularity”.

Energy describes the perceived intensity and activity of a track and is based on the dy-
namic range, perceived loudness, timbre, onset rate, and general entropy of a track.

4https://developer.spotify.com/web-api/get-several-audio-features/
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Speechiness captures the presence of spoken words in a track. High speechiness values
indicate a high degree of spoken words (e.g., an audiobook), whereas medium values
indicate tracks with both music and speech (e.g., rap music). Low values represent
typical music tracks.

Acousticness measures the probability that the given track only contains acoustic instru-
ments.

Instrumentalness quantifies the probability that a track contains no vocals, i.e., the track
is instrumental.

Tempo measures the rate of the track’s beat in beats per minute.
Valence describes the “emotional positiveness” conveyed by a track (i.e., cheerful and eu-

phoric tracks reach high valence values).
Liveness measures the probability that a track was performed live, i.e., whether an audi-

ence is present in the recording.

3.2 Enriched dataset of music listening events
To study characteristics of beyond-mainstream users and their listening preferences, we
create a novel dataset called LFM-BeyMS that contains the required information for such
analyses. We base our work on a dataset gathered from the Last.fm music platform, which
we considerably enrich with the music tracks’ acoustic features (see Sect. 3.1) [48]. Ad-
ditionally, we combine this data with mainstreaminess information of Last.fm users (see
Sect. 3.3) as well as music genre information to identify beyond-mainstream listeners and
music (see Sect. 3.4).

An overview of our new LFM-BeyMS dataset and its data sources is depicted in Fig. 2.
As shown, the starting point for our new dataset is the publicly available LFM-1b dataset5

of music listening information shared by users of the online music platform Last.fm [49].
LFM-1b contains listening histories of 120,322 users; their listening records (or “listening
events”) have been created between January 2005 and August 2014. They sum up to over
1.1 billion listening events (LEs), where each LE is described by an (anonymous) user iden-
tifier, the artist name, the album name, the track name, and the timestamp of the listening
event. Also, the LFM-1b dataset includes demographics of some users (i.e., country, age,
and gender).

To enrich the LFM-1b dataset to suit our task, we utilize our previously created CultMRS
music recommendation dataset [50]. This dataset contains 55,191 users, who have listened
to a total of 26,022,625 distinct tracks, captured by a total of 807,890,921 LEs [48].

To further enrich the dataset with music acoustic features, we gather the acoustic fea-
tures described in Sect. 3.1 for the tracks remaining in the dataset after the filtering de-
scribed above. To this end, we rely on the Spotify API to gather content-based acoustic fea-
tures for each track. Particularly, we search tracks using the 〈track, artist, album〉 triples
extracted from the LFM-1b dataset using the Spotify search API6 to gather the Spotify
track URI of each track by using all three parts of the triple in a conjunctive query. In
total, this allowed gathering 4,326,809 Spotify URIs. For the remainder of the tracks, we
were not able to retrieve a URI. We attribute this to two factors: either the searched track is
not provided by Spotify or the track, artist, and album information cannot be matched to

5http://www.cp.jku.at/datasets/LFM-1b/
6https://developer.spotify.com/web-api/search-item/
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Figure 2 Overview of our new LFM-BeyMS dataset and its data sources. We depict the different features, their
origin, and relation, and show the feature groups with the number of contained features in brackets.
LFM-BeyMS contains BeyMS, i.e., data to study the beyond-mainstream user group, and Recommendation, i.e.,
data to conduct recommendation experiments of beyond-mainstream and mainstream music listeners

a Spotify track unambiguously. Subsequently, we use the obtained track URI to query the
acoustic features API,7 which returns the acoustic features of a given track (cf. Sect. 3.1). In
a subsequent cleaning step, we remove all tracks for which the Spotify API did not provide
the full set of acoustic features.

That procedure provides us with a set of 3,478,399 unique tracks and their acoustic fea-
tures. Within the LFM-1b dataset, this amounts to 13.36% of the distinct tracks. Overall,
these account for as much as 48.89% of all listening events (i.e., the tracks listened to by
users) of the LFM-1b dataset. The resulting dataset, now enriched by acoustic music de-
scriptors, comprises a total of approximately 394 million listening events of 55,149 users.
In Table 1 (column “CultMRS”), we provide further descriptive statistics of the CultMRS
dataset. We refine this dataset to create our new LFM-BeyMS dataset (column “BeyMS
in Table 1), which consists of BeyMS, i.e., data to study the characteristics of beyond-
mainstream music listeners, and Recommendation, i.e., data to conduct recommendation
experiments of beyond-mainstream and mainstream music listeners.

3.3 Identifying beyond-mainstream music listeners
To identify beyond-mainstream music listeners, for each user, we compute a mainstreami-
ness score, which is generally defined as the overlap between a user’s individual listening
history and the aggregated listening history of all Last.fm users in the dataset. In this vein,
the mainstreaminess score reflects a user’s inclination to music listened to by the Last.fm
mainstream listeners (i.e., the “average” Last.fm listener in the dataset). In [51], several

7https://developer.spotify.com/web-api/get-several-audio-features/
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Table 1 Descriptive statistics of the CultMRS dataset and our novel LFM-BeyMS dataset. CultMRS
comprises acoustic features of tracks. LFM-BeyMS is based on CultMRS and consists of BeyMS and
Recommendation. Our analyses of beyond-mainstream music listeners utilize BeyMS and our
recommendation experiments utilize Recommendation, which includes listening events of both users
with beyond-mainstream and mainstream music taste

Item CultMRS [50] LFM-BeyMS (our novel dataset)

BeyMS Recommendation

Users 55,149 2074 4148
Tracks 3,478,399 157,444 1,084,922
Artists 337,840 14,922 110,898
Listening Events (LEs) 394,944,868 4,916,174 16,687,363
Min. LEs per user 1 3 9
Q1 LEs per user 1442 1254 2604
Median LEs per user 5667 2048 3766
Q3 LEs per user 9738 3239 5252
Max. LEs per user 399,210 10,536 11,177
Avg. LEs per user 7161.41 (± 10,326.91) 2371.526 (± 1520.629) 4,022.990 (± 1898.060)

measures of user mainstreaminess are defined. Out of these, we choose the M-global-
R-APC definition since it yielded good results in context-based music recommendation
experiments for the LFM-1b dataset, as evidenced in [51]. The M-global-R-APC measure
approximates a user’s mainstreaminess score by computing Kendall’s τ [52] rank corre-
lation between the user’s vector of artist play counts and the global vector of artist play
counts (aggregated over all users in the dataset). This definition also explains the name of
the measure, where “M” refers to mainstreaminess, “global” indicates the global perspec-
tive, “R” stands for rank correlation, and “APC” refers to artist play counts.

Next, we describe how we identify our beyond-mainstream users via filtering the users
by the number of listening events (see Fig. 3 and Sect. 3.3.1) and by mainstreaminess scores
(see Fig. 4 and Sect. 3.3.2).

3.3.1 Filtering users by the number of listening events
For our study, we select the users so that listeners of different levels of “listening activity”
are equally represented. We conduct a Gaussian kernel density estimation (KDE) [53] on
the distribution of listening events over users to estimate the continuous probability den-
sity function (PDF) [54]. However, KDE estimates the PDF via discrete bins and hence, it is
necessary to approximate the gradient via the principle of finite differences. The gradient
of the PDF helps us identifying regions of increasing or decreasing probability.

Figure 3 shows that two large subsets of users exist that exhibit either very few or an
abundance of listening events. For our analysis, we consider only users who are not in
one of the subsets as mentioned earlier. On the one hand, we exclude users with too little
data available for studying their listening behavior; and on the other hand, we exclude so-
called power listeners who might bias our analyses. Furthermore, such users with a very
high number of listening events are often radio stations, which do not contribute reliable
data to our investigations.

Hence, we define lower and upper bounds regarding the number of users’ listening
events to include in our study, such that the rate of change in terms of the number of
listening events is minimal and stable within these boundaries. That requires the gradient
of the region within the lower and upper bound to be near zero (i.e., ±10–6). By comput-
ing the second-order accurate central differences [55], we obtain an approximation of the
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Figure 3 Distribution of listening events in our set of Last.fm users. We set the lower and upper bound
marked as dashed and dotted lines, respectively based on the gradient, which results in 12,814 users with a
similar number of listening events

Figure 4 Mainstreaminess distribution of the 12,814 users illustrated in Fig. 3. Based on the maximum
gradient, we select an upper bound of 0.097732 to identify the 2074 beyond-mainstream users of the BeyMS
user group

gradient and find the longest cohesive region fulfilling the requirements between a lower
bound of 4688 and an upper bound of 14,787 listening events per user, which leads to
12,814 users.

3.3.2 Filtering users by mainstreaminess scores
Figure 4 illustrates the mainstreaminess distribution of the 12,814 users that we have ex-
tracted based on the number of listening events. Here, mainstreaminess is defined accord-
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ing to the M-global-R-APC definition taken from [51] (explained in Sect. 3.3). By setting an
appropriate upper bound, we aim to exclude mainstream music listeners. In other words,
we aim to set the upper bound to the beginning of the distribution’s bulk, which is mo-
tivated as follows: Firstly, the first inflection point (i.e., maximal gradient) of a Gaussian
distribution is found at E[X]–std(X), where E[X] is the expectation, and std(X) is the stan-
dard deviation of the Gaussian random variable X. Secondly, the first inflection point of a
Gaussian distribution is equivalent to the 15.9-percentile. By setting the mainstreaminess
threshold to this point, we intend to omit the majority of users and hence, only consider the
15.9% of users with the lowest mainstreaminess scores. Utilizing this upper bound on the
mainstreaminess score, we obtain a set of 2074 beyond-mainstream users. Furthermore,
the Gaussian assumption can be strengthened by the observation that the 2074 beyond-
mainstream users represent 16.19% of users. In the remainder of this paper, we refer to
this set of beyond-mainstream music listeners as BeyMS.

3.4 Identifying beyond-mainstream music
We aim to study beyond-mainstream listeners in terms of their music taste. We character-
ize music via its acoustic features, as described in Sect. 3.1, and also investigate genres as
an alternative way to describe a music track via conventional categories. As the LFM-1b
dataset does not contain genre annotations of tracks and the Spotify API only provides
genres on artist level,8 we leverage the tags assigned to each track by Last.fm users to
identify genre annotations. To obtain these tags, we use the respective Last.fm API end-
point.9 After having fetched the tags for each track, we de-capitalize them and remove
all non-alpha-numeric characters. Since not all tags used by Last.fm users correspond
to actual music genres (e.g., the “seenlive” tag is used to indicate that a user has seen an
artist performing this track live), we use a fine-grained music genre taxonomy consisting of
3034 genres that are also utilized by Spotify, which we gather from the EveryNoise service
(2019-07-24).10 Specifically, for each track listened to by any of our BeyMS users, we re-
move all tags that are not part of the EveryNoise genre taxonomy, using a case-insensitive
matching approach.

We note that Last.fm users tend to assign very general genre tags to a large number of
tracks, such as “pop” or “rock”. To remove these coarse-grained genres and to identify fine-
grained beyond-mainstream music genres, we calculate the inverse document frequency
(IDF) [56] metric of our genre-track distribution by treating genres as terms and tracks
as documents, i.e., IDF(g) = log10

|T |
|{t∈T with g∈Gt}| . More precisely, the IDF-score of genre

g is determined by relating the number of all tracks |T | to the number of tracks annotated
with genre g where |Gt| is the set of genres assigned to track t. This way, a coarse-grained
genre receives a small IDF-score, while a fine-grained genre receives a high IDF-score.
Figure 5 shows the IDF-score distribution of the top-100 genres in ascending order (i.e.,
from coarse-grained to fine-grained). Here, we identify two groups of genres, where the
first group consists of 6 genres with small IDF-scores, and the second group consists of
94 genres with high IDF-scores. The visual inspection of Fig. 5 indicates that the lower
bound of 0.90 serves as a discriminant between these two groups of coarse-grained and

8https://developer.spotify.com/documentation/web-api/reference-beta/#endpoint-get-an-artist
9https://www.last.fm/api/show/track.getTopTags
10http://everynoise.com/
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Figure 5 IDF-score distribution of the top-100 genres in ascending order (i.e., from coarse-grained to
fine-grained). The 6 coarse-grained genres below the lower bound of 0.90 are removed from the genre
assignments, i.e., “rock”, “pop”, “electronic”, “metal”, “alternativerock”, “indierock”

fine-grained genres. Consequently, we remove the 6 coarse-grained genres (i.e., “rock”,
“pop”, “electronic”, “metal”, “alternativerock”, “indierock”) from the genre assignments of
our tracks, which leads to 157,444 out of 799,659 tracks listened to by BeyMS users with
at least one remaining genre. In total, these tracks are annotated with 1418 unique genre
identifiers.

We are aware of the fact to our track filtering procedure leads to incomplete listening
profiles of users. Since we rely on genres to describe beyond-mainstream music, these fil-
tering steps are necessary for our study. To ensure that the BeyMS users’ reduced listening
profiles are still representative of their music preferences, we further investigate the con-
sequences of the filtering procedure. Here, we find that a user’s listening history (i.e., the
entirety of a user’s listening events) is reduced to 61% on average. However, we also find
that there are only 62 of the 2074 BeyMS users, for whom the listening history is reduced
to less than 20%. For these users most affected by the filtering, we compare the acoustic
feature distributions of their listened tracks before and after the filtering steps, and find
that filtering only marginally affects the acoustic feature distributions (i.e., average change
in mean = 0.0098 ± 0.0148). This means that the acoustic feature distribution contained
in the user’s profile is highly robust against the filtering. The statistics of BeyMS are sum-
marized in column “BeyMS” in Table 1.

3.5 Recommendations for beyond-mainstream music listeners
In order to compare the recommendation accuracy of recommendations received by the
users of our BeyMS group and by mainstream users, we construct a dataset consisting of
BeyMS’s listening events and the listening events of an equally-sized group of mainstream
users. Therefore, we define the MS user group as 2074 (i.e., the size of our BeyMS group)
randomly-chosen users with a mainstreaminess score that is higher than the upper bound
for low mainstreaminess, identified in Fig. 4. Furthermore, the MS users are also in be-
tween the lower and upper bounds for listening events identified in Fig. 3. As shown in
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Table 1 (column “Recommendation”), the dataset used for the evaluation of recommenda-
tions contains data of 4148 distinct BeyMS and MS users, 1,084,922 distinct tracks, and
16,687,363 listening events.

We use the Python-based open-source recommendation library Surprise11 to compute
and evaluate recommendations. One advantage of using Surprise is that it provides built-
in recommendation algorithms as well as a standardized evaluation pipeline, which en-
hances the reproducibility of our research. Since Surprise is focused on rating prediction,
we formulate our music recommendation scenario also as a rating prediction problem, in
which we predict the preference of a target user u for a target track t. As done in [57], we
model the preference of t for u by scaling the play count (i.e., number of listening events)
of t by u to a range of [1; 1000] using min-max normalization. We perform this normal-
ization on the individual user level to ensure that all users share the same preference value
ranges. Thus, with this method, we ensure that each user’s most listened track has a pref-
erence value of 1000, while their least listened track has a preference value of 1. To ensure
that this min-max normalization procedure does not disrupt the play count distribution
of our users, we compare the original play count distribution with the normalized distri-
bution and find that both distributions are strongly right-skewed. Specifically, we find very
similar distributions for large amounts of our play count data.

We utilize a selection of Suprise’s built-in recommendation methods consisting of
one baseline approach (i.e., UserItemAvg), two neighborhood-based approaches (i.e.,
UserKNN and UserKNNAvg), and one matrix factorization-based approach (i.e., NMF).
Specifically, UserItemAvg predicts the average play count in the dataset by also account-
ing for deviations of u and t, for example, if a user u tends to have more listening events
than the average Last.fm user [58]. UserKNN [11] is a user-based collaborative filtering
approach and is calculated using k = 40 nearest neighbors and the cosine similarity met-
ric, which are the default settings of Surprise. UserKNNAvg is an extension of UserKNN
[11] that also takes the average rating of target user u into account. Finally, NMF, i.e., non-
negative matrix factorization [10], is calculated using 15 latent factors, which is the default
parameter in the Surprise library. As shown in our previous work [4], NMF is also capable
of recommending non-popular items from the long tail and should therefore especially be
of interest for our beyond-mainstream recommendation setting.

We use Surprise’s default parameters and refrain from performing any hyperparame-
ter tuning since we are only interested in assessing (relative) performance differences be-
tween the two user groups BeyMS and MS, and not in outperforming any state-of-the-art
algorithm. This is also the reason why we focus on traditional algorithms instead of in-
vestigating the most recent deep learning architectures, which would also require a much
higher computational effort.

The resulting mean absolute error (MAE) results can be observed in Table 2 (and cor-
respond to the ones already shown in Fig. 1). We favor MAE over the commonly used
root mean squared error (RMSE) due to several pitfalls, especially regarding the com-
parison of groups with different numbers of observations [59]. Here, we perform 5-fold
cross-validation leading to 5 different 80/20 train-test splits and average the MAE over
the 5 folds. NMF clearly outperforms UserItemAvg as well as the two neighborhood-
based methods (i.e., UserKNN and UserKNNAvg) both for the two user groups (see

11http://surpriselib.com/
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Table 2 Mean absolute error (MAE) results for the two user groupsMS and BeyMS of different
mainstreaminess and a selection of standard recommendation algorithms. A one-tailed
Mann–Whitney-U test (α = 0.0001) provides significant evidence, indicated by ∗∗∗ , that all algorithms
perform worse on BeyMS than onMS in terms of MAE. Furthermore, NMF (as shown in bold)
outperforms the other three approaches UserItemAvg, UserKNN and UserKNNAvg

User group UserItemAvg UserKNN UserKNNAvg NMF

BeyMS 63.4608∗∗∗ 71.6694∗∗∗ 67.5770∗∗∗ 57.7703∗∗∗
MS 61.2562 68.4894 63.3985 54.8182
Overall 62.2315 69.8962 65.2469 56.2492

rows “BeyMS” and “MS”) separately and overall without distinguishing between the user
groups (see row “Overall”). Additionally, we conduct a one-tailed Mann–Whitney-U test
(α = 0.0001), where we define the null-hypothesis as the MAE for MS being larger than or
equal to the MAE for BeyMS. Results marked with ∗∗∗ indicate that the null-hypothesis was
rejected for every fold. Thus, all algorithms (including NMF) provide a significantly larger
error for BeyMS than for MS. In other words, recommendation quality is significantly bet-
ter for users with mainstream taste than for users who prefer beyond-mainstream music
across all recommendation approaches.

These initial results underpin the need to study the characteristics of the BeyMS user
group that receives worse recommendations. The corresponding experiments are pre-
sented in the next section.

4 Characteristics of beyond-mainstream music and listeners
We identify the types of beyond-mainstream music using unsupervised clustering and
characterize these types with respect to acoustic features and music genres. Besides, we
detect subgroups of beyond-mainstream music listeners by assigning users to these clus-
ters and evaluate the recommendation quality obtained for these subgroups. Finally, we
discuss the recommendation quality with respect to openness and diversity. For this, we
relate to the definitions given by [9]:

Openness is the across-groups diversity (or categorical diversity) and describes if users of
one group also listen to the music of other groups.

Diversity is the within-groups diversity (or thematic diversity) and describes the dissim-
ilarity of music listened to by users within groups.

Based on the findings of [9], we would expect that subgroups with high openness should
receive more accurate recommendations than subgroups with high diversity.

4.1 Clustering and characterizing beyond-mainstream music
To study the different types of music listened to by the users in our BeyMS group, we
conduct a cluster analysis. Specifically, we cluster the 157,444 tracks listened to by BeyMS
users, where each track is described by the eight acoustic features danceability, energy,
speechiness, acousticness, instrumentalness, tempo, valence, and liveness (see Sect. 3.1).
We scale the value ranges of these features to [0, 1] using min-max normalization. The
use of latent representations of musical elements such as tracks was shown to be efficient
in the area of music information retrieval [30, 60, 61]. Furthermore, for visually analyzing
the obtained music clusters and decreasing computation time, we favor a reduction of
dimensionality to two dimensions.

We conduct experiments with a broad body of dimensionality reduction methods, i.e.,
linear and nonlinear principal component analysis (PCA) [62], locally linear embedding
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[63], multidimensional scaling [64], Isomap [65], spectral embedding [66], t-distributed
stochastic neighbor embedding (t-SNE) [67] and uniform manifold approximation and
projection (UMAP) [68]. We visually inspected the 2-dimensional feature spaces created
by these methods with regards to the clustering quality, and we obtained the visually most
homogeneous results with UMAP. Moreover, UMAP has already been successfully used
in the music domain [30] and thus, we use it for the remainder of our experiments. Specif-
ically, we utilize the open-source implementation of UMAP [69], which requires four pa-
rameters: (i) the distance metric M in the input space, (ii) the number of latent dimensions
D, (iii) the minimum distance of points in the latent space dmin, and (iv) the number of
neighbors of a point N . Based on experimentation and related literature (e.g., [69]), we set
the distance metric M to the Euclidean distance, the number of latent dimensions D to 2,
the distance dmin to 0.1 and the number of neighbors N to 15.

In a next step, we perform clustering on the dimensionality-reduced acoustic features
of tracks. Again, we conduct experiments with various clustering methods, i.e., DBSCAN
[70], K-Means [71], Gaussian mixture models [72], affinity propagation [73], spectral clus-
tering [74], hierarchical agglomerative clustering [75], OPTICS [76] and HDBSCAN∗ [77].
Here, we obtain the best results with respect to cluster cohesion and separation using
HDBSCAN∗. Furthermore, HDBSCAN∗ was also already used by related work to clus-
ter music items [78]. We employ the open-source implementation of HDBSCAN∗ [79]
that requires four parameters: (i) the minimum cluster size smin that defines the mini-
mum size of a group of points to consider a cluster, (ii) the minimum number of samples
in the neighborhood of a core point Nmin, which quantifies how conservative the clus-
tering is, (iii) ε, which enables the recovery of DBSCAN clusters if the smin value is not
reached, and (iv) the scaling of the distance α, which is another measure of the clustering’s
conservativeness. In detail, α scales the distance between two points, which determines
whether these points are merged into a cluster. This scaling is used in the construction of
HDBSCAN∗’s hierarchy of clusterings. Again, we find the best-suited parameters based
on experimentation and related literature (e.g., [77]). Specifically, we require each cluster
to comprise a sufficiently large number of tracks to increase the level of significance of
our subsequent experiments. We expect the existence of very small music clusters and
thus, search for the optimal value of the minimal cluster size smin in the search space of
{1000; 1025; . . . ; 1475; 1500}, where we obtain the best results with respect to the within-
cluster variance for smin = 1375. Furthermore, tightly packed clusters without any contri-
bution of noise should be favored. In other words, all points within a cluster should be
within the neighborhood of at least one core point. Thus, we set the minimal number of
samples in the neighborhood Nmin = smin = 1375. The remaining two parameters are set
to their default values, i.e., ε = 0 and α = 1.

Figure 6 shows the results of the clustering process using HDBSCAN∗ and UMAP for
the 2-dimensional mapping. This process leads to four music clusters. Here, the green
cluster (hatch: +) is the largest one with 92,798 tracks, followed by the pink cluster (hatch:
x) with 30,379 tracks and the blue cluster (hatch: /) with 12,148 tracks. The smallest cluster
is the orange one (hatch: o) as it contains 7629 tracks. The remaining 14,490 of our 157,444
BeyMS tracks have not been assigned to a cluster and thus, will not be included in further
analyses and interpretations. Next, we describe how we name these clusters based on their
music genre distributions.
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Figure 6 Music clustering results obtained with HDBSCAN∗ and UMAP for the 2-dimensional mapping. The
outputs are four clusters with the following cluster sizes: 12,148 (blue, hatch: /), 92,798 (green, hatch: +), 7629
(orange, hatch: o) and 30,379 (pink, hatch: x) tracks. 14,490 of our 157,444 BeyMS tracks have not been
assigned to a cluster

4.1.1 Genre distributions
In Fig. 7, we illustrate the top-10 genres of the four music clusters. For this, we refer to
the genre IDF-scores presented in Sect. 3.4 and weight each genre assigned to a track in a
cluster with its corresponding IDF-score. For example, if a genre with an IDF-score of 1.4
is assigned to 1000 tracks in a cluster, it is visualized as an aggregated genre IDF-score of
1400 in the corresponding plot of Fig. 7. Based on the genre distributions, we label each
cluster according to its top genre.

With respect to the blue cluster (hatch: /) in Plot (a), we find top genres such as “folk” and
“singersongwriter”, which typically reflect music with high acousticness. In the remainder
of this paper, therefore, we refer to this cluster as Cfolk. The top genres of the green clus-
ter (hatch: +) in Plot (b) are typical high energy music genres such as “hardrock”, “punk”,
“poprock”, and “hiphop”. Based on this, we name this cluster Chard.

For the orange cluster (hatch: o) in Plot (c), we find genres that reflect music with high
acousticness and high instrumentalness such as “ambient”, “experimental”, “newage”, and
“postrock”. As “ambient” clearly dominates the genre distribution for this cluster, we name
this cluster Cambi. Similarly to Cfolk, this cluster contains music with high acousticness; yet,
while Cfolk is characterized by low instrumentalness music, Cambi is characterized by a high
level of instrumentalness. Finally, Plot (d) shows the genre distribution of the pink cluster
(hatch: x) with “electronica” as the top genre, which leads to the name Celec for this cluster.

Thus, both, Celec and Chard, consist of high energy music but in contrast to Chard, Celec

also comprise high instrumentalness values. This also makes sense when looking at other
top genres of Celec such as “deathmetal” and “blackmetal” where guttural vocal techniques
are often mistakenly classified as another type of instrument [80].

To compare the genre distributions among the four music clusters, we illustrate the rela-
tive genre frequency distribution of the clusters in Fig. 8. The relative frequency of a genre
g depicts the fraction of listening events of tracks within a cluster c that are annotated
with g . Here, we only show genres with a minimum relative genre frequency of 0.1. We
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Figure 7 Top-10 genres of the four music clusters C1–C4 according to the aggregated genre IDF-scores. We
name the clusters according to the top genre, i.e., (a) blue (hatch: /) → Cfolk (“folk”), (b) green (hatch: +) →
Chard (“hardrock”), (c) orange (hatch: o) → Cambi (“ambient”), and (d) pink (hatch: x) → Celec (“electronica”)

Figure 8 Relative genre frequency distribution of the four music clusters. While there are dominating genres
in Cfolk and Cambi , the genre distribution is more diverse in Chard and Celec

see that there are clearly dominating genres in Cfolk and Cambi, whereas the genre distri-
butions in Chard and Celec are more evenly distributed. When relating this finding to the
findings of Fig. 7, we clearly see that the results correspond to each other: Chard and Celec

contain a more diverse genre spectrum (e.g., “hardrock” and “hiphop” are both part of
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Chard’s top genres) than Cfolk and Cambi (e.g., in Cambi’s top genres, we find “ambient” and
“darkambient”).

4.1.2 Acoustic feature distributions
To understand the musical content of these four music clusters, we analyze the acoustic
feature distributions of the four music clusters using boxplots in Fig. 9. This visualization
does not show any obvious differences with respect to danceability and tempo among the
four clusters. For the acoustic features energy, speechiness, acousticness, valence, and live-
ness, there are similar values for the cluster pairs Cfolk and Cambi, and Chard and Celec. We
observe differences between these two cluster pairs with respect to energy and acoustic-
ness. While Chard and Celec provide high energy values and small acousticness values, Cfolk

and Cambi feature small energy values and high acousticness values.
In contrast, for instrumentalness, we see similar values for the cluster pairs Cfolk and

Chard as well as for Cambi and Celec. We observe very high values for Cambi and Celec, and
very small values for Cfolk and Chard. This difference is also visible in Fig. 6 in the form of
the gap between Cfolk and Chard on the left, and Cambi and Celec on the right.

Summing up, in Cfolk, we find music with low energy, high acousticness, and low instru-
mentalness; Chard contains music with high energy, low acousticness, and low instrumen-
talness; in Cambi, we observe music with low energy, high acousticness, and high instru-

Figure 9 Distribution of the eight acoustic features for the four music clusters. While the clusters do not show
obvious differences with respect to danceability and tempo, we find large differences with respect to energy,
acousticness and instrumentalness
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mentalness; and in Celec, we find high energy, low acousticness, and high instrumentalness.
Thus, these findings are in line with the genre distributions presented in Fig. 7.

4.2 Assigning and studying beyond-mainstream music listeners
In the next step, we assign the 2074 BeyMS users to the four music clusters to categorize
them into four distinct beyond-mainstream subgroups for further analyses.

For each user u, we count the number of listening events LEu,c that u has contributed
to the tracks in each cluster c, where c ∈ C = {Cfolk, Chard, Cambi, Celec}. Then, we assign u
to the cluster c for which the number of contributed listening events LEu,c is the highest.
However, because we have varying cluster sizes, the probability of u listening to a track t
of the two larger clusters Chard and Celec is much higher than for the two smaller clusters
Cfolk and Cambi, although Cfolk and Cambi could be more representative choices for u. Thus,
similar to the IDF distribution of genres (see Fig. 5), we take advantage of the IDF scoring
to reduce the influence of the larger clusters and to assign higher weights to the smaller
clusters. Specifically, these cluster IDF-scores are given by IDF(c) = log10

|T |
|{t∈T with ct}| , i.e.,

by relating the number of all tracks |T | to the number of tracks in cluster c where ct is the
music cluster assigned to track t. That lets us define the user–cluster weight wu,c for user
u and cluster c as wu,c = IDF(c) · LEu,c.

Consequently, users are assigned to the highest weighted music cluster and thus, a sub-
group Uc for cluster c is given by Uc = {u ∈ U : arg maxc∈C(wu,c)}.

Out of the 2074 BeyMS users, we can assign 2073 users to these subgroups. Thus, only 1
user listened to tracks not contained in any cluster in Fig. 6. Similar to the naming scheme
of music clusters, we label the subgroups according to the name of their assigned music
cluster. Hence, we obtain four subgroups Ufolk, Uhard, Uambi, and Uelec.

Table 3 provides basic descriptive statistics of these four resulting subgroups. Here, Uhard

is the largest subgroup with |U| = 919 users, followed by Uelec with |U| = 642 users, Ufolk

with |U| = 369 users, and Uambi with |U| = 143 users. The differences with respect to the
number of users also correspond to the differences regarding the number of artists |A|, the
number of tracks |T |, and the number of listening events |LE| contained in the clusters. In
the case of the number of genres |G|, this differs slightly because the users in the smaller
Uambi cluster listen to more genres (i.e., 918) than the bigger Ufolk cluster (i.e., 811). This
indicates that the users in Uambi listen to a broader set of music than the users in Ufolk.

Considering the average number of listening events per user (i.e., |LEu|) and the average
number of tracks per user (i.e., |Tu|), we see that, while there is little difference between
Uhard and Uelec with respect to |LEu|, |Tu| is much higher for Uelec (i.e., 670.402) than for
Uhard (i.e., 557.470). This indicates that, although the number of listening events is nearly
the same, users of Uelec tend to listen to a wider set of tracks than users of Uhard. With

Table 3 Descriptive statistics of the four subgroups. Here, |U| is the number of users, |A| is the
number of artists, |T | is the number of tracks, |LE| is the number of listening events, |G| is the number
of genres, |LEu| is the average number of listening events per user, |Tu| is the average number of
tracks per user and Age is the average age (along with the standard deviation) of users in the group

Subgroup |U| |A| |T | |LE| |G| |LEu| |Tu| Age (std.)

Ufolk 369 9559 72,663 702,635 811 1904.160 549.650 27.599 (± 10.369)
Uhard 919 11,966 107,952 2,150,246 1274 2339.767 557.470 23.867 (± 8.912)
Uambi 143 6869 39,649 224,327 918 1568.720 473.308 29.571 (± 14.138)
Uelec 642 11,814 105,907 1,416,354 1005 2206.159 670.402 24.639 (± 7.886)
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Figure 10 Radar plot illustrating the contribution of each music cluster to a subgroup. While the weight
distribution of Uhard and Uelec is rather narrow, it is more broad in case of Ufolk and Uambi suggesting that
these groups are more open to music outside the own music cluster

respect to the average age of the users Age, we see that the users of Ufolk and Uambi are
the oldest ones, and users of Uhard and Uelec are the youngest ones. However, it is worth
noting that the group with the highest average age (i.e., Uambi) also shows by far the highest
standard deviation of age (i.e., 14.138 years).

In Fig. 10, we show the contribution of each music cluster to each subgroup in the form
of a radar plot. For this, we use the user-cluster weights wu,c introduced before and cal-
culate the average weight over all users in cluster c. One consequence of the IDF scoring
applied to wu,c is that the weight contributions of a user group to the four clusters does
not sum up to 1, which eventually influences the interpretation of the values shown in
Fig. 10. However, in return, these values account for the varying cluster sizes and can also
be interpreted as preference weights for a user group towards a specific music cluster.

We observe that the weight distribution of the two larger subgroups Uhard and Uelec

is rather narrow, which indicates that these users do not listen to many tracks of other
clusters. Contrary to that, the weights of the two smaller subgroups Ufolk and Uambi are
more broadly distributed over the four music clusters. This suggests that users of Ufolk

and Uambi are more open to music outside of their own music cluster than users of Uhard

and Uelec.

4.2.1 Correlation of music clusters and beyond-mainstream subgroups
To better understand the correlations and connections between the music clusters and
subgroups, we plot the Pearson correlation matrix of the four music clusters as a heatmap
in Fig. 11. Here, we represent each music cluster c by a 2073-dimensional vector (i.e., one
entry for each user) consisting of the user–cluster weights wu,c, introduced before. Each
element in the matrix is then calculated using the Pearson correlation measure based on
these cluster vectors. For example, if there is a positive correlation between two clusters,
we assume that a user who enjoys music from the one cluster likely also enjoys music
from the other cluster. This can give us also an indication of the openness of a subgroup
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Figure 11 Pearson correlation matrix of the four
music clusters. While Chard has solely negative
correlations with all other clusters, and thus,
listeners of Chard seem to be the most closed
subgroup, Cambi has positive correlations with Cfolk
and Celec , and thus, listeners of Cambi seem to be the
most open subgroup

Figure 12 Boxplots showing the average pairwise user similarity of the four subgroups using the cosine
similarity calculated on the users’ genre distributions. While the users in Uhard and Uelec exhibit a more diverse
listening behavior, users in Ufolk and Uambi tend to listen to more similar, i.e., less diverse, music genres

for music mainly listened to by other subgroups. Specifically, for Cfolk, we see a positive
correlation between Cfolk and Cambi, and a negative correlation between Cfolk and both,
Chard as well as Celec. Users listening to the music of Chard seem to represent the most
closed subgroup as Chard because it solely has negative correlations with all other clusters,
especially with Cambi and Celec. In contrast, users listening to the music of Cambi seem
to represent the most open subgroup as Cambi has positive correlations with two other
clusters, i.e., Cfolk and Celec. The fourth cluster, Celec, is negatively correlated with Cfolk

and especially with Chard, and positively correlated with Cambi. These results are also in
line with the ones shown in Fig. 10, in which we identify the users of Uambi as more open
music listeners than the ones of Uhard.

In order to relate the openness of the subgroups to the diversity of the users within the
subgroups, we calculate the average pairwise user similarity using the cosine similarity
metric computed on the users’ genre distributions, i.e., number of listening events per
genre. Figure 12 shows the resulting boxplots for the four identified subgroups (i.e., Cfolk,
Chard, Cambi, and Celec). Figure 12 shows that users in Uhard and Uelec have a rather small av-
erage pairwise user similarity and, thus, exhibit a more diverse listening behavior, whereas
users in Ufolk and Uambi tend to listen to more similar music genres and, thus, have a nar-
row listening behavior within the group. Summed up, we find pronounced differences with
respect to openness and diversity across the subgroups. Although Uambi is the most open
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subgroup (i.e., also listens to music of other subgroups), it is also the least diverse subgroup
(i.e., the users within the group listen to very similar music). That observation is in line
with what is shown in Figs. 7, and Fig. 8. Here, we see that Cambi, i.e., the most tightly con-
nected music cluster to Uambi, contains the dominating genre “ambient” as well as genres
that are strongly associated with this dominating genre (e.g., “darkambient”). For Uhard, we
observe the opposite. While it is the least open subgroup, it is also the most diverse one
(e.g., it contains “hardrock” as well as “hiphop” listeners).

4.2.2 Recommendations for beyond-mainstream user subgroups
In Sect. 3.5, we have shown that the recommendation accuracy of four personalized rec-
ommendation algorithms is significantly worse for BeyMS users than for MS users. Now,
we extend this analysis and evaluate the recommendation accuracy of these algorithms for
the four subgroups (i.e., Ufolk, Uhard, Uambi, and Uelec).

Table 4 shows our results with respect to the mean absolute error (MAE). Additionally,
we analyze these results with respect to statistically significant differences in Table 5 by
performing ANOVA (α = 0.01) and a subsequent Tukey-HSD test (α = 0.05). Here, we
report pairwise differences as significant (marked with ∗∗), if both ANOVA and Tukey-
HSD were significant across all five folds (see Sect. 3.5 for details on the experimental
setup).

We see that among all algorithms, the significantly worst accuracy results (i.e., the high-
est MAE scores) are achieved for the Uhard subgroup. Next, Ufolk, Uambi and Uelec reach
significantly better (i.e., lower MAE scores) than Uhard for all algorithms. However, there
is no statistically significant difference between the recommendation accuracy of Ufolk and
Uelec. The overall best accuracy results (i.e., lowest MAE scores) are reached for the Uambi

subgroup. These results are also statistically significant when compared with the other
subgroups for the NMF algorithm. NMF also gives the overall best accuracy results for

Table 4 Mean absolute error (MAE) measurements for the four subgroups and four personalized
recommendation algorithms. NMF (in bold) outperforms all other algorithms for all subgroups.
Among the subgroups, the best accuracy results (i.e., lowest MAE scores) are reached by Uambi, while
the worst accuracy results (i.e., highest MAE scores) are reached by Uhard. To facilitate comparison, we
also show the MAE measurements for the BeyMS andMS user groups

Subgroup UserItemAvg UserKNN UserKNNAvg NMF

Ufolk 63.2143 70.3049 67.4406 57.2278
Uhard 65.1464 73.1949 69.2855 59.6887
Uambi 60.5558 69.8315 65.5708 54.2073
Uelec 62.2894 71.0387 66.1499 56.6209
BeyMS 63.4608 71.6694 67.5856 57.7703
MS 61.2562 68.4894 63.3985 54.8182

Table 5 Statistically significant differences between pairs of subgroups, as determined by ANOVA
(α = 0.01) and a subsequent Tukey-HSD test (α = 0.05)

Subgroup UserItemAvg UserKNN UserKNNAvg NMF

Ufolk Uhard Uambi Uelec Ufolk Uhard Uambi Uelec Ufolk Uhard Uambi Uelec Ufolk Uhard Uambi Uelec

Ufolk
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Uhard
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Uambi
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Uelec
∗∗ ∗∗ ∗∗ ∗∗ ∗∗
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Figure 13 Comparison of the mean absolute error
(MAE) scores reached by NMF for the four
subgroups with the ones reached by NMF for BeyMS
(black dashed line) andMS (gray dashed line). While
specific subgroups (i.e., Uhard) are treated in an
unfair way by recommendation algorithms, others
(i.e., Uambi) are not

all subgroups, which is in line with our results presented in Sect. 3.5 and in our previous
work [4].

Furthermore, we find a relationship between openness, diversity, and recommendation
quality. Here, Uhard is the least open but most diverse subgroup and gets the worst rec-
ommendations, while Uambi is the most open but least diverse subgroup and gets the best
recommendations. This is in line with the findings of [9], who have shown that users are
more likely to accept recommendations from different groups (i.e., openness) rather than
varied within a group (i.e., diversity). Thus, we find a relationship between the quality of
recommendations provided to beyond-mainstream music listeners and openness as well
as diversity patterns of these users.

Finally, in Fig. 13, we visually compare the MAE scores reached by the best performing
approach NMF for the four subgroups. Additionally, we depict the MAE score for BeyMS
as a black dashed line and the MAE score for MS as a gray dashed line. We see that Uhard

reaches worse results than BeyMS while Ufolk and Uelec reach slightly better results than
BeyMS. Interestingly, Uambi not only reaches better results than BeyMS but also better
results than MS. Although this improvement over MS is not statistically significant (ac-
cording to a one-tailed Mann–Whitney-U test with α = 0.0001), it shows that there is a
large variety among BeyMS users, where specific subgroups (i.e., Uhard) are disadvantaged
in terms of recommendation accuracy by recommendation algorithms while others (i.e.,
Uambi) are not.

5 Conclusions and future work
In this paper, we shed light on the characteristics of beyond-mainstream music and music
listeners. As our first contribution, we identified 2074 beyond-mainstream music listeners
(i.e., BeyMS) in the Last.fm platform, and subsequently created a novel dataset called LFM-
BeyMS based on the listening histories of these users. We further enriched this dataset
with (i) acoustic features of music tracks gathered from Spotify, and (ii) genre informa-
tion of tracks derived from Last.fm tags and matched with the Spotify microgenre taxon-
omy. Additionally, for reasons of comparability, LFM-BeyMS contains data of 2074 Last.fm
users listening to mainstream music. Using this dataset, as our second contribution, we
validated related research by showing that beyond-mainstream music listeners receive a
significantly lower recommendation accuracy than mainstream music listeners by four
standard recommendation algorithms (i.e., UserItemAvg, UserKNN, UserKNNAvg and
NMF).

As our third contribution, we applied the clustering algorithm HDBSCAN∗ on the
acoustic features of tracks listened by BeyMS and identified four clusters of beyond-
mainstream music: (i) Cfolk, music with high acousticness such as “folk”, (ii) Chard, high
energy music such as “hardrock”, (iii) Cambi, music with high acousticness and instrumen-
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talness such as “ambient”, and (iv) Celec, music with high energy and instrumentalness such
as “electronica”.

As our fourth contribution, we mapped these clusters to our BeyMS users, which led
to four beyond-mainstream subgroups: (i) Ufolk, (ii) Uhard, (iii) Uambi, and (iv) Uelec. We
analyzed these subgroups with respect to their openness (i.e., across-groups diversity—
do users of one group listen to music of other groups?) and diversity (i.e., within-groups
diversity—how dissimilar is the music listened to by users within groups?). Here, we found
large differences between Uhard and Uambi. Although Uhard is the most closed subgroup
(i.e., users do not listen to music of other subgroups), it is also the most diverse subgroup
(i.e., users listen to a diverse set of genres such as “hardrock” and “hiphop”). For Uambi, we
get opposite results: while it is the most open subgroup (i.e., users listen to music of other
subgroups as well), it is also the least diverse one (i.e., the users within the group listen to
very similar music such as “ambient” and “darkambient”). We related these characteristics
of the subgroups to the recommendation quality of the four recommendation algorithms
UserItemAvg, UserKNN, UserKNNAvg and NMF. Here, we found that Uhard got music
recommendations with lowest accuracy, while Uambi got music recommendations with
highest accuracy. This is in line with related research [9], which has shown that openness
is stronger correlated with accurate recommendations than diversity. Uambi even received
better recommendations than the group of mainstream music listeners. This result high-
lights that there are large differences between the subgroups of beyond-music listeners.
Finally, to foster reproducibility of our research, we provide our novel LFM-BeyMS dataset
via Zenodo as well as our source code via Github.

We believe that our findings provide useful insights for creating user models and rec-
ommendation algorithms that better serve beyond-mainstream music listeners. As it was
shown in [4], beyond-mainstream music listeners tend to have larger user profile sizes than
users interested in mainstream music, which means that they provide a substantial amount
of listening interaction data for services such as Last.fm and Spotify. We assume that im-
proving the recommendation quality for this active user group also leads to another effect,
namely a more prominent exposure of (long-tail) music artists due to a better-connected
recommendation network [81]. We leave such investigations to future work.

Limitations Despite the merits of this work, we are aware of its limitations. The first lim-
itation we recognize is that our analyses are based on a sample of the Last.fm community.
The extent to which their listening behavior is representative of the Last.fm community at
large, or similar music streaming communities such as Spotify, needs further investigation.

Next, since we conducted a comparative study of the accuracy of recommender sys-
tems algorithms—and were therefore not interested to beat state-of-the-art algorithms—
we focused on traditional algorithms (e.g., KNN-based collaborative filtering) instead of
investigating the most current deep learning architectures, which would also require a
much higher computational effort. Furthermore, an award-winning-paper by Dacrema et
al. [82] has recently shown that traditional algorithms are able to outperform almost all
deep learning architectures.

Future work While our work serves as a first milestone towards better characterizing
beyond-mainstream music and listeners of such music, future work should focus on user
modeling techniques to individually target the different subgroups, for example by inte-
grating knowledge about openness and diversity. With respect to analyzing openness and



Kowald et al. EPJ Data Science           (2021) 10:14 Page 24 of 26

diversity of users and user groups, we would also like to work on a more formal definition
of these dimensions, which would not only allow us to measure them more precisely but
also to integrate them into the recommendation calculation process.

Additionally, since previous research has shown that the listener’s cultural background
impacts the quality of music recommendations [48], we plan to compare the cultural and
socioeconomic aspects of beyond-mainstream and mainstream music listeners. We plan
to employ these aspects by means of Hofstede’s cultural dimensions [83] and the World
Happiness Report [84].

Finally, another avenue for future work is the research in the area of fair music recom-
mender systems. Here, we plan to build user models that are capable of accounting for the
complex characteristics of beyond-mainstream music listeners presented in this paper.
While we believe that more specialized user models could help to provide better recom-
mendations for users who currently receive worse recommendations (e.g., the Uhard sub-
group identified in this paper), we also aim to highlight that such user models still need
to be generalizable to avoid any unfair treatment of other users. Hence, future research
should work on achieving a specialization-generalization trade-off in music recommender
systems. We hope that our open LFM-BeyMS dataset as well as our source code will be of
use to the scientific community for subsequent analyses.
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ABSTRACT
Several studies have identified discrepancies between the popular-
ity of items in user profiles and the corresponding recommendation
lists. Such behavior, which concerns a variety of recommendation
algorithms, is referred to as popularity bias. Existing work predom-
inantly adopts simple statistical measures, such as the difference of
mean or median popularity, to quantify popularity bias. Moreover,
it does so irrespective of user characteristics other than the incli-
nation to popular content. In this work, in contrast, we propose
to investigate popularity differences (between the user profile and
recommendation list) in terms of median, a variety of statistical
moments, as well as similarity measures that consider the entire
popularity distributions (Kullback-Leibler divergence and Kendall’s
τ rank-order correlation). This results in a more detailed picture of
the characteristics of popularity bias. Furthermore, we investigate
whether such algorithmic popularity bias affects users of different
genders in the same way. We focus on music recommendation and
conduct experiments on the recently released standardized LFM-2b
dataset, containing listening profiles of Last.fm users. We investi-
gate the algorithmic popularity bias of seven common recommen-
dation algorithms (five collaborative filtering and two baselines).
Our experiments show that (1) the studied metrics provide novel
insights into popularity bias in comparison with only using av-
erage differences, (2) algorithms less inclined towards popularity
bias amplification do not necessarily perform worse in terms of
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utility (NDCG), (3) the majority of the investigated recommenders
intensify the popularity bias of the female users.
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1 INTRODUCTION
Popularity bias in recommender systems refers to a disparity of
item popularities in the recommendation lists. Most commonly, this
means that a disproportionally higher number of popular items
than less popular ones are recommended [8]. The existence of such
a popularity bias has been evidenced in different domains already,
e.g., movies [3], music [12], or product reviews [1]. Collaborative
filtering recommenders are particularly prone to popularity biases
because the data they are trained on already exhibit an imbalance to-
wards popular items, i.e., more user–item interactions are available
for popular items than less popular ones [2].

The distribution of item popularities in most domains, in partic-
ular in the music domain, which we target in this work, shows a
long-tail characteristic [5]. A recommendation algorithm introduces
no further algorithmic bias when the distribution of popularity val-
ues of recommended items (tracks) exactly matches the distribution
of popularity values of already consumed items (listening history)
for each user.
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We identify two shortcomings of existing studies of popularity
bias: First, popularity bias is commonly quantified using simple
statistical aggregation metrics, predominantly comparing arith-
metic means computed on some count of the user–item interac-
tions [3, 12]. These are not robust against outliers often present in
music listening data. Second, popularity bias is typically studied
irrespective of user characteristics. Therefore, the extent to which
users of different groups (e.g., age, gender, or cultural background)
are affected remains unclear. We set out to approach these short-
comings in the music domain by posing the following research
questions:

• RQ1: Which novel insights into popularity bias can be obtained
by quantifying algorithmic popularity bias based on the me-
dian, a variety of statistical moments, and similarity measures
between popularity distributions?

• RQ2: Do algorithmic popularity biases affect users of different
genders in the same way?

We find that users of different genders are affected by algorithm-
inflected bias differently, such that the majority of the models ex-
pose female users to more biased results. Also, algorithms less
inclined towards popularity bias amplification do not necessarily
perform worse in terms of utility (NDCG). Finally, the studied met-
rics provide novel insights into popularity bias in comparison with
only using average differences.

2 RELATED WORK
We focuse on popularity bias, a well-studied form of bias in recom-
mender systems research. This form of bias refers to the underrep-
resentation of less popular items in the produced recommendations
and can lead to a significantly worse recommendation quality for
consumers of long tail or niche items [3, 10, 12, 13]. Abdollahpouri
et al. [3] show that state-of-the-art movie recommendation algo-
rithms suffer from popularity bias, and introduce the delta-GAP
metric to quantify the level of underrepresentation. As shown in
Kowald et al. [12], in particular users interested in niche, unpopular
items suffer from a worse recommendation quality. The authors use
the delta-GAP metric in the domain of music recommendations, and
find that the delta-GAP metric does not show a difference between
“niche” and “mainstream” users. The reason for this could be that a
group-based metric is not suitable for the complexity of music styles,
as user groups can be quite diverse within themselves [11]. Zhu
et al. [20] address a related problem of item under-recommendation
bias, expressing it with ranking-based statistical parity and ranking-
based equal opportunity metrics. Boratto et al. [4] propose metrics
quantifying the degree to which a recommender equally treats
items along the popularity tail.

In contrast to these works, we study differences between popu-
larity distributions of consumed and recommended items for each
user. We express them in terms of the median as well as several
statistical moments and similarity measures. In addition, we com-
bine research strands on popularity bias and gender bias by ana-
lyzing how female and male listeners are affected by popularity
bias.

3 MEASURING POPULARITY BIAS
We introduce ways to express popularity bias as quantified dis-
similarity between popularity distributions of recommended and
consumed items for each user.

3.1 Track Popularity Distributions
We define P(t) popularity of a track t as the sum of its play counts
over all users ui ∈ U in the dataset, namely P(t) = ∑

ui ∈U PC(t ,ui ).
We then use these popularity estimates to derive the popularity
distribution over each user’s listening history and recommenda-
tion list. In order to make the popularity distribution Hui (t) over
a user’s listening history Thist (ui ) comparable to the respective
distribution Rui (t) over the recommendation lists, we consider only
the top of the recommendation list Ttop_r ec (ui ) so that its length
(number of tracks) matches the length of the user’s listening history
|Ttop_r ec (ui )| = |Thist (ui )|. Therefore, we define the popularity dis-
tribution over the listening history and the recommendation list of
user ui as follows:

Hui (t) =
{
P(t)|t ∈ Thist (ui )
0|t < Thist (ui )

Rui (t) =
{
P(t)|t ∈ Ttop_r ec (ui )
0|t < Ttop_r ec (ui )

(1)

To gain a better understanding of these distributions, Figure 1a
shows an example of popularity distributions over a user’s listen-
ing history Thist (ui ) and the corresponding recommendation list
Ttop_r ec (ui ) produced by the SLIM recommender algorithm.

3.2 Metrics
3.2.1 Delta Metrics of Popularity Bias. In order to measure the
differences between these distributions, we first introduce a series
of delta metrics to calculate the discrepancies between the listening
history and recommendation list popularity distributions of each
user, and then aggregate them to achieve per-system results. We
study five %∆M (percent delta) metrics where the metric M is
one of the following: Mean, Median, Variance , Skew , Kurtosis . If
M(Hui (t)) and M(Rui (t)) are the results of application of the same
metric M to the two respective distributions, the respective %∆M
for the userui is calculated as: %∆Mui =

M(Rui (t ))−M(Hui (t ))
M(Hui (t ))

·100
Positive %∆Mean and %∆Median indicate that overall more pop-

ular tracks are recommended to the user. Since Mean is sensitive
to outliers, the interplay between these metrics provides additional
information about the changes in popularity. Positive %∆Variance
means that the list of recommended items is more diverse in terms
of different popularity values than the user’s history. This can also
mean an increase in bias towards more popular items, as the most
popular items are sparsely distributed across the popularity range.
Positive %∆Skew denotes that the right tail of the recommendation
list distribution is heavier (with respect to the left tails) than the one
belonging to the user-history distribution. A positive value there-
fore means that more items tend to have lower popularity from the
range of the distribution. Finally, positive %∆Kurtosis shows that
the tails of the recommended tracks’ popularity distribution are
heavier than of its counterpart, and the distribution itself is in a
way closer to uniform distribution.
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Figure 1: (a) shows equally binned (for visualization purposes only) distributions of popularity over the listening history (left)
and the recommendation list (right) for the same user. On x-axis evenly binned popularity, on y-axis number of tracks in the
distribution, falling into each bin. (b) demonstrates the same distributions binned with respect to the popularity distribution
in the whole collection. This binning is employed for KL and Kendall’s τ calculations.

Finally, the discussed metrics describe the difference between the
distributions for a particular user. In order to represent the change
across all users, we take the median of the per-user values.

3.2.2 Kullback–Leibler Divergence and Kendall’s τ as Measures for
Popularity Bias. In order to compare the entire popularity distribu-
tions, we utilize Kullback–Leibler Divergence (KL) and Kendall’s
τ (KT ). For each user, we apply these metrics to the correspond-
ing Hui (t) and Rui (t) decile-binned with respect to the popularity
distribution over the whole collection (P(t)). The bins are chosen
in such a way that the cumulative popularity of all tracks of the
collection belonging into one bin constitutes approximately 10%
of the total popularity of all tracks of the whole collection. Fig-
ure 1b shows the distributions from Figure 1a binned this way. In
our dataset, the bin corresponding to the most popular tracks is
constituted by only 161 items whose popularity ranges from about
7k to 47k total play counts. Each bin covers items that are roughly
half as popular as the next decile bin and two times as popular as
the previous decile bin. Such binning allows the two metrics to be
less sensitive to minor differences between the distributions and
concentrate on the shifts between different popularity categories.

KL estimates the dissimilarity of two distributions, in our case,
between the user’s listening history and recommendation list pop-
ularity distributions. It is defined as

KLui (Ĥui (b)|R̂ui (b)) =
∑
bj ∈B

Ĥui (bj ) log
Ĥui (bj )
R̂ui (bj )

(2)

where Ĥui (b) and R̂ui (b) are decile-binned and normalized ver-
sions of the distributions and bj ∈ B represent the ten bins. KL
compares the two distributions and increases with every mismatch
in the item counts. It is particularly sensitive to the case when for
a bin the user gets recommended fewer tracks than they have in
their listening history.

While KL Divergence is sensitive to actual count changes,
Kendall’s τ metric reflects whether the order of bins is the same
for the two distributions when ranked according to the respective
counts. Kendall’s τ is calculated as KTui (Ĥui (b), R̂ui (b)) = C−D

C+D ,
where C represents the number of pairs of bins that have the same
respective ranking in both distributions (concordant pairs) and D
the number of pairs of bins that have the different respective rank-
ing in the two distribution (discordant pairs). For example, looking
at Figure 1b, the first two bins are concordant (∈ C) as in both cases,
more items fall into the second bin. While the first and the last bins

are discordant (∈ D) as in the listening history distribution, the
first bin has more items. However, the recommended distribution
shows the opposite. This way, KT shows whether there are com-
mon patterns (correlations) in the two distributions, and it reaches
its maximum value of 1 when the two distributions are identical
from the bin-ranking point of view. Similar to %∆M metrics, we
use the median of the per-user values to measure the differences
across all users for KL and KT .

4 EXPERIMENT SETUP
4.1 Recommendation Algorithms
To study algorithmic popularity biases, we examine different com-
monly used collaborative filtering algorithms (i.e., heuristic, neigh-
borhood based, matrix factorization, and autoencoders) [6, 16]:

• Random Item (RAND): A baseline algorithm that recommends
for each user random items. It avoids recommending already
consumed items.

• Most Popular Items (POP): A baseline that implements a
heuristic-based algorithm that recommends the same set
of overall most popular items to each user.

• Item k-Nearest Neighbors (ItemKNN) [7]: A neighborhood-
based algorithm that recommends items based on item-to-
item similarity. Specifically, an item is recommended to a
user if the item is similar to the items previously selected by
the user. ItemKNN uses statistical measures to compute the
item-to-item similarities.

• Sparse Linear Method (SLIM) [17]: Also a neighborhood-
based algorithm, but instead of using predefined similarity
metrics, the item-to-item similarity is learned directly from
the data with a regression model.

• Alternating Least Squares (ALS) [9]: A matrix factorization
approach that learns user and item embeddings such that the
dot product of these two approximates the original user-item
interaction matrix.

• Matrix factorization with Bayesian Personalized Ranking
(BPR) [18]: Learns user and item embeddings, however, with
an optimization function that aims to rank the items con-
sumed by the users according to their preferences (hence,
personalized ranking) instead of predicting the rating for a
specific pair of user and item.

• Variational Autoencoder (VAE) [14]: An autoencoder-based
algorithm that, given the user’s interaction vector, estimates
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Table 1: Statistics of the dataset. Number of Users, Tracks and listening events (LEs) are reported across F(emale) and M(ale)
separately and also together (All). Mean and standard deviation (indicated after ±) of the interactions of users with tracks and
LEs are indicated in the last three columns, respectively.

Gender Users Tracks LEs Tracks/User LEs/User
All 19, 972 99, 831 19, 906, 272 142 ± 172 997 ± 1, 571
F 4, 415 70, 980 3, 397, 310 101 ± 121 769 ± 1, 158
M 15, 557 99, 810 16, 508, 962 153 ± 182 1, 061 ± 1, 664

a probability distribution over all the items using a varia-
tional autoencoder architecture.

For training the models, we use the same hyperparameter set-
tings as provided by Melchiorre et al. [16].

4.2 Dataset and Evaluation Protocol
We perform experiments on LFM-2b-DemoBias [16], a subset of the
LFM-2b dataset1. As in [16], we only consider user-track interac-
tions with a playcount (PC) > 1, possibly avoiding using spurious
interactions likely introduced by noise. Furthermore, we only con-
sider tracks listened to by at least 5 different users and, likewise,
only users who listened to at least 5 different tracks. Moreover, we
only consider listening events within the last 5 years, letting us
focus more on possible popularity biases in the recent years. Lastly,
we consider binary user-track interactions, i.e., 1 if the user has
listened to the track at least once, 0 otherwise.

The procedure described above results in a subset of 23k users
over 1.6 million items. We finalize data preparation by sampling
100k tracks uniformly-at-random, which ensures that tracks of
different popularity levels are equally likely to be included in the
final dataset. The statistics of the final dataset are reported in Table 1.
We find that males represent the majority group in the dataset and
that they create ∼ 80% of all listening events.

As evaluation protocol, we employ a user-based split strategy
[14, 15], i.e., we split the 19,972 users in the dataset into train,
validation, and test user groups via a 60-20-20 ratio split. We carry
out 5-fold cross validation and change these user groups in a round-
robin fashion. The users in the training set and all their interactions
are used to train the recommendation algorithms. For testing and
validation, we follow standard setups [14, 19] and randomly sample
80% of the users’ items as input for the recommendation models
and use the remaining 20% to calculate the evaluation metric.

5 RESULTS AND DISCUSSION
The results are shown in Table 2. Each value in the All rows, re-
garding the popularity bias metrics, shows the median value of the
distribution of a given metric over all users. For instance, %∆Var .
of 72.6% for ALS denotes that the median increase in popularity
variance is 72.6 percent between user’s listening history and items
recommended to each user across all users. SLIM KL 1.66 expresses
that the median difference between user history popularity dis-
tributions and the corresponding recommended tracks popularity
distributions is 1.66 in terms ofKL Divergence. The reported results

1http://www.cp.jku.at/datasets/LFM-2b

regarding the genders indicate the changes in values in respect to
the All values.

Both baseline algorithms (RAND and POP) show poor results on
accuracy metrics. Notably, on the %∆ popularity bias metrics, they
show divergent behavior. Decreasing of %∆metrics ofMean,Median,
Variance and increasing of Skew and Kurtosis indicate that RAND
provides a list of tracks whose popularity distribution is closer to
uniform than those from users’ listening histories. POP has an op-
posite trend, as the recommended tracks’ popularity distribution
has a more pronounced peak, is skewed, and shifted towards more
popular items. It also shows a substantial median increase of vari-
ance in popularity, which can be explained by the fact that in our
dataset, the most popular tracks are sparsely distributed across a
wide range of popularity values (161 track in the popularity range
between 7k and 47k of total play counts). Thus, recommending
tracks from this category leads to a high variance. High values
for KL for both baselines also indicate that the overall popularity
distributions of the recommended items are highly different from
those of the users’ listening histories. The random recommender
demonstrates a higher median Kendall’s τ , which means that its
output better correlates with users’ histories in terms of popularity
distribution. Both neighborhood-based models (i.e., ItemKNN and
SLIM) show a high performance in terms of NDCG and a moder-
ate popularity bias in their recommendations according to the %∆
metrics, which is lower compared to VAE and ALS. In particular,
SLIM shows higher value in %∆ Mean and Median compared to
ItemKNN, suggesting that the item-to-item similarities learned by
SLIM favors more popular items in the recommendations. ItemKNN
displays lower KL and higher Kendall’s τ than SLIM, which means
that its results better approximate users’ listening histories (we
attribute this to ItemKNN being less sensitive to bias in the data
as it does not require trainable parameters). These observations
regarding the performance of the models indicate that a decrease
in popularity bias does not necessarily lead to a significant perfor-
mance drop. Comparing ALS with BPR, we can observe an opposite
behavior. While providing less biased results, BPR shows the poor-
est performance among all non-baseline algorithms. While VAE is
similarly biased in terms of all metrics as POP, it achieves a higher
performance according to NDCG.

Comparing metrics between the two gender groups, we note
that %∆ Mean and Median is higher for female users. That means
that their recommendations contain more popular items and/or
items of higher popularity than the ones they usually listen to,
and for this user group, that effect is more pronounced (hence
larger values). Considering that %∆Variance is lower for the female
users, we conclude that their recommendations are less diverse in
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Table 2: Results of algorithm-inflected popularity bias evaluation in terms of the seven introduced metrics and NDCG@10.
Each model is represented by three rows. The row All gives the results on the whole dataset. The rows ∆Female and ∆Male de-
scribe the difference in the result between the user group and the whole population in the dataset. For example, the %∆Variance
for algorithm SLIM for All of 56.0 denotes a median increase in popularity variance (between listening history and recom-
mended list) of 56% over all users. The corresponding ∆Female value of −17.4 means that the variance increase for this group
is 56.0 − 17.4 = 38.6%.

Alg. Users %∆Mean %∆Median %∆Var . %∆Skew %∆Kurtosis KL Kendall’s τ NDCG@10
All −91.8 −87.2 −99.5 11.5 15.3 3.904 0.165 0.000

RAND ∆Female −1.8 −3.5 −0.2 +0.0 −3.5 +0.976 −0.189 −0.000
∆Male +0.5 +1.1 +0.1 −0.0 +1.3 −0.281 +0.053 +0.000
All 432.5 975.2 487.0 −58.0 −87.0 6.023 0.057 0.045

POP ∆Female +11.0 +282.1 −172.2 −2.1 −1.9 +1.626 −0.033 +0.003
∆Male −2.8 −115.8 +55.9 +0.5 +0.5 −0.380 +0.016 −0.001
All 121.8 316.6 72.6 −25.2 −43.9 4.368 0.046 0.184

ALS ∆Female +9.9 +27.4 −7.1 −3.2 −5.4 +0.467 +0.110 −0.017
∆Male −2.7 −6.6 +1.6 +0.8 +1.5 −0.121 −0.023 +0.005
All −49.0 −3.7 −87.4 −14.8 −29.4 1.202 0.268 0.129

BPR ∆Female +5.2 +7.7 +2.1 −1.4 −3.9 +0.476 −0.043 −0.011
∆Male −1.1 −1.9 −0.6 +0.4 +1.1 −0.110 +0.010 +0.003
All 9.6 4.6 5.7 −14.3 −29.0 0.175 0.423 0.301

ItemKNN ∆Female +2.0 +5.8 −2.6 −2.1 −3.2 +0.128 −0.037 −0.042
∆Male −0.5 −1.3 +0.9 +0.8 +0.9 −0.020 +0.008 +0.012
All 49.8 99.8 56.0 −12.5 −26.0 0.424 0.189 0.365

SLIM ∆Female −6.4 −13.1 −17.4 −1.7 −4.6 +0.217 +0.052 −0.048
∆Male +1.9 +3.9 +5.6 +0.6 +1.1 −0.029 −0.012 +0.014
All 303.9 736.3 351.0 −45.2 −70.1 4.823 −0.028 0.191

VAE ∆Female +10.1 +56.4 −69.3 −6.2 −6.6 +0.633 +0.146 −0.020
∆Male −2.3 −20.4 +17.3 +1.8 +2.1 −0.161 −0.042 +0.006

terms of track popularity while consisting of more popular items.
Judging by %∆ Skew ,Kurtosis as well as Kendall’s τ , we can suggest
that most recommender algorithms provide recommendations with
comparable popularity distributions to both male and female users.
At the same time, a slightly larger KL may mean a larger shift
towards popular items for female users. ItemKNN is the least biased
algorithm in our study. It features low absolute values of %∆ Mean,
Median and Variance , meaning that its recommendations consist
of tracks comparable to the user’s listening history in terms of
average popularity and variety. High Kendall’s τ means that the
shape of the popularity distribution of the recommendations best
matches the user’s history among all tested algorithms. Still, it is
slightly biased towards more popular items, as shown by negative
%∆ Skew and KL (which combined with high Kendall’s τ signalizes
about a shift of the distribution).

6 CONCLUSIONS AND FUTURE DIRECTION
In this paper, we examine to what extent various music recom-
mender systems amplify item popularity bias. We study seven met-
rics of popularity bias deviation and analyze the results of seven
recommender algorithms for users of different genders and for
the overall population in the dataset. Addressing RQ1, we observe
that the studied metrics capture considerably different aspects of
difference between popularity distributions of consumed and rec-
ommended items. While %∆Mean and %∆Median tell us about

overall trends (are recommended tracks more or less popular than
consumed ones), %∆Variance expresses the change in the diversity
between listening histories and recommendation lists, and %∆Skew
and %∆Kurtosis hint on the difference of shapes between the two
distributions. Finally, KL Divergence and Kendall’s τ allow insight
into how well the distributions match on a more granular level.
With regard to RQ2, we found that while the investigated algo-
rithms display various levels of popularity bias, the majority of
them (VAE, ItemKNN, BPR, ALS) expose the female users to more
popularity biased results. In the future, we will approach mitigating
model-imposed popularity bias, e.g., through adversarial training
or incorporating bias into the loss function of the recommenders,
as well as finding more expressive metrics describing differences in
the popularity distributions. Additionally, we plan to split our users
into groups according to mainstreaminess as in [12] to compare
our metrics with the group-based delta-GAP metric used in that
work.
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Abstract. Multimedia recommender systems suggest media items, e.g.,
songs, (digital) books and movies, to users by utilizing concepts of tra-
ditional recommender systems such as collaborative filtering. In this
paper, we investigate a potential issue of such collaborative-filtering
based multimedia recommender systems, namely popularity bias that
leads to the underrepresentation of unpopular items in the recommenda-
tion lists. Therefore, we study four multimedia datasets, i.e., Last.fm,
MovieLens, BookCrossing and MyAnimeList, that we each split into
three user groups differing in their inclination to popularity, i.e., LowPop,
MedPop and HighPop. Using these user groups, we evaluate four collab-
orative filtering-based algorithms with respect to popularity bias on the
item and the user level. Our findings are three-fold: firstly, we show that
users with little interest into popular items tend to have large user pro-
files and thus, are important data sources for multimedia recommender
systems. Secondly, we find that popular items are recommended more
frequently than unpopular ones. Thirdly, we find that users with little
interest into popular items receive significantly worse recommendations
than users with medium or high interest into popularity.

Keywords: multimedia recommender systems · collaborative
filtering · popularity bias · algorithmic fairness

1 Introduction

Collaborative filtering (CF) is one of the most traditional but also most powerful
concepts for calculating personalized recommendations [22] and is vastly used in
the field of multimedia recommender systems (MMRS) [11]. However, one issue
of CF-based approaches is that they are prone to popularity bias, which leads
to the overrepresentation of popular items in the recommendation lists [2,3].
Recent research has studied popularity bias in domains such as music [15,16]
or movies [3] by comparing the recommendation performance for different user
groups that differ in their inclination to mainstream multimedia items. However,
a comprehensive study of investigating popularity bias on the item and user level
across several multimedia domains is still missing (see Sect. 2).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Boratto et al. (Eds.): BIAS 2022, CCIS 1610, pp. 1–11, 2022.
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In the present paper, we therefore build upon these previous works and expand
the study of popularity bias to four different domains of MMRS: music (Last.fm),
movies (MovieLens), digital books (BookCrossing), and animes (MyAnimeList).
Within these domains, we show that users with little interest into popular items
tend to have large user profiles and thus, are important consumers and data
sources for MMRS. Furthermore, we apply four different CF-based recommen-
dation algorithms (see Sect. 3) on our four datasets that we each split into three
user groups that differ in their inclination to popularity (i.e., LowPop, MedPop,
and HighPop). With this, we address two research questions (RQ):

• RQ1: To what extent does an item’s popularity affect this item’s recommen-
dation frequency in MMRS?

• RQ2: To what extent does a user’s inclination to popular items affect the
quality of MMRS?

Regarding RQ1, we find that the probability of a multimedia item to be
recommended strongly correlates with this items’ popularity. Regarding RQ2,
we find that users with less inclination to popularity (LowPop) receive statisti-
cally significantly worse multimedia recommendations than users with medium
(MedPop) and high (HighPop) inclination to popular items (see Sect. 4). Our
results demonstrate that although users with little interest into popular items
tend to have the largest user profiles, they receive the lowest recommendation
accuracy. Hence, future research is needed to mitigate popularity bias in MMRS,
both on the item and the user level.

2 Related Work

This section presents research on popularity bias that is related to our work. We
split these research outcomes in two groups: (i) work related to recommender
systems in general, and (ii) work that focuses on popularity bias mitigation
techniques.

Popularity Bias in Recommender Systems. Within the domain of recom-
mender systems, there is an increasing number of works that study the effect of
popularity bias. For example, as reported in [8], bias towards popular items can
affect the consumption of items that are not popular. This in turn prevents them
to become popular in the future at all. That way, a recommender system is prone
to ignoring novel items or the items liked by niche users that are typically hidden
in the “long-tail” of the available item catalog. Tackling these long-tail items has
been recognized by some earlier work, such as [10,20]. This issue is further inves-
tigated by [1,2] using the popular movie dataset MovieLens 1M. The authors
show that more than 80% of all ratings actually belong to popular items, and
based on this, focus on improving the trade-off between the ranking accuracy and
coverage of long-tail items. Research conducted in [13] illustrates a comprehen-
sive algorithmic comparison with respect to popularity bias. The authors analyze
multimedia datasets such as MovieLens, Netflix, Yahoo!Movies and BookCross-
ing, and find that recommendation methods only consider a small fraction of
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the available item spectrum. For instance, they find that KNN-based techniques
focus mostly on high-rated items and factorization models lean towards recom-
mending popular items. In our work, we analyze an even larger set of multimedia
domains and study popularity bias not only on the item but also on the user
level.

Popularity Bias Mitigation Techniques. Typical research on mitigating
popularity bias performs a re-ranking step on a larger set of recommended can-
didate items. The goal of such post-processing approaches is to better expose
long-tail items in the recommendation list [2,4,6]. Here, for example, [7] pro-
poses to improve the total number of distinct recommended items by defining
a target distribution of item exposure and minimizing the discrepancy between
exposure and recommendation frequency of each item. In order to find a fair ratio
between popular and less popular items, [24] proposes to create a protected group
of long-tail items and to ensure that their exposure remains statistically indistin-
guishable from a given minimum. Beside focusing on post-processing, there are
some in-processing attempts in adapting existing recommendation algorithms in
a way that the generated recommendations are less biased toward popular items.
For example, [5] proposes to use a probabilistic neighborhood selection for KNN
methods, or [23] suggests a blind-spot-aware matrix factorization approach that
debiases interactions between the recommender system and the user. We believe
that the findings of our paper can inform future research on choosing the right
mitigation technique for a given setting.

3 Method

In this section, we describe (i) our definition of popularity, (ii) our four multi-
media datasets, and (iii) our four recommendation algorithms based on collab-
orative filtering as well as our evaluation protocol.

3.1 Defining Popularity

Here, we describe how we define popularity (i) on the item level, and (ii) on the
user level. We use the item popularity definition of [3], where the item popularity
score Popi of an item i is given by the relative number of users who have rated

i, i.e., Popi = |Ui|
|U | . Based on this, we can also define Popi,u as the average item

popularity in the user profile Iu, i.e., Popi,u = 1
|Iu|

∑
i∈Iu

Popi. Additionally,

we can also define an item i as popular if it falls within the top-20% of item
popularity scores. Thus, we define Iu,Pop as the set of popular items in the user
profile.

On the user level, we also follow the work of [3] and define a user u’s incli-
nation to popularity Popu as the ratio of popular items in the user profile, i.e.,

Popu =
|Iu,P op|

|Iu| . As an example, Popu = 0.8 if 80% of the items in the user’s item

history are popular ones. We use this definition to create the LowPop, MedPop
and HighPop user groups in case of MovieLens, BookCrossing and MyAnimeList.
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Table 1. Statistics of our four datasets, where |U | is the number of users, |I| is the
number of media items, |R| is the number of ratings, sparsity is defined as the ratio of
observed ratings |R| to possible ratings |U | × |I|, and R-range is the rating range.

Dataset |U | |I| |R| |R|/|U | |R|/|I| Sparsity R-range

Last.fm 3,000 352,805 1,755,361 585 5 0.998 [1–1,000]

MovieLens 3,000 3,667 675,610 225 184 0.938 [1–5]

BookCrossing 3,000 223,607 577,414 192 3 0.999 [1–10]

MyAnimeList 3,000 9,450 649,814 216 69 0.977 [1–10]

In case of Last.fm, we use a definition for Popu especially proposed for the
music domain, which is termed the mainstreaminess score [9]. Here, we use the

Mglobal
R,APC definition, which is already provided in the dataset1 published in our

previous work [16]. Formally, Mglobal
R,APC(u) = τ(ranks(APC), ranks(APC(u))),

where APC and APC(u) are the artist play counts averaged over all users and
for a given user u, respectively. τ indicates the rank-order correlation according
to Kendall’s τ . Thus, u’s mainstreaminess score is defined as the overlap between
a user’s item history and the aggregated item history of all Last.fm users in the
dataset. Thus, the higher the mainstreaminess score, the higher a user’s inclina-
tion to popular music. Please note that we cannot calculate the mainstreaminess
score for the other datasets, since we do not have multiple interactions per item
(i.e., play counts) in these cases (only one rating per user-item pair).

To get a better feeling of the relationship between average item popularity
scores in the user profiles (i.e., Popu,i) and the user profile size (i.e., |Iu|), we
plot these correlations for our four datasets and per user group in Fig. 1. Across
all datasets, we see a negative correlation between average item popularity and
user profile size, which means that users with little interest in popular items
tend to have large user profiles. This suggests that these users are important
consumers and data sources in MMRS, and thus, should also be treated in a fair
way (i.e., should receive similar accuracy scores as users with medium or high
interest in popular items).

3.2 Multimedia Datasets

For our study, we use four datasets containing rating data of users for media
items. The statistics of our datasets can be found in Table 1, and we provide the
datasets via Zenodo2. The users in each of our four datasets are split into three
equally-sized user groups: (i) LowPop, i.e., the 1,000 users with the least incli-
nation to popular items, (ii) MedPop, i.e., 1,000 users with medium inclination
to popular media items, and (iii) HighPop, i.e., the 1,000 users with the high-
est inclination to popular media items. This sums up to |U | = 3,000 users per

1 https://zenodo.org/record/3475975.
2 https://zenodo.org/record/6123879.
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(a) Last.fm (b) MovieLens

(c) BookCrossing (d) MyAnimeList

Fig. 1. Relationship between average item popularity scores in the user profiles (i.e.,
Popu,i) and user profile size (i.e., |Iu|). We see that users with little interest in popular
items tend to have large user profiles.

dataset. Next, we describe our four datasets and how we split the user groups
based on the popularity definitions given before:

Last.fm. For the music streaming platform Last.fm, we use the dataset pub-
lished in our previous work [16], which is based on the LFM-1b dataset3. Here,
a user is assigned to one of the three groups LowPop, MedPop and HighPop
based on the user’s mainstreaminess score [9], which we defined earlier (i.e.,

Mglobal
R,APC). Additionally, in this Last.fm dataset, the listening counts of users for

music artists are scaled to a rating range of [1–1,000]. When looking at Table 1,
Last.fm has the largest number of items |I| = 352,805 and the largest number
of ratings |R| = 1,755,361 across our four datasets.

MovieLens. In case of the movie rating portal MovieLens, we use the well-
known MovieLens-1M dataset4. We extract all users with a minimum of 50
ratings and a maximum of 2,000 ratings. We assign these users to one of the
three user groups LowPop, MedPop and HighPop based on the ratio of popular
items in the user profiles [3] as described earlier (i.e., Popu). Table 1 shows that
MovieLens is the least sparse (i.e., most dense) dataset in our study and also
has the highest number of ratings per items (|R|/|I|).
3 http://www.cp.jku.at/datasets/LFM-1b/.
4 https://grouplens.org/datasets/movielens/1m/.
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BookCrossing. The dataset of the (digital) book sharing platform BookCross-
ing was provided by Uni Freiburg5. We use the same popularity definitions, group
assignment method as well as rating thresholds as in case of MovieLens. How-
ever, in contrast to MovieLens, BookCrossing contains not only explicit feedback
in the form of ratings but also implicit feedback when a user bookmarks a book.
In this case, we set the implicit feedback to a rating of 5, which is the middle
value in BookCrossing’s rating range of [1–10]. Across all datasets, BookCrossing
is the dataset with the highest sparsity.

MyAnimeList. We apply the same processing methods as used in case of
BookCrossing to the MyAnimeList dataset, which is provided via Kaggle6. Sim-
ilar to BookCrossing, MyAnimeList also contains implicit feedback when a user
bookmarks an Anime, and again we convert this feedback to an explicit rating
of 5, which is the middle value in the rating range.

3.3 Recommendation Algorithms and Evaluation Protocol

We use the same set of personalized recommendation algorithms as used in our
previous work [16] but since we focus on CF-based methods, we replace the
UserItemAvg algorithm with a scalable co-clustering-based approach [12] pro-
vided by the Python-based Surprise framework7. Thus, we evaluate two KNN-
based algorithms without and with incorporating the average rating of the target
user and item (UserKNN and UserKNNAvg), one non-negative matrix factoriza-
tion variant [19] (NMF) as well as the aforementioned CoClustering algorithm.
In most cases, we stick to the default parameter settings as suggested by the
Surprise framework and provide the detailed settings in our GitHub repository8.

We also follow the same evaluation protocol as used in our previous work [16]
and formulate the recommendation task as a rating prediction problem, which we
measure using the mean absolute error (MAE). However, instead of using only
one 80/20 train-set split, we use a more sophisticated 5-fold cross-validation
evaluation protocol. To test for statistical significance, we perform pairwise t-
tests between LowPop and MedPop as well as between LowPop and HighPop
since we are interested if LowPop is treated in an unfair way by the MMRS.
We report statistical significance for LowPop only in cases in which there is a
significant difference between LowPop and MedPop as well as between LowPop
and HighPop for all five folds.

4 Results

We structure our results based on our two research questions. Thus, we first
investigate popularity bias on the item level by investigating the relationship

5 http://www2.informatik.uni-freiburg.de/∼cziegler/BX/.
6 https://www.kaggle.com/CooperUnion/anime-recommendations-database.
7 http://surpriselib.com/.
8 https://github.com/domkowald/FairRecSys.
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Fig. 2. RQ1: Relationship between item popularity and recommendation frequency of
four CF-based algorithms for Last.fm, MovieLens, BookCrossing and MyAnimeList.
In all 16 cases, we see that popular media items have a higher probability of being
recommended than unpopular ones.

between item popularity and recommendation frequency (RQ1). Next, we inves-
tigate popularity bias on the user level by comparing the recommendation per-
formance for our three user groups (RQ2).

4.1 RQ1: Relationship Between Item Popularity
and Recommendation Frequency

Figure 2 shows the relationship between item popularity and recommendation
frequency for the four CF-based algorithms UserKNN, UserKNNAvg, NMF and
CoClustering on all five folds of our four multimedia datasets Last.fm, Movie-
Lens, BookCrossing and MyAnimeList. The solid lines indicate the linear regres-
sion between the two variables for the three user groups.

In all 16 plots, and all three user groups, we observe a positive relation-
ship between an item’s popularity and how often this item gets recommended
(RQ1). However, for NMF applied to Last.fm, the maximum recommendation
frequency is much lower as in case of the other algorithms. Thus, only in case
of NMF applied to Last.fm, we see a weak relationship between popularity and
recommendation frequency, while in all other cases, we see a strong relationship
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Table 2. RQ2: Mean absolute error (MAE) results (the lower, the better) of our study.
The lowest accuracy is always given for the LowPop user group (statistically significant
according to a t-test with p < 0.001 as indicated by ∗∗∗ and p < 0.05 as indicated by
∗∗). Across the algorithms, the best results are indicated by bold numbers and across
the user groups, the best results are indicated by italic numbers.

Dataset User group UserKNN UserKNNAvg NMF CoClustering

Last.fm

LowPop 49.489∗∗∗ 46.483∗∗∗ 39.641∗∗ 47.304∗∗∗

MedPop 42.899 37.940 32.405 37.918

HighPop 45.805 43.070 38.580 42.982

MovieLens

LowPop 0.801∗∗∗ 0.763∗∗∗ 0.753∗∗∗ 0.738∗∗∗

MedPop 0.748 0.727 0.722 0.705

HighPop 0.716 0.697 0.701 0.683

BookCrossing

LowPop 1.403∗∗∗ 1.372∗∗∗ 1.424∗∗∗ 1.392∗∗∗

MedPop 1.154 1.122 1.214 1.134

HighPop 1.206 1.155 1.274 1.162

MyAnimeList

LowPop 1.373∗∗∗ 1.001∗∗∗ 1.010∗∗∗ 1.001∗∗∗

MedPop 1.341 0.952 0.968 0.956

HighPop 1.311 0.948 0.951 0.975

between these variables. This is in line with our previous related work investigat-
ing popularity bias in Last.fm [16]. When comparing the three user groups, we
see the weakest relationship between the variables for LowPop and the strongest
relationship for HighPop. We will refer to this finding when investigating RQ2.

4.2 RQ2: Relationship Between Users’ Inclination to Popular Items
and Recommendation Accuracy

Table 2 shows the MAE estimates for the aforementioned CF-based recommen-
dation algorithms (UserKNN, UserKNNAvg, NMF, and CoClustering) on the
four multimedia datasets (Last.fm, MovieLens, BookCrossing, and MyAnimeList)
split in three user groups that differ in their inclination to popularity (LowPop,
MedPop, and HighPop). Additionally, we indicate statistically significant differ-
ences between both LowPop and MedPop, and LowPop and HighPop according
to a t-test with p < 0.001 using ∗∗∗ and with p < 0.05 using ∗∗ in the LowPop
lines.

Across all datasets, we observe the highest MAE estimates, and thus lowest
recommendation accuracy, for the LowPop user groups. The best results, indi-
cated by italic numbers, are reached for the MedPop group in case of Last.fm and
BookCrossing, and for the HighPop group in case of MovieLens and MyAnimeList.
For Last.fm this is in line with our previous work [16]. Across the algorithms, we
see varying results: for Last.fm, and again in line with our previous work [16],
the best results are reached for NMF. For MovieLens, we get the best results for
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the CoClustering approach, and for BookCrossing and MyAnimeList the highest
accuracy is reached for the UserKNN variant UserKNNAvg. We plan to inves-
tigate these differences across the user groups and the algorithms in our future
research, as outlined in the next section.

Taken together, users with little inclination to popular multimedia items
receive statistically significantly worse recommendations by CF-based algorithms
than users with medium and high inclination to popularity (RQ2). When refer-
ring back to our results of RQ1 in Fig. 2, this is interesting since LowPop is
the group with the weakest relationship between item popularity and recom-
mendation frequency. However, this suggests that recommendations are still too
popular for this user group and an adequate mitigation strategy is needed.

5 Conclusion

In this paper, we have studied popularity bias in CF-based MMRS. There-
fore, we investigated four recommendation algorithms (UserKNN, UserKN-
NAvg, NMF, and CoClustering) for three user groups (LowPop, MedPop, and
HighPop) on four multimedia datasets (Last.fm, MovieLens, BookCrossing,
and MyAnimeList). Specifically, we investigated popularity bias from the item
(RQ1) and user (RQ2) perspective. Additionally, we have shown that users with
little interest into popular items tend to have large profile sizes, and therefore
are important data sources for MMRS.

With respect to RQ1, we find that the popularity of a multimedia item
strongly correlates with the probability that this item is recommended by CF-
based approaches. With respect to RQ2, we find that users with little interest in
popular multimedia items (i.e., LowPop) receive significantly worse recommen-
dations than users with medium (i.e., MedPop) or high (i.e., HighPop) interest
in popular items. This is especially problematic since users with little interest
into popularity tend to have large profile sizes, and thus, should be treated in a
fair way by MMRS.

Future Work. Our results demonstrate that future work should further focus
on studying this underserved user group in order to mitigate popularity bias in
CF-based recommendation algorithms. We believe that our findings are a first
step to inform the research on popularity bias mitigation techniques (see Sect. 2)
to choose the right mitigation strategy for a given setting.

Additionally, as mentioned earlier, we plan to further study the differences
we found with respect to algorithmic performance for the different user groups
and multimedia domains. Here, we also want to study popularity bias in top-n
settings using ranking-aware metrics such as nDCG (e.g., as used in [18]). Finally,
we plan to work on further bias mitigation strategies based on cognitive-inspired
user modeling and recommendation techniques (e.g., [14,17,21].
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Abstract. Personalized news recommender systems support readers in
finding the right and relevant articles in online news platforms. In this
paper, we discuss the introduction of personalized, content-based news
recommendations on DiePresse, a popular Austrian online news plat-
form, focusing on two specific aspects: (i) user interface type, and (ii)
popularity bias mitigation. Therefore, we conducted a two-weeks online
study that started in October 2020, in which we analyzed the impact
of recommendations on two user groups, i.e., anonymous and subscribed
users, and three user interface types, i.e., on a desktop, mobile and tablet
device. With respect to user interface types, we find that the probability
of a recommendation to be seen is the highest for desktop devices, while
the probability of interacting with recommendations is the highest for
mobile devices. With respect to popularity bias mitigation, we find that
personalized, content-based news recommendations can lead to a more
balanced distribution of news articles’ readership popularity in the case
of anonymous users. Apart from that, we find that significant events (e.g.,
the COVID-19 lockdown announcement in Austria and the Vienna terror
attack) influence the general consumption behavior of popular articles
for both, anonymous and subscribed users.

Keywords: News recommendation · User interface · Popularity bias

1 Introduction

Similar to domains such as social networks or social tagging systems [14,17,21],
the personalization of online content has become one of the key drivers for news
portals to increase user engagement and convince readers to become paying sub-
scribers [8,9,22]. A natural way for news portals to do this, is to provide their
users with articles that are fresh and popular. This is typically achieved via sim-
ple most-popular news recommendations, especially since this approach has been

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Hagen et al. (Eds.): ECIR 2022, LNCS 13186, pp. 172–179, 2022.
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shown to provide accurate recommendations in offline evaluation settings [11].
However, such an approach could amplify popularity bias with respect to users’
news consumption. This means that the equal representation of non-popular, but
informative content in the recommendation lists is put into question, since arti-
cles from the “long tail” do not have the same chance of being represented and
served to the user [1]. Since nowadays, readers tend to consume news content on
smaller user interface types (e.g., mobile devices) [10,20], the impact of popular-
ity bias may even get amplified due to the reduced number of recommendations
that can be shown [12].

In this paper, we therefore discuss the introduction of personalized, content-
based news articles on DiePresse, a popular Austrian news platform, focusing
on two aspects: (i) user interface type, and (ii) popularity bias mitigation. To
do so, we performed a two-weeks online study that started in October 2020, in
which we compared the impact of recommendations with respect to different user
groups, i.e., anonymous (cold-start [18]) and subscribed (logged-in and paying)
users, as well as different user interface types, i.e., desktop, mobile and tablet
devices (see Sect. 2). Specifically, we address two research questions:

RQ1: How does the user interface type impact the performance of news recom-
mendations?

RQ2: Can we mitigate popularity bias by introducing personalized, content-
based news recommendations?

We investigate RQ1 in Sect. 3.1 and RQ2 in Sect. 3.2. Additionally, we discuss the
impact of two significant events, i.e., (i) the COVID-19 lockdown announcement
in Austria, and (ii) the Vienna terror attack, on the consumption behavior of
users. We hope that our findings will help other news platform providers assessing
the impact of introducing personalized recommendations.

2 Experimental Setup

In order to answer our two research questions, we performed a two-weeks online
user study, which started on the 27th of October 2020 and ended on the 9th
of November 2020. Here, we focused on three user interface types, i.e., desk-
top, mobile and tablet devices, as well as investigated two user groups, i.e.,
anonymous and subscribed users. About 89% of the traffic (i.e., 2, 371, 451 user
interactions) was produced by the 1,182,912 anonymous users, where a major-
ity of them (i.e., 77.3%) read news articles on a mobile device. Interestingly,
the 15,910 subscribed users exhibited a more focused reading behavior and only
interacted with a small subset of all articles that were read during our online
study (i.e., around 18.7% out of 17, 372 articles). Within the two-weeks period,
two significant events happened: (i) the COVID-19 lockdown announcement in
Austria on the 31st of October 2020, and (ii) the Vienna terror attack on the 2nd
of November 2020. The articles related to these events were the most popular
ones in our study.
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Calculation of Recommendations. We follow a content-based approach to
recommend news articles to users [19]. Therefore, we represent each news article
using a 25-dimensional topic vector calculated using Latent Dirichlet Allocation
(LDA) [3]. Each user was also represented by a 25-dimensional topic vector,
where the user’s topic weights are calculated as the mean of the news articles’
topic weights read by the user. In case of subscribed users, the read articles
consist of the entire user history and in case of anonymous users, the read articles
consist of the articles read in the current session. Next, these topic vectors are
used to match users and news articles using Cosine similarity in order to find
top-n news article recommendations for a given user. For our study, we set n = 6
recommended articles. For this step, only news articles are taken into account
that have been published within the last 48 h. Additionally, editors had the
possibility to also include older (but relevant) articles into this recommendation
pool (e.g., a more general article describing COVID-19 measurements).

In total, we experimented with four variants of our content-based recommen-
dation approach: (i) recommendations only including articles of the last 48 h, (ii)
recommendations also including the editors’ choices, and (iii) and (iv) recom-
mendations, where we also included a collaborative component by mixing the
user’s topic vector with the topic vectors of similar users for the variants (i) and
(ii), respectively. Additionally, we also tested a most-popular approach, since this
algorithm was already present in DiePresse before the user study started. How-
ever, we did not find any significant differences between these five approaches
with respect to recommendation accuracy in our two-weeks study and therefore,
we did not distinguish between the approaches and report the results for all
calculated recommendations in the remainder of this paper.

3 Results

3.1 RQ1: User Interface Type

Most studies focus on improving the accuracy of the recommendation algorithms,
but recent research has shown that this has only a partial effect on the final
user experience [13]. The user interface is namely a key factor that impacts the
usability, acceptance and selection behavior within a recommender system [6].
Additionally, in news platforms, we can see a trend that shifts from classical desk-
top devices to mobile ones. Moreover, users are biased towards clicking on higher
ranked results (i.e., position bias) [4]. When evaluating personalized news recom-
mendations, it becomes even more important to understand the user acceptance
of recommendations for smaller user interface types, where it is much harder for
the user to see all recommended options due to the limited size. In our study, we
therefore investigate to what extent the user interface type impacts the perfor-
mance of news recommendations (RQ1). As mentioned, we differentiate between
three different user interface types, i.e., interacting with articles on a (i) desk-
top, (ii) mobile, and (iii) tablet device. In order to measure the acceptance of
recommendations shown via the chosen user interface type, we use the following
two evaluation metrics [9]:
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Table 1. RQ1: Acceptance of recommended articles with respect to user interface type.

Metric Desktop Mobile Tablet

RSR: Recommendation-Seen-Ratio (%) 26.88 17.55 26.71

CTR: Click-Through-Rate (%) 10.53 13.40 11.37

Recommendation-Seen-Ratio (RSR) is defined as the ratio between the
number of times the user actually saw recommendations (i.e., scrolled to the
corresponding recommendation section in the user interface) and the number of
recommendations that were generated for a user.

Click-Through-Rate (CTR) is measured by the ratio between the number
of actually clicked recommendations and the number of seen recommendations.

As shown in Table 1, the smaller user interface size of a mobile device heavily
impacts the probability of a user to actually see the list of recommended articles.
This may be due to the fact that reaching the position where the recommenda-
tions are displayed is harder in comparison to a larger desktop or tablet device,
where the recommendation section can be reached without scrolling. Interest-
ingly enough, once a user has seen the list of recommended articles, users who
use a mobile device exhibit a much higher CTR. Again, we hypothesize that if a
user has put more effort into reaching the list of recommended articles, the user
is more likely to accept the recommendation and interact with it.

When looking at Fig. 1, we can see a consistent trend during the two weeks
of our study regarding the user interface types for both the RSR and CTR
measures. However, notable differences are the fluctuations of the evaluation
measures for the two significant events that happened during the study period.
For instance, the positive peak in the RSR and the negative peak in CTR that can
be spotted around the 31st of October was caused by the COVID-19 lockdown
announcement in Austria. For the smaller user interfaces (i.e., mobile and tablet
devices) this actually increased the likelihood of the recommendation to be seen
since users have invested more energy in engaging with the content of the news
articles. On the contrary, we saw a drop in the CTR, which was mostly caused
by anonymous users since the content-based, personalized recommendations did
not provide articles that they expected at that moment (i.e., popular ones solely
related to the event). Another key event can be spotted on the 2nd of November,
the day the Vienna terror attack happened. This was by far the most read article
with a lot of attack-specific information during the period of the online study.
Across all three user interface types, this has caused a drop in the likelihood of a
recommendation to be seen at all. Interestingly enough, the CTR in this case does
not seem to be influenced. We investigated this in more detail and noticed that
a smaller drop was only noticeable for the relatively small number of subscribed
users using a mobile device and thus, this does not influence the results shown
in Fig. 1. The differences between all interface types shown in Table 1 and Fig. 1
are statistically significant according to a Kruskal-Wallis followed by a Dunn test
except for mobile vs. tablet device with respect to CTR.
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(a) Recommendation-Seen-Ratio. (b) Click-Through-Rate.

Fig. 1. RQ1: Acceptance of recommended articles for the two weeks of our study with
respect to (a) RSR, and (b) CTR. The size of the dots represent the number of reading
events on a specific day for a specific user interface type.

3.2 RQ2: Mitigating Popularity Bias

Many recommender systems are affected by popularity bias, which leads to an
overrepresentation of popular items in the recommendation lists. One potential
issue of this is that unpopular items (i.e., so-called long-tail items) are recom-
mended rarely [15,16]. The news article domain is an example where ignoring
popularity bias could have a significant societal effect. For example, a poten-
tially controversial news article could easily impose a narrow ideology to a large
population of readers [7]. This effect could even be strengthened by providing
unpersonalized, most-popular news recommendations as it is currently done by
many online news platforms (including DiePresse) since these popularity-based
approaches are easy to implement and also provide good offline recommenda-
tion performance [9,10]. We hypothesize that the introduction of personalized,
content-based recommendations (see Sect. 2) could lead to more balanced rec-
ommendation lists in contrast to most-popular recommendations. This way also
long-tail news articles are recommended and thus, popularity bias could be mit-
igated. Additionally, we believe that this effect differs between different user
groups and thus, we distinguish between anonymous and subscribed users.

We measure popularity bias in news article consumption by means of the
skewness [2] of the article popularity distribution, i.e., the distribution of the
number of reads per article. Skewness measures the asymmetry of a probabil-
ity distribution, and thus a high, positive skewness value depicts a right-tailed
distribution, which indicates biased news consumption with respect to article
popularity. On the contrary, a small skewness value depicts a more balanced
popularity distribution with respect to head and tail, and thus indicates that
also non-popular articles are read. As another measure, we calculate the kurto-
sis of the popularity distribution, which measures the “tailedness” of a distri-
bution. Again, higher values indicate a higher tendency for popularity bias. For
both metrics, we hypothesize that the values at the end of our two-weeks study
are smaller than at the beginning, which would indicate that the personalized
recommendations helped to mitigate popularity bias.
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(a) Skewness. (b) Kurtosis.

Fig. 2. RQ2: Impact of personalized, content-based recommendations on the popularity
bias in news article consumption measured by (a) skewness and (b) kurtosis based on
the number of article reads for each day.

The plots in Fig. 2 show the results addressing RQ2. For both metrics, i.e.,
skewness and kurtosis, we see a large gap between anonymous users and sub-
scribers at the beginning of the study (i.e., 27th of October 2020), where only
most-popular recommendations were shown to the users. While anonymous users
have mainly read popular articles, subscribers were also interested in unpopu-
lar articles. This makes sense since subscribed users typically visit news portals
for consuming articles within their area of interest, which will also include arti-
cles from the long-tail, while anonymous users typically visit news portals for
getting a quick overview of recent events, which will mainly include popular arti-
cles. Based on this, a most-popular recommendation approach does not impact
subscribers as much as it impacts anonymous users.

However, when looking at the last day of the study (i.e., 9th of November
2020), there is a considerably lower difference between anonymous and sub-
scribed users anymore. We also see that the values at the beginning and at the
end of the study are nearly the same in case of subscribed users, which shows
that these users are not prone to popularity bias, and thus also personalized rec-
ommendations do not affect their reading behavior in this respect. With respect
to RQ2, we find that the introduction of personalized recommendations can help
to mitigate popularity bias in case of anonymous users. Furthermore, we see two
significant peaks in the distributions that are in line with the COVID-19 lock-
down announcement in Austria and the Vienna terror attack. Hence, in case of
significant events also subscribed users are prone to popularity bias.

4 Conclusion

In this paper, we discussed the introduction of personalized, content-based news
recommendations on DiePresse, a popular Austrian news platform, focusing on
two specific aspects: user interface type (RQ1), and popularity bias mitigation
(RQ2). With respect to RQ1, we find that the probability of recommendations
to be seen is the highest for desktop devices, while the probability of clicking the
recommendations is the highest for mobile devices. With respect to RQ2, we find
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that personalized, content-based news recommendations result in a more bal-
anced distribution of news articles’ readership popularity for anonymous users.
For future work, we plan to conduct a longer study, in which we also want to
study the impact of different recommendation algorithms (e.g., use BERT [5]
instead of LDA and include collaborative filtering) on converting anonymous
users into paying subscribers. Furthermore, we plan to investigate other evalua-
tion metrics, such as recommendation diversity, serendipity and novelty.
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Abstract. Recent research has suggested different metrics to measure
the inconsistency of recommendation performance, including the accu-
racy difference between user groups, miscalibration, and popularity lift.
However, a study that relates miscalibration and popularity lift to rec-
ommendation accuracy across different user groups is still missing. Addi-
tionally, it is unclear if particular genres contribute to the emergence of
inconsistency in recommendation performance across user groups. In this
paper, we present an analysis of these three aspects of five well-known
recommendation algorithms for user groups that differ in their preference
for popular content. Additionally, we study how different genres affect the
inconsistency of recommendation performance, and how this is aligned
with the popularity of the genres. Using data from Last.fm, MovieLens,
and MyAnimeList, we present two key findings. First, we find that users
with little interest in popular content receive the worst recommendation
accuracy, and that this is aligned with miscalibration and popularity
lift. Second, our experiments show that particular genres contribute to
a different extent to the inconsistency of recommendation performance,
especially in terms of miscalibration in the case of the MyAnimeList
dataset.

Keywords: Recommender systems · Popularity bias · Miscalibration ·
Accuracy · Recommendation inconsistency · Popularity lift

1 Introduction

Recommender systems benefit users by providing personalized suggestions of
content such as movies or music. However, we also know from previous research
that recommender systems suffer from an inconsistency in recommendation per-
formance across different user groups [2,9]. One example of this inconsistency is
the varying recommendation accuracy across different user groups, which could
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lead to unfair treatment of users whose preferences are not in the mainstream
of a community [18,19]. Other examples are inconsistencies between the input
data of a recommender system and the recommendations generated, which could
lead to recommendations that are either too popular and/or do not match the
interests of specific user groups [2,9]. Thus, popularity bias can be seen as one
particular example of recommendation inconsistencies.

Apart from measuring recommendation accuracy differences across different
user groups, related research [2] suggests quantifying the inconsistency of rec-
ommendation performance along two metrics, namely miscalibration and popu-
larity lift. Miscalibration quantifies the deviation of a genre spectrum between
user profiles and actual recommendations [24,29]. For example, if a user listens
to songs belonging to 45% pop, 35% rock, and 20% rap, whereas a calibrated
recommendation list should contain the same genre distribution.

Related research also proposes the popularity lift metric to investigate to
what extent recommendation algorithms amplify inconsistency in terms of pop-
ularity bias [3,4]. This popularity lift metric quantifies the disproportionate
amount of recommendations of more popular items in a system. For example,
a positive popularity lift indicates that the items recommended are on average
more popular than the ones in the user profile. Therefore, in the remainder of
this paper, we refer to popularity lift as a metric that measures the popularity
bias of recommendation algorithms.

However, a study that relates miscalibration and popularity lift to recommen-
dation accuracy across different user groups is still missing. We believe that the
outcomes of such a study could help choose the most suitable recommendation
debiasing methods for each user group. Additionally, it is unclear if particular
genres contribute to the emergence of inconsistency in recommendation perfor-
mance across user groups. This knowledge could be helpful, e.g., for enhancing
recommendation debiasing methods based on calibration.

The Present Work. In this paper, we contribute with a study on accuracy, mis-
calibration, and popularity bias of five well-known recommendation algorithms
that predict the preference of users for items, i.e., UserItemAvg, UserKNN,
UserKNNAvg [12], NMF [25], and Co-Clustering [10] in the domains of music
(Last.fm), movies (MovieLens), and animes (MyAnimeList). We split the users
in each dataset into three user groups based on the low, medium, and high incli-
nation towards popular content, which we call LowPop, MedPop, and HighPop,
respectively. With this, we aim to shed light on the connection between accuracy,
miscalibration, and popularity bias in recommendations.

Furthermore, in this paper, we investigate what genres in the user groups
are particularly affecting recommendation inconsistency across the algorithms
and domains. With this, we aim to understand if particular genres contribute to
the emergence of inconsistency in recommendation performance, and if this is
aligned with the popularity of the genres.

Findings and Contributions. We find that LowPop consumers consistently
receive the lowest recommendation accuracy, and in all investigated datasets,
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miscalibration is the highest for this user group. In terms of popularity lift, we
observe that all algorithms amplify popularity bias.

Concerning our analysis on the level of genres, we find that there are indeed
genres that highly contribute to inconsistency, especially in terms of miscalibra-
tion in the case of the MyAnimeList dataset. In sum, the contributions of our
paper are four-fold:

1. We extend three well-known datasets from the field of recommender systems
with genre information to study the inconsistency of recommendation perfor-
mance.

2. We evaluate five well-known recommendation algorithms for accuracy, mis-
calibration, and popularity lift.

3. We inspect recommendation inconsistency on the genre level and show that
different genres contribute differently to the emergence of inconsistency in
recommendation performance.

4. To foster the reproducibility of our work, we share the extended datasets and
source code used in our study with the research community.

2 Related Work

Bias in information retrieval and recommender systems is an emerging research
trait, and related works have shown multiple ways to quantify different biases
in a system [7,22]. One such bias is the popularity bias, which arises due to
items with higher popularity getting recommended more often than items with
lower popularity. Works [9] have found, that not all users are affected identically,
with some user groups receiving more inconsistent recommendations than oth-
ers. Ekstrand et al. [9,17], for example, found inconsistencies in recommendation
accuracy among demographic groups, with groups differing in gender and age
showing statistically significant differences in effectiveness in multiple datasets.
The authors evaluated different recommendation algorithms and identified vary-
ing degrees of utility effects.

Abdollahpouri et al. [2–4] also contributed to this line of research and intro-
duced two metrics to quantify the inconsistency in recommendation performance
from the user’s perspective. The first one is the miscalibration metric, which
quantifies the misalignment between the genre spectrum found in a user profile
and the genre spectrum found in this user’s recommendations. The second one
is the popularity lift metric, which measures to what extent a user is affected
by popularity bias, i.e., the unequal distribution of popular items in a user pro-
file and this user’s recommendations. In datasets from the movie domain, they
found that users that are more affected by popularity bias also receive more
miscalibrated results. Similarly, Kowald et al. [19] analyzed popularity bias and
accuracy differences across user groups in the music domain. The authors found
that the popularity lift metric provided different results in the music domain
than in the movie domain due to repeat consumption patterns prevalent in the
music-listening behavior of users.
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Table 1. Dataset statistics including the number of users |U |, items |I|, ratings |R|,
and distinct genres |C| as well as sparsity and rating range R-range.

Dataset |U | |I| |R| |C| |R|/|U | |R|/|I| Sparsity R-range

LFM 3, 000 131,188 1,417,791 20 473 11 0.996 [1 − 1, 000]

ML 3,000 3, 667 675,610 18 225 184 0.938 [1 − 5]

MAL 3,000 9, 450 649,814 44 216 69 0.977 [1 − 10]

In this paper, we extend these works by connecting miscalibration and popu-
larity lift to recommendation accuracy across different user groups. Additionally,
we examine if particular genres contribute to the emergence of recommendation
inconsistency across user groups and datasets. With this, we hope to inform
research on popularity bias mitigation methods. As an example, [5] has pro-
posed in-processing methods for debiasing recommendations based on calibra-
tion. We believe that our findings on which genres contribute to miscalibrated
results could be used to enhance these methods. Additionally, related research
has proposed post-processing methods to re-rank recommendation lists [1,6]. We
believe that our findings for the connection of accuracy and popularity lift for
different user groups could help choose the right users for whom such re-ranking
should be performed.

3 Method

In this section, we describe the datasets, the experimental setup, and the eval-
uation metrics used in our study.

3.1 Datasets

We use three different datasets in the domains of music, movies, and animes.
Specifically, we use dataset samples from Last.fm (LFM), MovieLens (ML), and
MyAnimeList (MAL) provided in our previous work [17]1. Here, each dataset
consists of exactly 3,000 users, which are split into three equally-sized groups
with 1,000 users each. We use 1,000 users per user group to be comparable with
previous works that also used groups of this size. The groups are created based
on the users’ inclination toward popular items. Following the definitions given
in [17], we define a user u’s inclination towards popular items as the fraction of
popular items in u’s user profile. We define an item i as popular if it is within
the top-20% of item popularity scores, i.e., the relative number of users who

1 We do not use the BookCrossing dataset due to the lack of genre information.
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have interacted with i. We term the group with the lowest, medium, and highest
inclination toward popular items LowPop, MedPop, and HighPop, respectively.
In Fig. 1, we show boxplots of the fraction of popular items in the user profiles
of the three groups for our three datasets.

Fig. 1. Boxplots depicting the fraction of popular items in the user profiles for the
three user groups and datasets. The LowPop group has the smallest ratio of popular
items, compared to MedPop and HighPop. In the LFM dataset, this difference is not
as apparent as in the other datasets, due to repeat consumption patterns in music
listening behavior.

In Fig. 1, we show boxplots depicting the fraction of popular items in the
user profiles for the three user groups and datasets. We see that the LowPop
user group has the smallest ratio of popular items, compared to MedPop and
HighPop. In the case of the LFM dataset, this difference is not as apparent as
in the case of the other datasets, due to repeat consumption patterns in music
listening behavior.

Basic statistics of the datasets can be found in Table 1, and we share our
dataset samples via Zenodo2. In the following, we give more details on these
datasets and how we extend them with genre information. Additionally, we ana-
lyze the popularity distributions in the datasets on the levels of ratings and users
to give context for our study on genre level, which follows later on.

Last.fm (LFM). The LFM dataset sample used in our study is based on the
LFM-1b dataset [28] and the subset used in [17]. It contains listening records
from the music streaming platform Last.fm. We include only listening records
to music artists that contain genre information. Genre is acquired by indexing
Last.fm’s user-generated tags (assigned to artists) with the 20 main genres from
2 https://doi.org/10.5281/zenodo.7428435.
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the AllMusic database (top-3: rock, alternative, pop). When comparing the LFM
dataset sample in Table 1 with the one from [17], we notice that the number of
artists |I| decreases from 352,805 to 131,188, which means that there is no genre
information available in LFM for a large set of the long-tail artists. However,
in terms of ratings, this leads to a relatively small reduction in ratings from
1,755,361 to 1,417,791. Following our previous work [17], we interpret the number
of times a user has listened to an artist as a rating score, scaled to a range of [1;
1,000] using min-max normalization. We perform the normalization on the level
of the individual user to ensure that all users share the same rating range, in
which the user’s most listened artist has a rating score of 1,000 and the user’s
least listened artist has a rating score of 1.

MovieLens (ML). Our ML dataset sample is based on the ML-1M dataset
provided by the University of Minnesota [11]. Here, we gather the genre infor-
mation for movies directly from the original dataset3, which provides genres for
all movies and contains 18 distinct genres (top-3: comedy, drama, action). With
respect to sparsity, ML is our densest dataset sample, while LFM is our sparsest
one.

MyAnimeList (MAL). The MAL dataset used in our study is based on a
recommender systems challenge dataset provided by Kaggle. As in the case of
ML, the original dataset4 already provides genre information for each item, which
leads to 44 distinct genres (top-3: comedy, action, romance). However, one special
characteristic of MAL is that this dataset also contains implicit feedback (i.e.,
when a user bookmarks an anime). Following [17], we set the implicit feedback
to an explicit rating of 5. In terms of the number of ratings, MAL is the smallest
dataset used in our study, while LFM is the largest one.

Genre Popularity Distribution. To get a better understanding of the pop-
ularity of the individual genres across the three user groups, in Fig. 2, we plot
the genre popularity distribution on the levels of ratings and users. The genres
are ordered by their overall popularity in terms of ratings across all three user
groups, i.e., the most popular genre is the leftmost. On the level of ratings (left
plots), we see similar popularity distributions across all user groups. Interest-
ingly, for ML and MAL, the LowPop group has the largest number of ratings
across all genres, while for LFM this is the case for the MedPop group.

On the level of users, we identify similar popularity distributions across all
user groups for LFM and ML. However, in the case of MAL, we see a prominent
drop for the genre “Hentai” when investigating the MedPop and HighPop user
groups. This is not the case for the LowPop user group, and thus, the preference
for these genres among LowPop users exclusively could lead to an inconsistent
recommendation performance for LowPop in the MAL dataset. When relating
3 https://grouplens.org/datasets/movielens/1m/.
4 https://www.kaggle.com/CooperUnion/anime-recommendations-database.
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these results to the rating distributions on the left, we see no drop for the MedPop
and HighPop user groups in the case of the “Hentai” genre. However, we see an
increase in ratings for LowPop for this genre. This again shows the considerable
interest of LowPop users for animes associated with the “Hentai” genre.

Finally, we also investigated the item popularity distributions across gen-
res and user groups, where we did not inspect any noticeable differences when
comparing the user groups on the genre level.

Fig. 2. Genre popularity distribution on the level of ratings (on the left) and on the
level of users (on the right) for our three datasets and user groups.

3.2 Experimental Setup

Next, we describe the five recommendation algorithms and the evaluation pro-
tocol utilized in our study.

Recommendation Algorithms. Following our previous research [17,19], we
formulate the recommendation task as a rating prediction problem by utilizing
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the Python-based Surprise framework [12]. Specifically, we use the four collabo-
rative filtering (CF) recommendation algorithms studied in [17]. Since our pre-
vious work [17] also uses the same dataset samples as we do in the present work,
we stick to the same hyperparameter settings. Please refer to our source-code
shared via GitHub5 for the exact parameter settings. We refrain from perform-
ing any additional hyperparameter optimization since our main interest lies in
assessing (relative) differences of our evaluation metrics between the three user
groups LowPop, MedPop, and HighPop, and not in comparing a novel recom-
mendation approach to state-of-the-art algorithms. This is also the reason why
our focus lies on five traditional and easy understandable recommendation algo-
rithms employed by related work instead of analyzing the performance of recent
deep learning architectures, that would also lead to a much higher computational
complexity.

The recommendation algorithms utilized in our study include the two KNN-
based algorithms UserKNN and UserKNNAvg, where the latter one incorporates
the average rating of the target user and item. We also study Co-Clustering,
which is a scalable co-clustering-based CF approach [10], and NMF, i.e., non-
negative matrix factorization [25]. Additionally, we add a non-CF approach uti-
lized in [19], namely UserItemAvg, which predicts a baseline estimate using the
overall average rating in the dataset and adds preference biases of the target
user and item, e.g., if a user tends to give more positive ratings than the average
user [14].

Evaluation Protocol. Concerning our evaluation protocol, we again follow
our previous research [17,19] and use a random 80/20 train/test split in a 5-
fold cross-validation manner. Thus, we train our algorithms on the training set
and measure the accuracy of the algorithms on the test set by comparing actual
ratings with predicted ratings. By using 5-fold cross-validation, we ensure the
robustness of our evaluation protocol, and control for potential fluctuations in
the genre proportions or outliers in the recommendation calculations that may
be introduced due to the random train/test splits.

For calculating miscalibration and popularity lift, we use a top-10 recommen-
dation set for the target user, which are the 10 items with the highest predicted
rating scores. Since our previous research [17,19] has shown that the LopPop
user group typically receives the worst recommendation accuracy across all user
groups, we are especially interested in this user group. Therefore, we test for
statistical significance using a t-test between LowPop and MedPop as well as
between LowPop and HighPop. We report average values across all 5 folds for
all metrics and indicate statistical significance only in case it applies for all 5
folds.

3.3 Evaluation Metrics

We quantify the inconsistency of recommendation performance using (i) accu-
racy differences between user groups, (ii) miscalibration, and (iii) popularity lift:
5 https://github.com/domkowald/FairRecSys.
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Accuracy (MAE). We measure accuracy using the well-known mean absolute
error (MAE) metric. The MAE of a user u is given by:

MAE(u) =
1

|Rtest
u |

∑

ru,i∈Rtest
u

|ru,i − Ru,i| (1)

Here, the predicted rating score Ru,i of user u and item i is compared to the
real rating scores ru,i in u’s test set Rtest

u . We favor MAE over the commonly
used root mean squared error (RMSE) metric due to several disadvantages of
RMSE, especially regarding the comparison of groups with different numbers of
observations (i.e., ratings in our case) [30]. We report the MAE of a user group
g by averaging the MAE values of all users of g.

To validate our accuracy results in terms of MAE also in top-n recommen-
dation evaluation settings, we also report the well-known Precision and Recall
metrics. For this, we classify an item in the test set as relevant if its rating is
higher than the average rating in the train set.

Miscalibration (MC). The calibration metric proposed by Steck [29] quan-
tifies the similarity of a genre spectrum between user profiles p and actual rec-
ommendations q. This metric was reinterpreted by Lin et al. [24] in the form of
miscalibration, i.e., the deviation between p and q. We follow this definition and
calculate the deviation using the Kullback-Leibler (KL) divergence between the
distribution of genres in p, i.e., p(c|u), and the distribution of genres in q, i.e.,
q(c|u). This is given by:

KL(p||q) =
∑

c∈C

p(c|u) log
p(c|u)

q(c|u)
(2)

Here, C is the set of all genres in a dataset. Therefore, KL = 0 means
perfect calibration, and higher KL values (i.e., close to 1) mean miscalibrated
recommendations. As in the case of MAE, we report the miscalibration values
averaged over all users of a group g.

Popularity Lift (PL). The popularity lift metric investigates to what extent
recommendation algorithms amplify the popularity bias inherent in the user
profiles [3,4]. Thus, it quantifies the disproportionate recommendation of more
popular items for a given user group g (i.e., LowPop, MedPop, HighPop). We
define the group average popularity GAPp(g) as the average popularity of the
items in the user profiles p of group g. Similarly, GAPq(g) is the average popu-
larity of the recommended items for all users of the group g. The popularity lift
is then given by:

PL(g) =
GAPq(g) − GAPp(g)

GAPp(g)
(3)
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Here, PL(g) > 0 means that the recommendations for g are too popular,
PL(g) < 0 means that the recommendations for g are not popular enough, and
PL(g) = 0 would be the ideal value.

4 Results

In this section, we describe and discuss the results of our study, first on a more
general level and then on the level of genres.

Table 2. MAE, MC, and PL results for the LowPop, MedPop, and HighPop user
groups. The highest (i.e., worst) results are highlighted in bold. Statistical significance
according to a t-test between LowPop and MedPop, and LopPop and HighPop is
indicated by * for p < 0.05. Rating ranges are shown in brackets.

Data LFM [1-1,000] ML [1-5] MAL [1-10]
Algorithm Metric MAE MC PL MAE MC PL MAE MC PL

UserItemAvg LowPop 48.02* 0.52* 1.28 0.74* 0.78* 0.70* 0.99* 0.95* 1.12*
MedPop 38.48 0.48 1.61 0.71 0.71 0.42 0.96 0.73 0.42
HighPop 45.24 0.42 1.35 0.69 0.63 0.24 0.97 0.64 0.15

UserKNN LowPop 54.32* 0.51* 0.52 0.80* 0.75* 0.64* 1.37* 0.92* 0.74*
MedPop 46.76 0.50 0.82 0.75 0.69 0.37 1.34 0.72 0.22
HighPop 49.75 0.45 0.80 0.72 0.62 0.20 1.31 0.63 0.08

UserKNNAvg LowPop 50.12* 0.49* 0.35 0.76* 0.78* 0.49* 1.00* 0.90* 0.54*
MedPop 40.30 0.47 0.61 0.73 0.70 0.33 0.95 0.73 0.24
HighPop 46.39 0.42 0.64 0.70 0.61 0.20 0.95 0.64 0.11

NMF LowPop 42.47* 0.54* 0.10 0.75* 0.78* 0.57* 1.01* 0.91* 0.87*
MedPop 34.03 0.52 0.17 0.72 0.71 0.37 0.97 0.72 0.35
HighPop 41.14 0.48 0.33 0.70 0.63 0.22 0.95 0.63 0.13

Co-Clustering LowPop 52.60* 0.52* 0.68 0.74* 0.77* 0.70* 1.00* 0.90* 1.10*
MedPop 40.83 0.51 1.04 0.71 0.70 0.43 0.96 0.72 0.42
HighPop 47.03 0.45 0.99 0.68 0.62 0.25 0.98 0.63 0.16

Connection Between Accuracy, Miscalibration and Popularity Bias.
Table 2 summarizes our results for the three metrics (MAE, MC, PL) over
the three user groups (LowPop, MedPop, HighPop), three datasets (LFM, ML,
MAL) and five algorithms (UserItemAvg, UserKNN, UserKNNAvg, NFM, Co-
Clustering). The results presented are averaged over all users and all folds. We
can see that in the case of ML and MAL, the LowPop user group receive the
worst results for MAE, MC, and PL. These results are also statistically signifi-
cant according to a t-test with p < 0.05. For LFM, the LowPop user group also
gets the worst results for the MAE and MC metrics.

However, when looking at the PL metric, we observe different results, namely
the highest popularity lift for either MedPop or HighPop. This is in line with
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our previous research [19], which has shown that the PL metric provides differ-
ent results for LFM than for ML. One potential difference between music and
movies (and also animes) is that music is typically consumed repeatedly (i.e., a
user listens to the same artist multiple times), while movies are mostly watched
only once. The definition of the PL metric [24] does not account for repeat con-
sumption patterns [15], since items are given the same importance regardless
of their consumption frequency. This means that items that are consumed for
instance 1,000 times by a specific user have the same importance as items that
are consumed only once by this user.

Finally, in Table 3, we validate our accuracy results in terms of MAE also
in top-n recommendation evaluation settings using the well-known Precision
and Recall metrics. To classify relevant items in the test sets, we calculate the
average rating in the training sets and treat a test item as relevant if it exceeds
this average train rating. We see very similar results as in the case of the MAE
metric. This means that in almost all cases, LowPop gets the worst results (i.e.,
lowest) and HighPop gets the best results (i.e., highest).

Table 3. Accuracy results in terms of Precision and Recall. We tested for statistical
significance using a t-test between LowPop and MedPop, and LowPop and HighPop
users, which is indicated by * for p < 0.05. The best (i.e., highest) results are highlighted
in bold. The results are in line with the MAE ones, which means that LowPop receives
worst accuracy results, while HighPop receives the best accuracy results.

Data LFM ML MAL
Algorithm Metric Precision Recall Precision Recall Precision Recall

UserItemAvg LowPop 0.30 0.11 0.78* 0.19* 0.71* 0.15*
MedPop 0.28 0.08 0.82 0.26 0.80 0.21
HighPop 0.39 0.14 0.83 0.36 0.80 0.33

UserKNN LowPop 0.33* 0.16 0.78* 0.18* 0.71* 0.15*
MedPop 0.38 0.14 0.83 0.25 0.80 0.22
HighPop 0.53 0.22 0.83 0.35 0.81 0.34

UserKNNAvg LowPop 0.34 0.16 0.80* 0.20* 0.73* 0.16*
MedPop 0.34 0.12 0.83 0.27 0.80 0.23
HighPop 0.47 0.19 0.83 0.36 0.81 0.36

NMF LowPop 0.34 0.16 0.70* 0.14* 0.67* 0.13*
MedPop 0.34 0.12 0.79 0.23 0.79 0.21
HighPop 0.46 0.19 0.82 0.34 0.81 0.33

Co-Clustering LowPop 0.33 0.16* 0.76* 0.17* 0.69* 0.14*
MedPop 0.33 0.12 0.83 0.25 0.80 0.22
HighPop 0.46 0.20 0.84 0.35 0.81 0.34
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Influence of Genres on Inconsistency of Recommendations. Further-
more, Fig. 3 visualizes the results of our investigation on what genres in the user
groups are particularly affecting inconsistency of recommendation performance
in terms of miscalibration for the three datasets. We investigate this study for
the miscalibration metric only, since we do not observe any particular differences
across the genres for the MAE and popularity lift metrics. To map the users’
miscalibration scores to a genre g, we assign the MC score of a user u to all
genres listened to u. Then for each genre g, we calculate the average MC scores
of all users of a specific user group who listened to g. These values are then
plotted in Fig. 3 for both the NMF algorithm and the Co-Clustering algorithm.
For better readability, we apply min-max normalization in a range of 0 - 1.

Fig. 3. Influence of different genres on MC for the NMF algorithm (on the left) and Co-
Clustering (on the right). We see that some genres highly contribute to inconsistency,
especially in case of animes (MAL).

As in the case of Fig. 2, the genres are ordered by their popularity. For the
sake of space, we only show the results for NMF and Co-Clustering, which are,
in general, inline with results obtained for the other algorithms. However, our
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GitHub repository also allows the inspection of the results for the other algo-
rithms. Additionally, for MAL, we exclude 24 genres for which no substantial
fluctuations are observed. This leads to 20 shown genres, as in the case of LFM.

For the MAL dataset and the LowPop group, we observe highly miscalibrated
results for the “Hentai” genre. In particular, indicated by its position, “Hentai”
is an unpopular genre for most of the MAL users. However, as also shown in
Fig. 2, for users within the LowPop group (and only for this user group), it is
a relevant genre that is underrepresented in their recommendation lists. This
demonstrates that there are indeed particular genres that contribute to a large
extent to recommendation inconsistency for specific user groups.

5 Conclusion and Future Work

In this paper, we have studied the interconnection between accuracy, miscali-
bration, and popularity bias for different user groups in three different domains.
Here, we measured popularity bias in terms of popularity lift, a metric that
compares the popularity of items in recommendation lists to the popularity of
items in user profiles. Additionally, we investigated miscalibration, a metric that
compares the genre spectrums in user profiles with the ones in recommendation
lists. We find that, in general, the inconsistency of recommendations in terms of
miscalibration and popularity lift is aligned with lower accuracy performance.

One exception to this is the popularity lift metric in the case of music rec-
ommendations; however, this result is in line with our previous work [19], in
which repeat consumption settings have been studied. Additionally, we find that
different genres contribute differently to miscalibration and popularity lift. That
finding is particularly pronounced in the case of anime recommendations for Low-
Pop users and for genres that are unpopular among other user groups. Another
contribution of our work is that we publicly share our datasets and source code
investigated in this study with the research community.

Limitations and Future Work. One limitation of our work is that we have
focused solely on datasets from the multimedia/entertainment domains, namely
music, movies, and animes. Although we have investigated domains with and
without repeat consumption patterns, for future work, we plan to also study
other domains with respect to accuracy, miscalibration, and popularity bias.
This could include recommendations in online marketplaces [20] or recommen-
dations in social networks [16] and will contribute to the generalizability of our
findings. To further strengthen the generalizability of our work, we also plan to
conduct further experiments with novel recommendation algorithms employing
deep learning-based methods [22].

Another limitation of our work is that we have used MAE, Precision, and
Recall as the only metrics to measure the accuracy of recommendations. In the
future, we plan to extend this by also investigating ranking-based metrics such
as nDCG [13,21] as well as metrics that measure the novelty and diversity of
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recommendations [8]. In this respect, we also plan to enhance our evaluation pro-
tocol and move from random train/test splits to temporal train/test splits [27].
Finally, we also plan to do experiments with a higher number of user groups
with a smaller number of users per group (e.g., 10 groups with 300 users per
group). With this, we aim to address a potential limitation with respect to having
different popularity tendencies within a group.

As a general path for future work, we plan to build on the findings of this
paper to develop strategies to overcome the inconsistency of recommendation
performance across different user groups. For example, for particular genres
where we find high miscalibration, we aim to research calibration-based debi-
asing approaches [5]. Another possibility to address popularity bias in the rec-
ommender system could be to build models based on concepts from psychol-
ogy [23]. Finally, we plan to investigate novel metrics to measure popularity lift
in repeat consumption settings, e.g., music recommendations. Here, we plan to
either introduce a weighted variant of the metric or investigate alternative meth-
ods for converting implicit feedback (e.g., play counts) into explicit ratings [26].
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Modelling the long‑term fairness 
dynamics of data‑driven targeted 
help on job seekers
Sebastian Scher 1*, Simone Kopeinik 1, Andreas Trügler 1,2,3 & Dominik Kowald 1,2

The use of data‑driven decision support by public agencies is becoming more widespread and already 
influences the allocation of public resources. This raises ethical concerns, as it has adversely affected 
minorities and historically discriminated groups. In this paper, we use an approach that combines 
statistics and data‑driven approaches with dynamical modeling to assess long‑term fairness effects 
of labor market interventions. Specifically, we develop and use a model to investigate the impact of 
decisions caused by a public employment authority that selectively supports job‑seekers through 
targeted help. The selection of who receives what help is based on a data‑driven intervention model 
that estimates an individual’s chances of finding a job in a timely manner and rests upon data that 
describes a population in which skills relevant to the labor market are unevenly distributed between 
two groups (e.g., males and females). The intervention model has incomplete access to the individual’s 
actual skills and can augment this with knowledge of the individual’s group affiliation, thus using a 
protected attribute to increase predictive accuracy. We assess this intervention model’s dynamics—
especially fairness‑related issues and trade‑offs between different fairness goals‑ over time and 
compare it to an intervention model that does not use group affiliation as a predictive feature. We 
conclude that in order to quantify the trade‑off correctly and to assess the long‑term fairness effects of 
such a system in the real‑world, careful modeling of the surrounding labor market is indispensable.

Data-driven methods for decision support—also known as data-informed decision support systems, AI-based 
decision support, or algorithmic decision-making—form useful technologies in many fields and get more and 
more widespread, not only in the private but also in the public  sector1,2. However, this also raises concerns 
among the general public, as AI-based systems are prone to replicate biases present in data and application 
design. For  instance3, found that users attributed females receive a lower number of high-paid job-adds than 
similar male users. While the data used may be correct in its collection and historical representation, it often 
depicts outdated societal norms and values, capturing historical inequities and cultural  biases4. When entering 
data-driven applications, the resulting discrimination adversely affects minorities and groups that have already 
been discriminated against and disadvantaged in the past and consequently creates a reinforcement  loop5. Some 
applications—for example, social scoring by authorities—are considered so problematic that in the European 
Union there is a plan to prohibit them 6.

The labor market is an area in which the use of AI-based decision support must be examined with particular 
care, as there is a long tradition of discrimination against social groups in the labor market, for instance, based 
on  ethnicity7 or  gender8, which in turn is reflected in data.

Public employment services (PES) support people in finding jobs and play a very important social role in 
many countries. In the European Union, access to free employment services is even a fundamental right (art. 
29 EU fundamental rights charter). Recently, the Austrian Public Employment Service (AMS) has started to 
use an AI-based system that categorizes job-seekers into three groups according to individuals’ low, moderate, 
or high prospects in the labor market. This categorization allows providing different types (qualities) of help 
depending on the individual’s group affiliation. Also, predominantly supporting the group with moderately good 
prospects is considered most (cost) efficient, as their labor market prospects can be raised to an acceptable level 
with relatively little effort. For individuals in the low-prospect group, on the other hand, more effort would be 
needed to achieve the same outcome.

In the AMS system, prospects are informed by calculated probabilities (i.e., predictions) of people finding 
a job in the near future (i.e., the next couple of months)9. The prediction model is trained on employment data 
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collected in the past and therefore exhibits a historical bias. Socio-cultural norms and prejudices are reflected 
and cause attributes of a person, such as gender and caretaking obligations, to be most influential on the predic-
tive outcome. The fact that gender is used as a predictor, as well as sociopolitical issues related to the “efficient” 
distribution of public services, led to a broad public debate about the ethical implications of using the  system10–12.

The main political goal behind systems such as the AMS system is usually the wish to make public services—in 
this case employment services—more efficient. However, this could potentially have harmful and unintended 
consequences. Existing group inequalities could be reinforced by the systems interventions over time, or new 
inequalities might emerge. However, if and to what extent this happens in a particular setting is not easy to pre-
dict. Dynamic systems can often act in unintuitive ways, and the inclusion of regularly updated statistical models 
makes the system even harder to understand. It has been shown that a system that is fair in a static context can 
still produce unfair results in the long run if it is regularly updated and provides feedback to the  environment13. 
Other results show that the situation of a system that is unfair in the beginning might also worsen if a specific 
privacy method is applied 14. Despite these difficulties, non-discrimination and fairness are among the ethical 
and legal requirements for AI  systems15,16, and it is thus essential to find ways to assess fairness aspects also of 
labor market intervention systems that use statistics and AI. A known issue is that the stakeholders involved in 
the development cycle, even if sensitized to the concern, often lack experience, processes, and tools to manage 
the complex set of  issues17,18. Our paper is inspired by the ideas and problems of the AMS system, but it is not a 
study of this particular system. Instead, we focus on the general idea of such systems and their long-term effects.

This paper serves two main purposes: (1) we provide an introduction to the complexity of assessing the long-
term fairness effects on the population if a public authority provides targeted help in the labor market, based on 
data-driven methods that include protected attributes (e.g., gender). Targeted help, for the purposes of this paper, 
means that individuals or groups of individuals receiving help are selectively chosen based on predetermined 
criteria. (2) We provide an answer to the question “How can we assess long-term fairness in a dynamical system 
such as a labor market?” For this, we develop and present an approach on how to actually assess such long-term 
fairness impacts in a dynamical system such as a labor market.

Additionally, our study means to highlight the benefits of quantitative modeling of the surrounding environ-
ment as an essential part of the assessment of causal long-term effects. We focus on the following main aspects:

• Trade-offs between different long-term fairness goals (e.g., reducing inequality between groups versus cor-
rectly assessing individuals’ labor market prospects) when a PES provides targeted aid to job-seekers.

• Impact of targeted aid- versus non-targeted aid- on the long-term fairness of public authority interventions.

To investigate these aspects, we propose a combination of dynamical numerical modeling and data-driven mod-
els. The model captures the principle dynamics of a labor market situation in which a public authority intervenes 
with targeted aid. It consists of a replenishing pool of job seekers, defined via a skill model, the labor market, in 
which job-seekers do or do not get jobs, and the PES, which intervenes and changes the skills of the job-seekers. 
All these parts are abstractions of the real world and are kept as simple as possible while still capturing the basic 
dynamics.

The individual skill model is defined as simply as possible while at the same time being sophisticated enough 
to account for inequalities and, optionally, either full or incomplete knowledge of an individual’s skills. Due to 
the lack of openly available empirical data, we use synthetic data in our study.

We assume a population of individuals, where the prospect on the labor market of each individual is con-
trolled by the personal skill set of that individual, described by a set of independent skill features. Additionally, 
each individual belongs to one of two groups, described by a protected attribute (e.g., gender). The average skill 
level between the two groups is not the same but shows significant overlap. If an observer has knowledge about 
all skill features of an individual, they can accurately compute the total skill level of that individual, which means 
that knowledge about the protected attribute (i.e., which group the individual belongs to) does not yield any 
additional information with regard to the individual’s skill level.

We further assume that there is a public authority that helps individuals in improving their skills in the labor 
market, which we will call the Public Employment Service (PES). To support the improvement of the skills of an 
individual, the PES provides access to services that are selected according to the individual’s current prospects 
in the labor market. While the labor market (employers) has access to all skill features, the public authority, 
however, does not have access to all skill features but only to a subset. This assumption can be justified by the 
fact that in real life, while both employers and public authority will have some common information about the 
job-seekers (degrees, years of work experience, etc), employers will have both more resources and more branch-
specific knowledge for evaluating applicants (e.g., exact degrees, specializations, soft skills, etc). In addition, it has 
knowledge about the group affiliation (i.e., protected attribute). Because the total skills are not evenly distributed 
across the two groups, the knowledge about an individual’s group affiliation combined with historical data gives 
probabilistic information on their real skills: if the individual belongs to the group that has on average higher 
skills, also the likelihood that this individual has high skills is larger than if it belongs to the other group, even 
if there is no other distinction in attributes. This concept has previously been discussed in economic  research19. 
Using this additional information, however, has two potential problems: (i) the model is probabilistic, and thus, 
the resulting predictions are only accurate on average, and (ii) the model is based on a protected attribute—there-
fore, legal and/or ethical reasons might prohibit utilizing this information, as it results in different treatment 
solely based on the affiliation to a certain group given by the protected attribute.

In order to gain a better understanding of the implications different approaches might entail, we compare 
two prediction models that the PES could implement: one that uses the protected attribute and one that does 
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not. With this, we can study the trade-off between mitigating disparities in personal skills among the two groups 
and the aim of preventing misclassifications based on a protected attribute.

Additionally, we make assumptions about the labor market and encode these assumptions in a simple dynami-
cal model. The model has a pool of job-seekers with an influx and an outflux. The PES provides targeted help to 
the current job-seekers. The targeting of the help is based on the skills of individuals and the historical model 
record of how long it took individuals with different skills to find a job. With this model, we consider different 
scenarios/approaches of the PES on how it distributes its limited resources across individuals with different 
assumed skills. Furthermore, we test different assumptions about the job market (e.g., biased and unbiased) 
and investigate how it affects the impact of targeted vs. non-targeted help. The model we develop and use in this 
study is “dynamic” on two different levels: first, as it is an agent-based model, it is dynamic at the level of indi-
viduals; second, as a consequence of the intervention of the PES, it is dynamic in the adaptation of average skill 
levels. The latter is similar to what in the economics literature would be referred to as transition paths between 
different policy states.

Related work
From a fundamental rights perspective, the issue of fairness in data-driven applications is discussed in several 
reports of the European Union Agency for Fundamental Rights (FRA)20–22. There are different definitions of 
fairness, depending on context, application and world-view, which occasionally contradict each other. From a 
legal perspective, a major problem is that court decisions are highly tailored to specific circumstances, which 
contrasts with quantitative, generic measures of  fairness23. A wide variety of quantitative fairness metrics and 
debiasing algorithms have also been proposed in research, e.g.,24,25,26 investigates what people perceive as most 
fair and find that demographic parity (a.k.a. statistical parity) receives the highest level of agreement in several 
cases presented. They argue against the common practice of optimizing AI-based decisions toward multiple 
fairness goals, but to select the most meaningful metric in terms of social context. In this paper, we take as a 
sample environment - and thus social context - the labor market and the long-term effects of tailored measures 
to support job seekers. This is inspired by the AI-based decision support system used by the Austrian PES (AMS) 
that caused a great level of public controversy and already has been the subject of previous studies.  Lopez10 
for instance, elaborates extensively on algorithmic details, as well as their underlying human-based decisions 
and their possible implications on the affected population. An emphasis is set on gender aspects and potential 
(intersectional) discrimination. Authors also remark on the lack of research with respect to whether and how to 
include gender as an attribute in such an algorithm. Allhutter et al.11 takes an approach based on critical studies 
and fairness to discuss the “inherent politics of the AMS algorithm”. While in our paper we do not explicitly 
investigate the AMS algorithm, we contribute to this line of research by investigating the long-term impact of 
different intervention models on job seekers and, in particular, by exploring the algorithmic consideration of 
a protected attribute that distinguishes groups (e.g., gender). To this end, we introduce a dynamical modeling 
approach that complements previous research on long-term dynamics of fairness.

Long term dynamics of fairness. Liu et al.27 introduces a formal, one-step feedback model to estimate 
the long-term impact of fairness constraints. It is presented by the example of a credit distribution scenario, 
but can, however, also be adapted to other domains given necessary domain knowledge. Mouzannar et  al.28 
goes beyond this approach and introduces a formal, yet flexible model that allows the study of both economic 
utility and social equality as a consequence of fairness interventions. In our model, we follow a more dynamic 
modeling approach and investigate fairness according to other characteristics, going beyond the change in popu-
lation mean, while our study is also more specific to labor market interventions. Instead of adopting a general 
approach, we develop a specific dynamical model that reflects our problem setting. Kannan et al.29 discusses 
fairness in colleague admission and graduate hiring based on a two-stage model. The study concludes that under 
real-life conditions, two defined fairness goals (i.e., being admitted and hired independent of group member-
ship) are unreasonable to achieve. The study clearly extends simple static models, however, does not intend to 
study the long-term impact of the fairness goals but rather aims to identify environmental variables that could 
allow the achievement of defined fairness goals. D’Amour et al.13 presents an extensive aspect in how results of 
long-term modelling may differ from static evaluation settings. In three simulation scenarios (i.e., loan alloca-
tion, college admission, and attention allocation) they show how simple agent-environment models evolve over 
time. Their results highlight the need to assess the fairness of algorithmic systems in continuous time steps.

We add to this line of research and introduce a more complex dynamic modeling approach that depicts a 
rather systemic viewpoint on data-driven decision-making implications. This results in more complex, quan-
titatively evaluated simulations that, however, still simplify the real-world setting. We also study the dilemma 
between individual and group fairness that has been commonly discussed in AI applications, particularly in 
regard to data-driven decision  support30.

Economics. We use the concept of “labor-market-models” in a way that is targeted toward the main aspects 
of our study. In economics, a number of different labor market models are used to study the supply and demand 
of labor (e.g.,31). In that context, our modeling approach can be seen as agent-based modeling, which is also 
widely adopted in economic research  (see32 for a historical overview of agent-based modeling of labor markets). 
Chaturvedi et al.33 builds an agent-based model of the labor market for research purposes, in which agents are 
individual persons. Discrimination in the labor market is a widely studied topic in economics. Seminal work 
was done by Ken Arrow, who studied discrimination in the labor market back in the  70s19. One explanation 
for discriminatory results Arrow gives is imperfect information, which we consider a variable in our model. 
 Caine34 gives and overview on the early work on labor market discrimination.  In35, the authors give an over-
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view of theory and empirical evidence of racial discrimination in the labor market. A recent text-book on the 
topic  is36 (especially chapter 12).  Finally37, argues that individual fairness constraints are insufficient to remove 
racial inequality from the US labor market. They suggest a “dual labor market” that could solve this problem by 
applying a dynamical approach. They also argue that such further-reaching approaches will be more and more 
important if employment processes are continuously automatized. Similar to our work and  to13, they abandon 
the concept of static fairness. However, our work focuses on the trade-offs between different long-term fairness 
goals, as described in the subsequent sections. Cohen et al.38 studies the efficiency of recruiting practices from an 
employer’s point of view, including the incorporation of fairness constraints. The unique point of our study is the 
inclusion of a PES that uses a continuously updated data-driven decision model. To the best of our knowledge, 
this has not been done before.

Methods
Personal skill model and data generation. In our personal skill model, each individual has a personal 
skill set sreal that is composed of two independent skill features x1 and x2.

We call it “real” because we will differentiate it from observed and from predicted/assumed skills later on. 
In addition, each individual has a binary protected attribute xpr that can have values of 0 and 1. In reality, this 
could for example be female or male, but here it is used in an abstract way. Central here is that the definition of 
sreal does not explicitly contain xpr.

We draw x1 and x2 from uncorrelated truncated normal distributions. This means there is no correlation 
between x1 and x2 . We use normal distributions because personal features such as “talent” are usually assumed 
to be normally distributed (e.g.,39). Truncation is used to ensure that no one has x1 and/or x2 higher than the 
maximum reachable values in the intervention model (see Section “Intervention model” below). The distribution 
is truncated at plus-minus two times the standard deviation. Therefore, despite the truncation, the distribution 
is very similar to a non-truncated normal distribution, and thus appropriate for describing personal features. 
Furthermore, we assume that x1 is completely independent of xpr:

The values of the binary protected attribute have equal probability:

In words, for generating our artificial population, we draw x1 from a truncated normal distribution (truncated 
at xmax ), and xpr from the binary distribution {0, 1} with uniform probability.

Thus, the probability of an individual belonging to a particular group (with respect to the protected attribute) 
is 50% for both groups, and both groups are therefore of equal or near equal size.

The second skill feature, x2 , is correlated with xpr and is generated with the following formula:

The parameter αpr controls how much x2 is higher on average in the privileged group compared to the under-
privileged group. The factor 1

2
 is subtracted from xpr to ensure that x2 has a mean of zero. When x2 is generated 

this way, the individuals with xpr = 0 have on average lower x2 , and therefore on average lower sreal . To reflect 
this, we will from now on call the group of individuals with xpr = 0 the underprivileged group, and individuals 
with xpr = 1 the privileged group. Importantly, however, not all individuals in the underprivileged group have 
low x2 and low sreal . There are individuals in the privileged group that have lower skills than some individuals 
in the underprivileged group, and there are individuals in the underprivileged group that have a skill that is 
above the population mean. The joint distribution of x1 and x2 and the distribution of sreal of a sample from the 
background population is shown in Fig. 1.

From the way x1 and x2 are generated and the fact that sreal per definition (Eq. 1)) can be completely inferred 
from x1 and x2 , follow two central facts: Given x1 and x2 , there is no additional information contained in xpr 
when one wants to infer sreal (even though sreal is correlated with xpr ). If, however, one has only access to x1 and 
at the same time, information on the distribution of sreal over the two groups (e.g., the mean of sreal separately 
for each group), and one wants to infer sreal , then including xpr in addition to x1 in a statistical prediction system 
yields additional information, even though sreal is completely defined by x1 and x2 . This will form the backbone 
of our study. If it is for example known that an individual has an average value of x1 , but we do not know x2 , 
then knowing xpr will be decisive in estimating whether sreal of that person is below or above average: if the 
individual belongs to the underprivileged group, then the expectation would be that sreal is below average, but 
if the individual, with an unchanged value of x1 , is in the privileged group, then the expectation would be that 
sreal is above average.

For our model, we assume that there is an (unlimited) background-population pool with the distribution of 
x1, x2, xpr and sreal described by Eqs. (1)–(4). This background population and the distribution of the features 
of the individuals do not change throughout a model run, but acts as a pool for refilling the pool of job-seekers.

(1)sreal(x1, x2) ≡
1

2
(x1 + x2)

(2)x1 ∈ Ntrunc(0, 1),

(3)xpr ∈ {0, 1}, p
(
xpr = 0

)
= p

(
xpr = 1

)
=

1

2

(4)x2 ∈
1

2

{

αpr ·

(

xpr −
1

2

)

+ Ntrunc(0, 1)

}
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Prediction model. The prediction model is used by the PES in order to group individuals into a high-
prospect and a low-prospect group, depending on the expected time-span Tu they will be unemployed (high-
prospect = expected to find a job seen without help, low-prospect = expected to take longer to find a job without 
help). This is based on the time it took individuals to find a job in the past. The history is continuously build up 
throughout a model run with all individuals that found a job. The basis of this study is that the PES has access 
to an incomplete set of skill features only, namely solely to x1 , and additionally access to xpr . This assumption is 
reasonable because, in the real world, the PES will only have limited information about an individual (e.g. their 
education level and employment history), without access to more detailed information such as detailed CVs, 
job interviews, tests, etc. The simplest way to model this is through having 2 skill features, of which the PES 
can observe only one. To estimate (predict) the prospect group (above or below average sreal ) from this, logistic 
regression is used to create the main (full) prediction model:

Here, the parameters α1,α2 and β are estimated from the historical record, and Tγ
u  is the threshold set on the 

unemployment time Tu for dividing the low and the high prospect group.
Additionally, we use a second prediction model, which we will call the base model, that does not use xpr:

with free parameters α∗ and β∗ fitted on the historical record. Logistic regression falls in a broader category of 
methods often referred to as supervised machine learning. Also, other supervised machine-learning algorithms, 
such as neural networks, could be used in the prediction model. Our choice for logistic regression was motivated 
by the fact that (i) it is the same method as used in the model that inspired our work i.e., the AMS-system, and 
(ii) it is a simple and easy to interpret method which allows for a certain level of transparency (in contrast to 
e.g., neural networks). A comparison of the full and the base model is necessary for investigating whether there 
are differences between different long-term fairness goals, as using the full prediction model conflicts with the 
fairness goal of not using the protected attribute but might be out-weighted by other long-term effects.

Labor market model. The labor market is modeled via a probabilistic function that for each individual 
defines the probability of finding a job at the current timestep, where this probability depends on sreal of that 
individual. We model the dependence on sreal as a logistic function:

where αl and βl are fixed parameters. The parameter αl controls the influence of sreal on the probability of finding 
a job, βl sets at which value of sreal + b the probability is 0.5. At each timestep, P

(
job|sreal

)
 is computed for each 

individual within the pool of job-seekers. Each individual is removed from the pool of job seekers with a prob-
ability of P. The value b describes how biased the labor market is in favor of the privileged group. It is computed 
from a fixed labor market bias parameter βb and the protected attribute:

(5)Pfull
(
Tu > Tγ

u |x1, xpr
)
=

1

1+ e−(α1x1+α2xpr+β)

(6)Pbase
(
Tu > Tγ

u |x1
)
=

1

1+ e−(α∗x1+β∗)

(7)P
(
job|sreal

)
=

1

1+ e−(αl sreal−βl+b)

a) b)

Figure 1.  Sample of the background-population (a) Distribution of the two skill features, (b) Distribution 
of total skills ( sreal ), both split up according to the binary protected attribute. In (b), both colors are half-
transparent, and the overlapping region is therefore depicted by the mixed color.
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With βb = 0 the labor market is unbiased, with βb > 0 it is biased in favor of the privileged group. We use two 
different values in our experiments: 0 (“unbiased“), and 2 (“biased“).

The choice for a logistic labor market function was made because it satisfies the following intuition about 
the labor market: if an individual has very low skills, then the probability of finding a job is very low (close to 
zero), and if the skills slightly increase, then the chance is still very low. There is a soft threshold that one needs 
to reach in order to have a reasonable chance. Above this soft threshold, increases in sreal have a strong impact. 
Thus, the higher skills an individual has, the higher the chances of finding a job. Eventually, however, this reaches 
a plateau, as the probability of finding a job is already close to 1, and additional skills do basically not change 
anything anymore. The parameters αl and βl define this “middle” region, in which changes of sreal have a strong 
impact on the probability. βl defines the position of this middle region, and αl how broad/steep it is.

Note that we made P
(
job|sreal

)
 independent of the time an individual is already unemployed. The intuition 

behind this is that in our idealized setting, the skills of an individual are solely defined by sreal , which the labor 
market knows. Therefore, in this setting, the fact that someone has been unemployed for a long time does not 
yield additional information about their skills. In reality, this might not necessarily be the case, since long-term 
unemployment as additional information could be a reason for an employer not to hire someone.

Intervention model. The intervention model describes the effect that the helping intervention of the PES 
has on the individual. The treatment of individuals differs between the high- and the low-prospect group in 
two ways: (i) in the amount of help (increase of x1 and x2 ) they receive, and (ii) in how long this help takes. The 
high-prospect group receives the help immediately and is available on the labor market in the next timestep. The 
low-prospect group, on the other hand, receives help that takes time and removes them from the labor market 
for a certain period of time �Tu . This is a simplified version of the current strategy of the Austrian PES (AMS).

The change in the individual skills features x1 and x2 depends on the current values, with decreasing incre-
ments as the skill features grow, approaching the limits set by the constants xmax

1  and xmax
2 :

The model parameter k defines how fast x1 and x2 grow. For simplicity, we use the same growth rate for both 
skill features. The choices for the value of k are described in Section “Scenarios”. Since individuals classified as 
low-prospect are removed from the active group for �Tu timesteps, their skills are updated �Tu + 1 times (by 
applying Eqs. (9) and (10) �Tu + 1 times) to account for that. Individuals that have been unemployed for too 
long (set by Tmax

u  ) leave the system automatically.
As the model has random components, we run each simulation 10 times and average the results. All param-

eters of the model and their values are listed in Table B1 in the Supporting Information. The parameter values 
were set after testing different combinations. As we do not attempt to model an existing real-world setting, we 
have chosen a configuration that reaches reasonable equilibria for our main experiments, and the model with 
these parameters does not necessarily correspond to a specific use case. The sensitivity of the parameter choices 
is tested with additional experiments (see Supporting Information). An overview of the labor market and PES 
model is shown in Fig. 2.

Intervention scenarios. The value of k in the intervention model from Eqs (9) and (10) is central to our 
study, as it defines how strongly the intervention model affects different people. Testing different values is nec-
essary to determine if there are differences between targeted and non-targeted help. To this end, we make k 
dependent both on the real prospect group Cr , and the prospect group Cpr predicted by the prediction model. 
The fact that the growth rate is made depended on the predicted prospect group reflects the idea of targeted help 
for different prospect groups, and that a prediction model is used to do this. Our idea is not only that different 
prospect groups receive a different quantity of help, but also a different quality that is better suited for that pros-
pect group. Therefore, we also make k dependent on the real prospect group of each individual, as arguably if a 
specific type of help is better suited for the low then for the high prospect group, this will have the adverse effect 
for an incorrectly classified person.

The real prospect of a person cannot be precisely known, as the prospect is the expected time Tu that the indi-
vidual will be unemployed. The real-time that this individual will need cannot be known, as it evolves from the 
model and is linked to sreal (but only in a probabilistic way). However, for the effects of the intervention model, we 
need something that is at least close to the real prospect. We, therefore, define the “real prospect” of an individual 
as Tu estimated from the historical data, using sreal as a predictor (in contrast to the predicted prospect, which 
uses x1 and—if the full prediction model is used—xprot as predictor). As for the predicted prospect, high and 
low prospect groups are defined via the same threshold Tγ

u  , and each group is predicted with logistic regression.
Since both the real prospect group and the predicted prospect group are binary, this leads to a 2x2 matrix kij : 

predicted low predicted high

real low k11 k12

real high k21 k22

(8)b = βb
(
xpr − 0.5

)

(9)xt+1
1 = max

[

xt1 + k
(

xmax
1 − xt1

)

, xt1
]

(10)xt+1
2 = max

[

xt2 + k
(

xmax
2 − xt2

)

, xt2
]
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With different values for kij we can now define different settings, which we call intervention scenarios. The 
difference between k11and k22 defines how different the effect of the intervention model is for the two different 
prospect groups, as intended by the PES. The differences between k11 and k21 and between k12 and k22 define how 
individuals are adversely affected if the prediction algorithm incorrectly classifies them. In this case, the groups 
receive the type of help that is intended for the other group.

The values for the different entries of kij define how—in the abstract setting of our model—“attention” or 
“resources” are distributed across the different groups.

For better readability, the k-values presented in the text and the plots are multiplied with a factor of 500, so 
for the k-matrix for scenario 1 all entries will be displayed as 1. We will use the following scenarios: 

1. Balanced: k11 = k12 = k21 = k22 = 1 . This is the base scenario, where all prospect groups receive the same 
quantity and quality of help, which also has the same effect, independent of the actual labor market prospects.

2. Onlylow: k11 = k21 = 1, k12 = k22 = 0 . Only individuals classified as low-prospect receive help. The effect 
of the help is independent of whether the classification is correct or not.

3. Onlyhigh: k11 = k21 = 0, k12 = k22 = 1 Only individuals classified as high-prospect receive help. The effect 
of the help is independent of whether the classification is correct or not.

Figure 2.  Outline of the labor market and PES model developed for this study. The labor market selects job-
seekers from the pool of job seekers, with a probability dependent on the skills of the individual. Individuals 
who find a job leave the system, and individuals who have not found a job are transferred to the PES. The PES 
divides them into two groups, according to their predicted prospects in the labor market. The group with high 
prospects receives help (increase in skills) immediately and goes back to the pool of job seekers in the next 
timestep. The individuals in the group with low prospects receive help that takes more time and are withheld 
from the labor market for Tdelay timesteps.
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4. Balanced_errors_penalized: k11 = k22 = k12 = 1, k21 = 1/2 . Both high and low-prospect groups receive the 
same amount of help, but if the classification is incorrect, the help is only half as effective.

Detailed descriptions of the scenarios are given in Table A1 in the “Supporting information”. The different sce-
narios show different targeting of the aid of the PES (no targeting in scenario 1, different ways of targeting in 
scenarios 2-4), and comparing them thus allows to answer what impact targeted aid vs. non-targeted aid has on 
the long-term fairness of public authority interventions.

Spin up phase. Each model run is started with a spin-up phase. The first 400 timesteps are run without 
the intervention model in order to allow the buildup of an initial historical dataset. The first 200 timesteps are 
discarded, and the remaining 200 are used as the initial historical dataset - the historical dataset that will be used 
in the first step of the model that includes the PES. With each further step of the model, the historical dataset 
will be extended. Thus, in the longer run, the historical set will more and more be influenced by the predictions 
made by the PES.

Metrics. In order to address trade-offs between different long-term fairness goals, we need to quantitatively 
define fairness for our setting. Our first metric is the Between Group skills Difference (BGSD), which is given by 
the difference of the mean skills between the two groups:

This is a group fairness metric, and it is a property only of the data, not the prediction model. Our second metric 
is the fraction of the individuals that are predicted as low-prospect by the model but actually are high-prospect 
and would be classified as high-prospect by the model if the individuals would have the opposite protected 
attribute, which we call counterfactual fraction:

Here, N is the number of individuals as a function of the respective prospect groups: Cp is the predicted prospect 
group, Ctr is the true prospect group, and x∗pr is the opposite protected attribute of xpr . Both metrics are computed 
at each timestep of the model. BGSD and counterfactual fraction represent different fairness goals, and a com-
parison is thus essential for addressing whether there are trade-offs between different long-term fairness goals.

As the third metric, we use Equal Opportunity, which is the difference in True Negative Rates (TNR) between 
the two groups:

where negative means predicted low prospect class. It is the fraction of low-prospect predictions that are really 
low prospect. Equal opportunity is a widely used fairness metric (e.g.25,40). Both counterfactual fraction and equal 
opportunity are properties not only of the data but also of the prediction model.

Results
For each of the four scenarios, the model was run with the base prediction model and full prediction model, and 
with either the unbiased or biased labor market, resulting in four model combinations. In order to get a better 
feel and intuition for the model, we start by looking at a single model run in detail. Then, all scenarios and model 
configurations are compared with respect to the BGSD and counterfactual fraction metrics.

Single model run (scenario: onlylow, model: full prediction). A run with full prediction (including 
the protected attribute) and unbiased labor market for scenario onlylow is shown in Fig. 3. The prediction-model 
performance metrics are only available for the time the prediction model is active. Shown is part of the spin-up 
phase (the first 200 timesteps were discarded) and at timestep 400 the PES intervention model kicks in. This 
is clearly seen in many of the shown measures. The skills sreal start to increase. For both the privileged and the 
underprivileged group, the mean skills increases, but it increases more for the underprivileged group, as can be 
seen by decreasing BGSD. At around timestep 500 the pool of job seekers reaches a new equilibrium in skills. The 
average time that the individuals, who found a job at a certain time-point were already unemployed ( Tu ), shows 
a more complex dynamic (panels in row two, which show Tu and between group difference in Tu (BGTuD_cur-
rent). Shortly after the PES starts its intervention, Tu increases for both groups and then decreases again. The 
fraction of underprivileged individuals in the current pool of job seekers (individuals looking for a job and indi-
viduals in the waiting group of the PES, frac_upriv in the plot) is on the order of 0.8. The background population 
has—per how we generate our population data—a fraction of underprivileged individuals of 0.5. The reason 
that it is higher in the active group is that individuals in the privileged group have on average higher skills, and 
are thus more likely to find a job soon, leading to this imbalance in the active group. The plot fraction in waiting 
shows the fraction of individuals from the privileged group and the fraction of individuals from the underprivi-
leged group in the job-seeker pool that are currently in the waiting position (where the low prospect individuals 
receive help while being withheld from the labor market). In the beginning, this fluctuates strongly. This fluctua-
tion stems from the fact that in the first timestep after the PES starts its intervention, all low-prospect individu-
als from the current pool are put in the waiting group, and the pool is then filled up with random individuals 

(11)BGSD = sreal, xpr=0 − sreal, xpr=1

(12)
N
(

Cp,xpr = low ∧ Cp,x∗pr = high ∧ Ctr = high
)

N
(

Cp = low
)

(13)EO = TNRpriv − TNRupriv
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from the background population, which does not compensate all the low-skilled individuals. After around 100 
timesteps this reaches an equilibrium and the strong fluctuations vanish. Clearly visible is that a much higher 
fraction of the underprivileged group ends up in the waiting group compared to the privileged group.

Comparison of scenarios: influence on group skill. We now turn to a comparison of the different 
scenarios.

Figure 4 shows the time-evolution of BGSD, and Fig. 5 the average over the last 200 timesteps (a,b) and the 
difference between the average of the last and first 200 timesteps (c,d). The bars are split up by model type (full 
and base). In both figures, the left columns show the results for the runs with an unbiased labor market, and the 
right columns the results for the runs with a biased labor market. For the unbiased labor market, the PES with 
the base model has basically no effect on BGSD. With a biased labor market, the PES with base model does have 
an effect, but only for the intervention scenario in which only the high prospect group receives help. Interestingly, 
the BGSD decreases in this scenario. This is a relatively counter-intuitive result. Therefore, we inspect it in more 
detail. The full model evolution plots are shown in the SI (Fig. C1—C2). The skills of the privileged group actu-
ally decrease. This can be explained the following way: the high prospect group receives help, which will affect 
the privileged group more. So there is a large number with very high skills, and therefore near 1 probability of 
finding a job in the first timestep after entering the pool of job seekers. Additionally, the labor market is biased 
towards the privileged group, therefore also individuals with intermediate skills have a relatively large chance of 
finding a job immediately. Thus, for the pool of job seekers (both active and waiting) on which we measure BGSD, 
BGSD actually slightly decreases, as only the low-skilled ones from the privileged group remain in the pool. The 
result must also be connected with the fact that the individuals’ low prospect group are put in the waiting group 
for �Tu = 5 timesteps in the default model configuration, as when �Tu is set to zero, BGSD does not decrease 
in the high-only scenario (not shown).

If the PES uses the full prediction model (which includes the protected attribute as predictor), BGSD decreases 
for all scenarios, both in the unbiased and the biased labor market (Figs. 4c,d, 5c,d). The decrease in BGSD is 
smallest for the onlyhigh scenario. The other three scenarios have a very similar larger decrease in BGSD, which 
is larger in the biased labor market. This clearly shows that the targeting does affect the influence on between 
group differences. Another interesting result is that none of the scenarios reaches a BGSD of zero.

Comparison of scenarios: fairness of prediction model. We now turn to counterfactual fraction and 
equal opportunity, which measure different fairness goals than BGSD. In contrast to BGSD , they give insights 
into the fairness of the predictions model of the PES. The values for the end of the simulation are shown in 
Fig. 6. For the base model, counterfactual fraction is per definition zero, as the prediction model does not use the 

Figure 3.  Time evolution of a single model run with the onlylow scenario and full (including protected 
attribute) prediction model. The First 200 timesteps are discarded, at timestep 400 the PES starts its intervention, 
which can be seen in several parameters (e.g. increase in sreal , decrease in BGSD). Some parameters/metrics are 
only available from the time the intervention starts.
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a) b)

c) d)

Figure 4.  Time evolution of BGSD for all scenarios and all model combinations (full and base model, biased 
and unbiased prediction model). In an unbiased labor market and with the base prediction model, BGSD does 
not change significantly over time. Also, if the labor market is biased against the underprivileged group, BGSD 
does not change if the base prediction model is used, except if the help is targeted towards the high prospect 
group (scenario onlyhigh). If the full prediction model is used, BGSD decreases in all scenarios, independent of 
whether the labor market is biased or unbiased.

a) b)

c) d)

Figure 5.  BGSD at the end of the simulations (a, b) and change of BGSD from start to end of simulations (c, d), 
for all intervention scenarios. a and c show the simulations for the unbiased, (b and d) the simulations for the 
biased labor market. Different colors indicate different intervention scenarios, and different hatching indicates 
the base (without protected attribute) and the full model (protected attribute).
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protected attribute, and changing it, therefore, has no effect. For the full model, on the other hand, changing the 
protected attribute has an effect. In the unbiased labor market, roughly 10-20% of the individuals classified as 
low prospect are in fact high prospect and are only classified as low prospect because of their protected attribute. 
In the biased labor market, the percentage is roughly twice as high. The latter effect is in our eyes hard to foresee 
intuitively without explicit modeling. In comparison to the results with respect to the BGSD metric clearly shows 
that there is a non-negligible trade-off between the two fairness goals. The full prediction model is better suited 
for decreasing BGSD (which is one fairness goal) in 3 of the 4 scenarios, but it introduces a non-zero counterfac-
tual fraction (whose avoidance is another fairness goal). The second effect the full prediction model has is that it 
changes equal opportunity from slightly positive values (better for privilieged group) to negative values (worse 
for the privileged group—or more specifically, the true negative rate for the privileged group is smaller than for 
the underprivileged group).

Discussion and limitations
In this study, we have taken a simplistic view of the labor market. Our personal skill model is just as complex as 
necessary to capture the main setting (skills unevenly distributed across two groups). Further, we assume that 
success in the labor market is based solely on individual skills and that observations of the labor market (e.g., 
who finds a job) are thus a measure of skills. In reality, this view has been challenged fundamentally, as luck is 
just as important for success as individual skills and abilities  (see41 and references therein). Additionally, per-
sonal factors such as sympathy can play a major role when selecting a candidate for an open position but will 
not be coded in the personal attributes potentially used by a PES (there is, however, the possibility that personal 
sympathy correlates with group-membership, thus further complicating things). Another important factor to 
consider is that both our models made the implicit assumption that there is, in principle, no shortage of jobs. If 
people have a high enough skill level, they will get a job (possibly). In our setting, there are enough jobs for the 
number of people, but not necessarily for their skill level. Real-world job-markets can, however, be limited on 
the side of open jobs, which would likely change the dynamics and effect of the PES’s intervention.

While we included the option of having either a biased or unbiased labor market, the selection was fixed 
during the course of our simulations. In the real world, structural issues, such as biases in recruiters against or 
towards particular groups, may change over time. This raises the question of how representative—and, in the 
end, useful—historical recruitment data can be.

Also, in our abstract model-setting, the intervention scenarios we defined and applied in the study are only a 
subset of possible scenarios. In reality, even more different PES approaches would be conceivable, and this would 
need to be carefully reflected in the model setup.

Our intervention model (Eqs. (9) and (10) is deterministic. In reality, the effect of the intervention (increase 
in skill) will also have a random component, which one could, for example, model by adding noise. We did not 
do this in our study in order to keep the model as simple and comprehensible as possible.

a) b)

c) d)

Figure 6.  (a, b): Counterfactual fraction at the end of the simulations, for the unbiased (a) and biased (b) 
labor market. Different colors indicate different intervention scenarios, different hatching of the base (without 
protected attribute) and the full model (protected attribute). With the base prediction model, the counterfactual 
fraction is always zero. With the full prediction model, it is always positive, and depending on the intervention 
scenario. (c, d):Equal Opportunity ( TNRpriv − TNRupriv ) at the end of the simulations, for the unbiased (c) and 
biased (d) labor market. Positive values indicate a positive bias in favor of the privileged group, and negative 
values a bias in favor of the unprivileged group.
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This study is, therefore, a proof of concept and not an analysis of a real-world system. To study an existing 
real-world system (such as the Austrian AMS system), one would need to (i) have access to the data the PES 
uses—or at least to aggregated statistics—and (ii) carefully model the dynamics of the respective labor market. 
Here, the trade-off between complexity and completeness would need to be addressed in greater detail.

Despite the given limitations, we believe that our findings could inform the design of real-world systems 
reflecting labor markets. For example, we have shown that there exists a trade-off between reducing the dispar-
ity between a privileged and an unprivileged group and misclassifying individuals. This fundamental trade-off 
between group fairness and individual fairness reflects an important aspect that system designers need to take 
into account. One potential solution could be to focus on group fairness but implement additional measures to 
validate and mitigate potential misclassifications of individuals.

Conclusion and future work
In this study, we investigated the long-term effects of data-driven intervention on the labor market in a simulated 
setting. Our results revealed an essential trade-off dilemma: the full model—in contrast to the base model—
reduces BGSD, but at the same time classifies a number of individuals incorrectly as low-prospect solely because 
of their protected attribute, i.e., discriminates against them. Therefore, there is a trade-off between reducing the 
disparity between the two groups (reflected by a decrease in BGSD) and potentially treating individuals unfairly 
based on a protected attribute. Additionally, we found that active targeting of help (i.e., strategically distribut-
ing who receives what help) by the PES—compared to untargeted help—has little impact on inequality in the 
long-term, unless the help is targeted toward individuals with already high prospects, in which case inequality 
declines less. The purpose of this study was to show that in order to assess the ethical consequences of data-driven 
targeted support, e.g., for job-seekers, the investigation of long-term dynamics is crucial and requires careful 
quantitative modeling. This is not to say that other approaches (static quantitative approaches, philosophical/
sociological approaches) are of less value, but that several perspectives are needed to give a complete picture. 
We have demonstrated this via a simple model for an employment market. Even in this relatively simple setting, 
it is not possible to answer questions on long-term fairness without explicit modeling.

A view on the long-term dynamics can be used for a more informed decision on whether to use a targeted 
support system. It can, however, also provide the basis for corrective actions that counteract unwanted long-term 
effects. Ideally, one would already consider long-term dynamics in the design phase. This is in line  with42 who 
propose the implementation of ethics by design rules, particularly in respect to biases, values, and the effect of 
modern technological development on individuals, and more general initiatives for ethically aligned  design43.

With clearly defined long-term goals and constraints and an accurate model for the long-term dynamics, 
data-driven targeted support systems could from the beginning on be designed in a way that prevents—or at 
least minimizes the risk of - unfair outcomes over all relevant timescales.

Future work should focus on enhancing and adopting the model to better reflect real-world situations of labor 
market interventions by Public Employment Services, e.g., by investigating settings with more than two real 
skill features and one protected feature. Furthermore, even in the setting, we studied here, there are a number 
of additional fairness-related questions that are worthy of being addressed. For example: what is the long-term 
effect of targeted help on general employment? What is the long-term effect on employment in each group? Are 
there trade-offs between the—ethically problematic—inclusion of protected attributes in the targeting versus 
the global goal of high employment?

In this study, the effects of prescribed intervention scenarios were studied. A different approach would be to 
reverse the problem and use reinforcement learning to find strategies that the PES can use for achieving certain 
goals.

Finally, the same approach—careful quantitative dynamical modeling—may be applied to other similar prob-
lems of distributing public resources, for example, in the context of education or public funding.

Data availability
The software for this study was written in Python and is published in the first author’s personal GitHub reposi-
tory (https:// github. com/ sippo sip/ jobse rvice- ads- lterm- impact) and as FOSS via Zenodo (https:// zenodo. org/ 
record/ 69623 31). It allows full reproduction of the results of this study as well as further experimentation with 
the model parameters.
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